
Last Class

• While loops
• Infinite loops
• Loop counters
• Iterations

public class January31{
public static void main(String[] args) {

while (true) {
forLoops();
if (checkClassUnderstands()) {
 break;

}
teachArrays();

}
}

What does this display?
public class AnotherNestedLoop {
 public static void main(String[] args) {
 final int MAX = 4;
 int outerCount, innerCount;

 outerCount = 1;
 while(outerCount <= MAX) {
 innerCount = 1;
 while (innerCount <= outerCount) {
 System.out.print("(" + outerCount + "," +

innerCount +
 ") ");
 innerCount++;
 }
 System.out.println();
 outerCount++;
 }
 System.out.println("Done.");
 }
}

(1,1)
(2,1) (2,2)
(3,1) (3,2) (3,3)
(4,1) (4,2) (4,3) (4,4)
Done.

Part 2: The for Statement

for(int x = 0; x < 4; x++) {
 System.out.println(“I have to write “
 + “this over and over.”);
}

Example: a “for” loop

I have to write this over and over.
I have to write this over and over.
I have to write this over and over.
I have to write this over and over.

“for” loops are a little different,
but still quite similar

•

• for (initialization; condition;
follow-up action)

• One statement
•

•

•

•

•

• for (initialization; condition;
follow-up action)

• One block of statements
•

•

for(int x = 0; x < 4; x++)
{
 System.out.println(“I have to write “
 + “this over and over.”);
}

Components of a “for” loop

Logic of a for Statement

condition
evaluated

statement

(rest of the program)

truefalse

initialization

increment

Logic of a for Statement

x<5

{loop body}

(rest of the program)

truefalse

x=0

x++

for Loops as while Loops
•A for loop is equivalent to the following while loop structure:

initialization;
while (condition) {

statement;
increment;

}

for Loops as while Loops
•A for loop is equivalent to the following while loop structure:

initialization;
while (condition) {

statement;
increment;

}

•Excellent exercise to do at home!
•Find a for-loop example and:
•Rewrite it as a while loop
•Rewrite it as a series of if-else statements.

Execution of a for Loop
•Like in a while loop, the condition of a for loop is tested prior
to entering the loop body
•If the condition of a for loop evaluates to false initially (that
is, it evaluates to false the first time it is evaluated), the
statement is never executed
•Therefore, the body of a for loop will be executed zero or more
times
•A for loop is well suited for executing a specific number of
times that can be determined in advance

AnotherCounter.java
• public class AnotherCounter {
• public static void main(String[] args) {
• final int LIMIT = 3;
•
• for (int count=1; count <= LIMIT; count++) {
• System.out.println(count);
• }
•
• System.out.println("Done.");
• }
• }

AnotherCounter.java
• public class AnotherCounter {
• public static void main(String[] args) {
• final int LIMIT = 3;
•
• for (int count=1; count <= LIMIT; count++) {
• System.out.println(count);
• }
•
• System.out.println("Done.");
• }
• }

What does this display?
count:

LIMIT: 3

1 2 3 4

Console:
1

2

3

Done.

What shape does this display?
• public class Stars {
• public static void main (String[] args) {
• final int MAX_ROWS = 10;
•
• for (int row = 1; row <= MAX_ROWS; row++)
{

• for (int star = 1; star <= row; star++)
{

• System.out.print("*");
• }
• System.out.println();
• }
• }
• }

*
**

Exercise:
In this exercise, you will write
methods to write a small portion of
a chess game. You will write
methods that list the squares a
piece can move to.

-Each method should take as input 1)a
char representing the file (column)
the piece is on and 2)and int
representing the rank (row) the
piece is on. Files go from a-h
(inclusive). Ranks go from 1-8

Exercise:
Write a class ChessMoves which has the
following methods

void printRookMoves(char file, int rank)
void printBishopMoves(char file, int rank)
void printQueenMoves(char file, int rank)
void printPawnMoves(char file, int rank)
void printKingMoves(char file, int rank)
void printKnightMoves(char file,int rank)

(You may assume that no pieces are in the
way or captures can be made)

Ex: printRookMoves :

public static void printRookMoves(
 char file, int rank) {

for (char c = 'A'; c <= 'H'; c++) {
if (c != file) {

System.out.println(c + “” + rank);
}

}
for (int r = 1; r <= 8; r++) {

if (r != rank) {
System.out.println(file + “” + r);

}
}

}
//write this with a while loop instead!

What Shape does this Display?
• public class WhatIsThis {
• public static void main(String[] args) {
• final int MAX_ROWS = 10;
• for (int row = 1; row <= MAX_ROWS; row++) {
• for (int space = 1; space <= MAX_ROWS - row; space++) {
• System.out.print(" ");
• }
• for (int star = 1; star <= row * 2; star++) {
• System.out.print("*");
• }
• System.out.println();
• }
• for (int base = 3; base > 0; base--) {
• for (int space = 1; space <= MAX_ROWS-1; space++) {
• System.out.print(" ");
• }
• System.out.println("**");
• }
• }
• }
•

 **

 **
 **
 **

Details on the for Statement
•Each expression in the header of a for loop is optional
–If the initialization portion is left out, no initialization is performed
–If the condition portion is left out, it is always considered to evaluate to
true, and therefore creates an infinite loop
–If the increment portion is left out, no increment operation is performed

•Both semi-colons are always required in the for loop header

for Loop: Exercise 1
•Complete the main() method of the Multiples class by adding
code that displays all the multiples of a number entered by the
user that exist between 1 and an upper limit also entered by the
user
–The completed program MUST display 5 multiples of the number entered
by the user per line, except for the last line, which may contain less
–In addition, the completed program MUST display a tab character (
'\t') between every multiple displayed on a line
–Finally, the completed program MUST use a for loop to generate and
display the multiples of the number entered by the user

Multiples.java (1 / 2)
• import java.util.Scanner;
•
• public class Multiples {
• public static void main(String[] args) {
• Scanner keyboard = new Scanner(System.in);
• final int PER_LINE = 5;
• int value;
• int limit;
•
• System.out.print ("Enter a positive value: ");
• value = keyboard.nextInt();
• System.out.print ("Enter an upper limit: ");
• limit = keyboard.nextInt();
•
• System.out.println ("The multiples of " + value +
• " between " + value + " and " + limit +
• " (inclusive) are:");
• // Continued on next slide

Multiples.java (2 / 2)
• // Continued from previous slide
•
• // Add your code here
• }
• }

for Loop: Exercise 2
•Complete the main() method of the Approximation class by
adding code that approximates the number e (the basis of the
natural logarithm). The number e can be approximated by the
following sum: e = (1 / 0!) + (1 / 1!) + (1 / 2!) + (1 / 3!) + ...
–The main() method of the Approximation class asks the user to enter the
number of terms of be computed; your task is to add code which computes
each of these terms and adds them together to form the approximation of e

•The obvious way of solving this problem involves using nested
loops, where the inner loop computes the required factorial
during every iteration of the outer loop. Can you find a way to
solve this problem using only one loop?

Approximation.java
• import java.util.Scanner;
•
• public class Approximation {
• public static void main(String[] args) {
• Scanner keyboard = new Scanner(System.in);
• int n;
•
• System.out.print("Please enter the number of terms: ");
• n = keyboard.nextInt();
•
• // Add your code here
• }
• }

Stars.java
• public class Stars {
• public static void main (String[] args) {
• final int MAX_ROWS = 10;
•
• for (int row = 1; row <= MAX_ROWS; row++) {
• for (int star = 1; star <= row; star++) {
• System.out.print("*");
• }
• System.out.println();
• }
• }
• }

What shape does this program display?

WhatIsThis.java (1 / 2)
• public class WhatIsThis {
• public static void main(String[] args) {
• final int MAX_ROWS = 10;
•
• for (int row = 1; row <= MAX_ROWS; row++) {
• for (int space = 1; space <= MAX_ROWS - row; space++) {
• System.out.print(" ");
• }
• for (int star = 1; star <= row * 2; star++) {
• System.out.print("*");
• }
• System.out.println();
• }
•
• for (int base = 3; base > 0; base--) {
• for (int space = 1; space <= MAX_ROWS-1; space++) {
• System.out.print(" ");
• }
• // Continued on next slide

WhatIsThis.java (2 / 2)
• // Continued from previous slide
• System.out.println("**");
• }
• }
• }

What shape does this program display?

Part 4: Exercises

Exercises (1)
1.Write a program which consists of a single class called Factor
that asks the user to enter a positive integer (including zero). The
program then displays that number and its greatest prime factor.
The program repetitively does this until the user inputs a
negative number.

Exercises (2)
2.Write a program which consists of single class called Boxes
that asks the user for a positive integer number n. The program
then displays a solid square with side length n next to a hollow
square with side length n. The program does nothing if the user
inputs 0 or a negative value. If example, if the user enters 4, the
following will be displayed:

**** ****
**** * *
**** * *
**** ****

Exercises (3)
3.One can approximate the square root of any number a using
the following sequence:

x
0
 = a / 2

x
i+1

 = (x
i
 + a / x

i
) / 2

Write a program which consists of a single class called
SquareRoot. This class defines a main() method that asks the
user to enter a number a, and a number of iterations n, and reads
these values from the keyboard. The program then computes the
nth term in the above sequence, thus approximating the value of
of the square root of a, and displays it to the screen.

break and continue
If you write “break” in the middle of a loop, the loop will
immediately terminate.

If you write “continue” in the middle of a loop, the current step
of the loop will finish but the loop will continue afterwards.

break and continue
int i=0;
while (i < 10) {

if (i == 5) break; // skips the rest of the loop
i++;

}

for (int j =0; j < 10; j++) {
if (j== 5) {

continue;
}

}

Example: Writing a program to
store grades

Suppose we wanted to write a computer program to store the
grades of every comp 202 student on every different assignment.

Let's say we are going to read all of this from the keyboard.

We could make lots of variables and a scheme where we
numbered students from 1-300 and then used a _ to separate
which assignment/midterm/final it was.

i.e. int student_1_f could store the first students final grade.

Example: Writing a program to
store grades

Scanner s = new Scanner(System.in);

int student_1_0, student_1_1, student_1_m,student_1_f;
int student_2_0, student_2_1, student_1_m,student_2_f;
int student_3_0, student_3_1, student_1_m,student_3_f;
int student_4_0, student_4_1, student_1_m,student_4_f;
int student_5_0, student_5_1, student_1_m,student_5_f;
int student_6_0, student_6_1, student_1_m,student_6_f;
int student_7_0, student_7_1, student_1_m,student_7_f;
int student_8_0, student_8_1, student_1_m,student_8_f;
int student_9_0, student_9_1, student_1_m,student_9_f;

Example: Writing a program to
store grades

Scanner s = new Scanner(System.in);

student_1_0 = s.nextInt();
student_1_1 = s.nextInt();
student_1_m = s.nextInt();
student_1_f = s.nextInt();
student_2_0 = s.nextInt();
student_2_1 = s.nextInt();
student_2_2 = s.nextInt();
student_2_3 = s.nextInt();

Once we go through all this trouble to enter the grades, we still have to
work with the numbers!

One idea would be if we could do some sort of for loop.

For example:

for (int i=0; i<300; i++) {

System.out.println(“The grade for student ” + i + “ on assignment 1 is ” +
 student_i_1

}

However, Java does not allow us to write variables inside our variable
names. We can, however, do something pretty similar.

COMP-202
Unit 6: Arrays

CONTENTS:
Array Usage
Multi-Dimensional Arrays
Reference Types

5

int number = 5

In memory:

A variable of type int.

5

int number = 5

In memory:

A variable of type int.

An integer array corresponds to variable of type int[].

0 1 2 1240 826 15

int[] weights = {5,6,0,4,0,1,2,12,82,1}

In memory:

0 1 2 1240 826 15

int[] weights = {5,6,0,4,0,1,2,12,82,1}

In memory:

An array is a fixed-size, ordered collection of
elements of the same type.

Why use arrays?
They make large amounts of data easier to handle.

0 1 2 1240 826 15

int[] weights = {5,6,0,4,0,1,2,12,82,1}

In memory:

In memory:

Each cell in the array has an index.

0 1 2 1240 826 15

10 2 3 4 5 6 7 8 9

e.g. The cell that contains 82 has index 8.
 The cell that contains 5 has index 0.

In memory:

Each cell in the array has an index.

0 1 2 1240 826 15

10 2 3 4 5 6 7 8 9

e.g. The cell that contains 82 has index 8.
 The cell that contains 5 has index 0.

int j = weights[8] + weights[0];

So you can write:

Part 1: Array Basics

Array Declaration Examples
•double[] prices;
–Declares an array called prices
–Each element in this array is a double; variable prices is of type double[]
•char[] code;
–Declares an array called code
–Each element of this array is a char; variable code is of type char[]
•String[] names;
–Declares an array called names
–Each element of this array is a String; variable names is of type String[]

Assigning values to an array
If you know ahead of time how many
numbers you want to store (and their
values) you can assign values to an
array when you declare it:

int[] someNumbers = {1,2,3,4,5};

Assigning values to an array
If you do not know ahead of time how
many numbers you want to store (or don't
know their values), you have to assign
the values in 2 phases:

1) Tell the computer how many values you
want to store

2) Set these values

Setting the size of an array
To specify how large an array should be,
you do the following

sometype[] myArray;

//declare an array of type sometype

...

myArray = new sometype[size];

Accessing elements of an array

To get or set values in an
array, you will always use
both the array name, and the
index of the value you want.

You can think of the index
like a subscript.

Accessing elements of an array

Array indices start from 0

//set x to be first value in
//array

int x = myArray[0];

//set 3rd value in myArray

myArray[2] = 10;

public class FirstArray {
 public static void main(String[]
args){
 String[] names = {"Jordan",
"Jesse", "Joshua"};
 for(int i = 1; i >= -1; i = i - 1)
 System.out.println(names[i+1]);
 }
}

What does this display?

public class FirstArray {
 public static void main(String[]
args){
 String[] names = {"Jordan",
"Jesse", "Joshua"};
 for(int i = 1; i >= -1; i = i - 1)
 System.out.println(names[i]);
 }
}

What does this display?

5

int number = 5

In memory:

Review: how primitive types are
stored in memory

Example:

number

number represents a location in memory where the
integer 5 is stored

Array types are NOT primitive types

Example:

weights represents a location in memory where the

address of the first array cell is stored.

0 1 2 1240 826 18

int[] weights = {8,6,0,4,0,1,2,12,82,1}

weights 101011

Primitive vs. reference types

• Primitive types:
– The variable

represents the
location in memory
at which an actual
value, like the
integer 175.

• Reference types:
– The variable

represents the
location in memory
at which another
memory address
(or “reference”) is
stored.

0 1 2 1240 826 15

int[] weights = {5,6,0,4,0,1,2,12,82,1}

In memory:

Initializer Lists

•The above statement does all the following in one step:
–It declares a variable of type int[] called numbers
–It creates an array which contains 3 elements
–It stores the address in memory of the new array in variable numbers
–It sets the value of first element of the array to 2, the value of the second
element of the array to 3, and the value of the last element of the array to be 5

• Often, these steps are carried out separately.

int[] numbers = {2, 3, 5};

Array types are reference types
•The declaration

int[] numberArray;

creates a reference variable, which holds a reference to an int[]

– No array is created yet, just a reference to an array.

Reference vs Primitive in methods

-When you call a method with a primitive
type, remember that you are only passing
to the method the value of the variable.

Reference vs Primitive in methods

public static void badSwap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

If I call this method badSwap(x,y), it will
not swap the two variables. The method
badSwap only knows the values of x and y

Reference types

-When you call a method with input of
reference types, we still pass the value of
the variable, but the value now represents
an address in memory.

-If I swap the address inside the method,
nothing will change outside.
-But if I swap the contents at the address, it
will be “permanent”

Arrays as reference types
For example, if I want to swap two arrays
in a method, I have to swap the contents of
the arrays.

The array addresses will still be the same,
but each array would now store what used
to be in the other.

{
....
int[] array1 = {1,2,3,4,5};
int[] array2 = {6,7,8,9,10};

badSwap(array1,array2)
....
}

public static void badSwap(
int[] a1, int[] a2) {
int[] temp = a1;
a1 = a2;
a2 = temp;

}

This swaps a1 and a2 indeed, but the change
will not matter in the calling function

You can figure out how many elements are in
an array by writing

arrayname.length

public static void goodSwap(int[] array1,
int[] array2) {
int temp;

for (int i=0; i < array1.length;i++) {
temp = array1[i];
array1[i] = array2[i];
array2[i] = temp;

}
}

Array Allocation (1)

int[] numbers;

numbers = new int[2 * SIZE];

numbers

final int SIZE = 5;

SIZE 5

-

Array Allocation (1)

numbers 0 0 0 000 00 00

10 2 3 4 5 6 7 8 9

final int SIZE = 5;

int[] numbers;

numbers = new int[2 * SIZE];

SIZE 5

Allocating Arrays (2)

variableName = new type [size];

new is a reserved word
in Java

The type of the
elements to be stored
in the array

An expression which
specifies the number
of elements in the
array

The variable in which
the location in memory
of the newly created
array will be stored

Allocating Arrays (3)

• Once an array has been created, its size cannot be changed

•As with regular variables, the array declaration and the array
allocation operation can be combined:

type[] variableName = new type[size];

Initializer Lists
int[] numbers = {2, 3, 5};

is equivalent to the following code fragment:

int[] numbers = new int[3];
numbers[0] = 2;
numbers[1] = 3;
numbers[2] = 5;

Exercise on reference types:
what does this display?

public class ArrayCopy {
 public static void main(String[] args){
 int[] numbers = {1, 2, 3};
 int[] differentNumbers = new int[3];
 differentNumbers = numbers;
 numbers[1] = 2;
 differentNumbers[1] = 3;
 System.out.println(numbers[1]);
 System.out.println(differentNumbers[1]);
 }
}

In memory:

Each cell in the array has an index.

0 1 2 1240 826 15

10 2 3 4 5 6 7 8 9

e.g. The cell that contains 82 has index 8.
 The cell that contains 5 has index 0.

int j = weights[8] + weights[0];

So you can write:

Array Access Example

numbers 0 0 0 000 0

10 2 3 4 5 6 7 8 9

numbers[0] = 1;

numbers[1] = numbers[0];

numbers[2 * SIZE – 1] = 2 * numbers[0] + 1;

SIZE 5

1 1 3

int[] weights = {5,6,0,4,0,1,2,12,82,1}
total = weights.length;

Array Length

We can get the length of any array
with [arrayName].length

Here, total is assigned the value 10.

int[] weights = {5,6,0,4,0,1,2,12,82,7}
total = weights.length;

Array Length

What is the index of the cell containing 7
in terms of weights.length?

int[] weights = {5,6,0,4,0,1,2,12,82,7}
total = weights.length;

Array Length

What is the index of the cell containing 7
in terms of weights.length?

Answer: weights.length - 1

int[] weights = {5,6,0,4,0,1,2,12,82,1}
weights.length = 2; // illegal!

The length of an array is a constant

The length field of an array can be
used like any other final variable of
type int.

public static void init(int[] list, int start){
 // use a loop to assign a value to each cell

}

Fill in the method init so that it
initializes the array list with a
decreasing list of integers starting at
start.

e.g. If myArray has length 5, a
call to init(myArray, 20) will assign
the following values to an array:
{20, 19, 18, 17, 16}.

Bounds Checking (1)
int[] myArray = new int[5];
myArray[5] = 42;

// Array myArray contains 5 elements, so
// the valid indices for myArray are 0-4
// inclusive
// Therefore, the program crashes

•When this occurs, the error message will mention that the
program threw an ArrayIndexOutOfBoundsException
–The error message should also mention which line in your program caused
the latter to crash

IndexOutOfBoundsDemo.java
public class IndexOutOfBoundsDemo {
 public static void main(String[] args) {
 final int SIZE = 5;
 int[] myArray;

 myArray = new int[SIZE];

 System.out.println("Attempting to retrieve the " +
 "element at position " + SIZE + " of an array of " +
 "size " + SIZE);
 myArray[SIZE] = 42;
 System.out.println("The element at position " + SIZE +
 " of this array is " + myArray[SIZE]);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Reading Exception Output (1)

Attempting to retrieve the element at position 5 of an array of
size 5
Exception in thread "main" java.lang.
ArrayIndexOutOfBoundsException: 5
 at IndexOutOfBoundsDemo.main(IndexOutOfBoundsDemo.java:11)

•The program's output:

Method where the problem occurred

File where the problem occurred

Line number where the problem occurred
Nature of the problem and additional information
•Index we tried to access and caused the crash

Off-By-One Errors Revisited
•Off-by-one errors are common when using arrays:

int[] array = new int[100];
int i;

i = 0;
while (i <= 100) {
 array[i] = 2 * i;
 i = i + 1;
}

