
COMP-202
Unit 2: Java Basics

CONTENTS:
Using Expressions and Variables
Types
Strings
Methods

Assignment 1
• Assignment 1 posted on WebCt and

course website. It is due May 18thst
at 23:30

• Worth 6%
•

• Part programming, part
binary/number conversions

• Start early!

COMP-202 - Introduction 3

Question:
What if I have 2 variables x and y and I

want to swap the contents of them? In
other words, I want to write something
so that afterwards x has the old value of
y and y has the old value of x.

COMP-202 - Introduction 4

Answer 1
The simplest way to do this is by making a

third variable. We could call the variable
temp

For example to swap x and y:
int temp = x;
x = y;
y = temp;
//make sure the “right” of one line matches
//with the “left” of next line

COMP-202 - Introduction 5

Answer 2
What if I wanted to swap without using a

3rd variable?

x = x+y;
y = x – y;
x = x - y;

COMP-202 - Introduction 6

Answer 2
What if I wanted to swap without using a

3rd variable?

Suppose x starts out with value A and y
has value B

x = x+y;

x now equals A+B
y now equals B

COMP-202 - Introduction 7

Answer 2
What if I wanted to swap without using a

3rd variable?

Suppose x starts out with value A and y
has value B

y = x-y;

x now equals A+B
y now equals A

COMP-202 - Introduction 8

Answer 2
What if I wanted to swap without using a

3rd variable?

Suppose x starts out with original value A
and y has value B

x = x-y;

x now equals B
y now equals A

COMP-202 - Introduction 9

Base- 13 Math

In base 13, what is 9*6 ?

To do this, we first calculate 9*6
in base-10

9*6 = 54

Now, remember in base-13, we
can count up to “12” in one digit.

So each digit is worth 13^0,
13^1, etc.

COMP-202 - Introduction 10

Meaning of Life

42
= 4 *13^1 + 2 *

13^0

COMP-202 - Introduction 11

Solution: Store the results into
 a variable

If we have a case like this, we can use a variable to store
the results of a computation.

To make a variable, you have to do 2 things:

1)Decide what kind of thing or type you want to store.
-If you want to store an integer, this is called int in

Java
-If you want to store a number with a fractional part,

this is normally called double in Java (also could be
float)

-If you want to store letters, this is usually done with
something called a String in Java.

COMP-202 - Introduction 12

Solution: Store the results into
 a variable

2)Decide on a name for your variable.

Your variable can be named anything you like with a few
exceptions:

1)It can only contain letters, numbers, and _ (no ; for
example)

2)It must start with a letter
3)There must not be another variable with the same

name in scope
4)Variable names are case sensitive so Foo is different

than foo
5)There are a few words in Java that are reserved. You

can't call your variables these (for example “public”)

COMP-202 - Introduction 13

Solution: Store the results into
 a variable

Once you decide on a name and type, you can do what is
known as declaring a variable by writing first the type
and then the name and then a ;

For example:

int mean;

would declare a variable which will store an integer. It will
be called mean in further computations.

At the beginning the variable mean has no value and is
called uninitialized

COMP-202 - Introduction 14

Solution: Store the results into
 a variable

To store a value into a variable, you write:

variablename = expression

What this means is “assign the value of the variable
called variablename to be the value of expression”

The equals in Java is very different from the = in math.
1)It is not symmetric. a = b is not the same as b = a
2)It is a one time assignment. All that Java does is

evaluate the expression and assign its value.
3)The types on the left and right side of the equal have

to be the same. For example, you can't store letters
into a number.

COMP-202 - Introduction 15

Solution: Store the results into
 a variable

Once you have a variable initialized, you can use it in any
other computation:

int mean;

mean = (1 + 2 + 3 + 4 + 5) / 5;

System.out.println(1 – mean);
System.out.println(2- mean);
......

COMP-202 - Introduction 16

What if you don't declare a
variable?

If you write

x = 5;

without declaring x, you will get a compiler
error.

The error will complain that the compiler
does not recognize the symbol x.

COMP-202 - Introduction 17

Some basic types

int : stores an integer number
String : stores letters. For example “Hello

World”
double : stores real numbers (fractions)
long : stores a long integer (up to 9

quintillion!)
float : like double, can store numbers
boolean : stores either true or false
char : stores one character

COMP-202 - Introduction 18

Mismatching types

If you try to store something of type X in
something of type Y, the Java compiler
will complain.

For example,

int x;
x = “Hello”
What are the types of “Hello” and x

COMP-202 - Introduction 19

Why does Java care anyway?

Why does the Java compiler care that you
are trying to store a string in an int?

COMP-202 - Introduction 20

Why does Java care anyway?

Answer: The problem is when you write

int x;

Java is setting aside enough memory to
store 1 integer value.

If you try to store a String in it, it doesn't
know whether it will fit or not!

COMP-202 - Introduction 21

Why does Java care anyway?

In addition, every different type has a different
conversion to binary.

For example, the code 111001111001 will store a number
if it represents an int

The same code would represent some particular letter if it
was a String.

COMP-202 - Introduction 22

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

The first thing is that every program in java MUST be
inside of a class. We'll go into more detail on what this
means, but you can think of a class as grouping things
together

“public class NAMEOFFILE { “ in it.
(Note: we'll see later that this isn't always on the first line

though!)

COMP-202 - Introduction 23

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Inside a class, there are (usually) 1 or more methods. A
method is simply a group of instructions to Java that
can have both an input and an output. Conceptually, it
is like a function in math.

In this case, the method is main()

COMP-202 - Introduction 24

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Every Java program you ever write has to have a main
method.

Not every class that you ever write in Java will have a
main method.

If you don't have a main method, you can compile your
class, but you can't run it.

COMP-202 - Introduction 25

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Experiment: See what happens if you change

public static void main(String[] args) to

public static void Main(String[] args)
Try
1)javac HelloWorld.java
2)java HelloWorld

COMP-202 - Introduction 26

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

This method is called main because main is written
before (String[] args).

We often will call this “the main method”

COMP-202 - Introduction 27

Multiple methods in a class
A class can consist of many methods. Here is a class with

many methods. They are called elmer, bugs, Bugs,
daffy, and yosemitesam

public class LoonieToons {
 public static void bugs() { }
 public void Bugs() { } //no link to bugs

public int elmer() { }

 private static double daffy() {
 } public void yosemitesam(int wile, double coyote){}

}

COMP-202 - Introduction 28

Multiple methods in a class
Because the class LoonieToons does not have a main

method you can not run this class

public class LoonieToons {
 public static void bugs() { }
 public void Bugs() { } //no link to bugs

public int elmer() { }

 private static double daffy() {
 } public void yosemitesam(int wile, double coyote){}

}

COMP-202 - Introduction 29

The main() method
Any program you ever write in Java will always start the

the beginning of the main method.

Remember that the beginning of a method is always
marked by the { that immediately follows the name of
the method.

COMP-202 - Introduction 30

 Using Methods
If you write code in a method other than the main

method, there are only 2 ways that your code will be
executed:

1)If one of your commands inside the main method is to
execute this method.

2)If one of your commands, which is inside a method
called by the main method, is to execute this method
(and so on if a command was to execute a method
which had a command to execute a method which had
a command to execute a method......)

COMP-202 - Introduction 31

The name of a method
Remember that you can figure out the name of a method

by looking at the method header:

public static void madness() {
.....method body/definition
}

Note that you can only call a method like this when the
method madness() is part of the same method. For the
time being, we are only using 1 class, so this will
always be true unless we use library methods (will
talk about later)

COMP-202 - Introduction 32

Question:
public class MethodTest {

public static void madness() {
System.out.println(“I'm in madness!);

}

public static void main(String[] args) {
System.out.println(“I'm the main method”);
???????
System.out.println(“Good-bye”);

}
}

What would you write instead of ?????? to call the
method madness ? What will the program print?

COMP-202 - Introduction 33

Question:
public class MethodTest {

public static int madness() {
System.out.println(“I'm in madness!”);

}

public static void main(String[] args) {
System.out.println(“I'm the main method”);
madness();
System.out.println(“Good-bye”);

}
}

COMP-202 - Introduction 34

Question:
I'm the main method
I'm in madness!
Good-bye

COMP-202 - Introduction 35

Watch out!

Any variables you create inside one
method are NOT related to variables of
the same name in another method!

Every method you ever write, will have it's
own set of variables!

COMP-202 - Introduction 36

Watch out!

public static void confusing() {
x = 0;
----->this is an error. x is undeclared!

}

public static void main(String[] args) {
int x = 5;
int y = 3;
confusing();

}

COMP-202 - Introduction 37

Watch out!

public static void confusing() {
int x = 0;
----->no error, but changes a different x.

}

public static void main(String[] args) {
int x = 5;
int y = 3;
confusing();
System.out.println(x);

}

COMP-202 - Introduction 38

Watch out!

public static void confusing() {
x = 0;
----->this is an error. x is undeclared!

}

public static void main(String[] args) {
int x = 5;
int y = 3;

}
Note: Even if we don't call the method confusing(), we

still get a compiler error.

COMP-202 - Introduction 39

But what if I need my method
to use the values of variables?

There are 2 ways that you can “share” variables between
methods:

1)You can actually declare a variable outside of any
method (but inside a class). This has some confusing
results (you need to write static before the variables)
and is generally bad style. Don't do this on your
assignments!

2)You can pass the values of variable(s) to your method.
When you do this, every time your method is called,
certain variables will have their values initialized
already.

COMP-202 - Introduction 40

But what if I need my method
to use the values of variables?

2)You can pass the values of

variable(s) to your method.

COMP-202 - Introduction 41

But what if I need my method
to use the values of variables?

To pass the value of a variable(s) to a method, you have
to do 2 things:

1)When you write the method header, specify the types
and names that all variables initialized at the start of
your method. These names can be whatever you want
and don't have to be related to any other names in
other methods.

2)When you call your method, you need to give values to
the method to correspond with each variable listed in
1)

COMP-202 - Introduction 42

Changing the method header

public static void madness(int x) {
}

This means the method called madness can take 1 value
as input. This value has to be of type int and it will be
referred to as x inside the method. When we call the
method madness(), we now have to give it one value.

public static void main(String[] args) {
 madness(3); ----> calls madness. inside madness, x=3
 madness(10-5); -->calls madness. inside madness,x=5
}

COMP-202 - Introduction 43

Changing the method header

public static void doubleMad(int x, double y) {
}

This means the method called doubleMad takes 2 values
as input. The first of these values is of type int and will
be called x. The second of these values is of type
double and will be called y.

doubleMad(3,5.0); ----> calls doubleMad, x=3, y=5.0
double foo = 100;
doubleMad(1,foo); ----> calls doubleMad, x=1, y=100
doubleMad(2, foo-1); --->calls doubleMad,x=1, y=99

COMP-202 - Introduction 44

Changing the method header

public static void doubleMad(int x, double y) {
}

What do you think happens if we wrote:

doubleMad(3); ???
doubleMad(2,1,10); ???
doubleMad(1.5, 3) ; ???

COMP-202 - Introduction 45

Changing the method header

public static void doubleMad(int x, double y) {
}

What do you think happens if we wrote:

doubleMad(3); too few arguments
doubleMad(2,1,10); too many arguments
doubleMad(1.5, 3) ; arguments of wrong type

COMP-202 - Introduction 46

Trick question

public static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

public static void main(String[] args) {
int x = 3;
int y = 2;
swap(x,y);
System.out.println(“x is “ + x + “ y is “ + y);

}

COMP-202 - Introduction 47

Trick question

Remember that only the VALUE of the variable is given to
the method, not the actual variable itself.

This means that when we write swap(x,y) , we are
saying:

“call the method swap. The value of a and b inside swap
should be 3 and 2 (respectively) inside the method
swap.”

Inside the method swap(), we do actually swap the
values of a and b. But it has no effect on the main
method.

COMP-202 - Introduction 48

Trick question

public static void swap(int x, int y) {
int temp = x; --->still is no link between x in swap

and main. Remember each method has its own set
of variables.

x = y;
x = temp;

}
 public static void main(String[] args) {

int x = 3;
int y = 2;
swap(x,y);
System.out.println(“x is “ + x + “ y is “ + y);

}

COMP-202 - Introduction 49

Getting a result from your
method

If you want to use a result from a method, you can do
what is known as returning a value from the method.
You can only get ONE (or zero) result from a method.

There are 2 things you have to do:

1)Choose what type you want to get from the method.
Once you have chosen that, specify it in the method
header.

2)Write return expression inside the method at the point
you want to give the result back. Whenever a return
statement is reached, the method executes the return
statement and LEAVES THE METHOD!

COMP-202 - Introduction 50

Getting a result from your
method

public static int intReturner() {
int x = 100;
return x + 10;

}

If you declare a method to return an int, you HAVE to
return an int. If we left off the return statement, the
method would not compile.

Note that you can have more than one return statement
in a method once we add more complicated things like
if statements. BUT only the first will be executed.

COMP-202 - Introduction 51

Getting a result from your
method

public static int intReturner() {
return 10;
System.out.println(“I just returned.”);

}

The above line is not printed because the method already
returned at the above line.

In fact, the compiler is smart enough in this case to know
you have reached unreachable code and you will get a
compiler error!

COMP-202 - Introduction 52

Using the result of a method
Once you have written a method to return type t, you can

put a call to the method ANYWHERE that something of
type t can appear.

For example:

int x = intReturner();
int y = intReturner() + 1;
System.out.println(intReturner());
madness(intReturner());

COMP-202 - Introduction 53

Making the OUTPUT of your
method depend on the INPUT

A return statement can really be any expression, as long
as the type specified in the method header matches
the type in the return statement. This means, we can
make a method depend on the input:

public static int addOne(int x) {
return x+1;

}

int y = 3;
System.out.println(addOne(y));
System.out.println(addOne(y) + addOne(addOne(y)));

COMP-202 - Introduction 54

Reason for using a method
There are many reasons to use methods and not just put

everything in the main method.

In many ways, a method is like a “subprogram” or a
program within your program:

1)It has an input and output
2)Each method has its own set of variables

This means that the method is very well self-contained.
They help to keep our code well organized.

COMP-202 - Introduction 55

Reason for using a method

One big benefit of using methods is that you can repeat
computations very easily. If you have a complicated
computation with many statements in it, you can call
the same method many times from your code without
lots of copying and pasting.

Another advantage is that.....

COMP-202 - Introduction 56

What happens in Vegas a
method stays in a method

This is good because once we write a method and test it,
we never have to change it again

COMP-202 - Introduction 57

Bug fixing

Suppose you make a mistake in your computations and
you never use methods. Because you did the same
computation over and over again, now you have to
change every single one of these.

If you used a method, you just have to change the 1
place where the mistake happened.

COMP-202 - Introduction 58

Exercise

Write a method called celciusToFahrenheit

Your method should take as input a double representing
a Celsius temperature and return a double, which is
the original value but in Fahrenheit.

Note: F = C * 1.8 + 32

Now write how you would call this method.

COMP-202 - Introduction 59

Important note!

public static void CallAFunction(int airline) {
System.out.println(airline);

}

a is just a name I'm calling a variable
inside the method. I can replace it
with any other valid Java identifier

COMP-202 - Introduction 60

Important note!

public static void CallAFunction(int delta) {
System.out.println(delta);

}

a is just a name I'm calling a variable
inside the method. I can replace it
with any other valid Java identifier

COMP-202 - Introduction 61

Important note!

public static void CallAFunction(int aircanada) {
System.out.println(aircanada);

}

a is just a name I'm calling a variable
inside the method. I can replace it
with any other valid Java identifier

COMP-202 - Introduction 62

Important note!

public static void CallAFunction(int united) {
System.out.println(united);

}

a is just a name I'm calling a variable
inside the method. I can replace it
with any other valid Java identifier

More on Variables and
Expressions

COMP-202 - Introduction 64

What should I call my
classes,variables and methods?

• Identifiers (what we call our methods or variables or
classes) can have:

•

• any alphabetical letters (either case)
• numbers 0-9 (as long as it isn't the first character)
• _ (underscore)
• $
•

• Identifiers are case sensitive, so
• int b; is not the same as int B;

COMP-202 - Introduction 65

Naming Conventions
• We have many conventions that we follow to make

naming more consistent.
•

• Variables and Methods should all be lower-case
EXCEPT for the FIRST letter of every word other than
the first

•

• Method names should start with a verb
•

• Class names follow the same convention as variables
except the FIRST letter is also capitalized

• Constants (we'll see later) must be ALL CAPITALS

COMP-202 - Introduction 66

Examples:
• int iHateComputers; //good!
• boolean ILoveComputers; //bad :(
• float COMPUTERSAREAWESOME; // bad :(
• double x; // bad-- not descriptive
•

• class MyClass; // good!
• class Myclass; // bad!
•

• public static int Computer() ; // bad – no verb and
cap C

• public static int turnOnComputer(); // good

COMP-202 - Introduction 67

Types
• • In Java, all variables and all values have a

type
• • A type is a category of values that a variable

belongs to and
• determines:
• – How to interpret and use the value it

contains
• – What are the possible values it can contain
• – How much memory should be reserved

COMP-202 - Introduction 68

Types
• In a computer, everything is stored as 1s and

0s (or on/off switches)
•

• Knowing the type of a variable tells the
computer what the encoding is.

COMP-202 - Introduction 69

Recall:

int : stores an integer number

double: stores a “real” number.

float: also stores a “real” number (smaller
than a double)

String : stores words

COMP-202 - Introduction 70

double

If you write .0 after an integer constant, it
will be stored as a double.

int x = 3.0;

COMP-202 - Introduction 71

double

doubles can store real numbers with
fractional values.

They can not store an infinite amount of digits,
for example in the number pi. They can only
store to a limited precision.

ex: double x = 3.14159 ; // can only store
//some of the digits

COMP-202 - Introduction 72

double

If you write .0 after an integer constant, it
will be stored as a double.

int x = 3.0;

int x = 3; OR
double x = 3.0;

COMP-202 - Introduction 73

Types : Example: Storing a float
• A float normally takes up 32 bits in memory.
• It is similar to a double except doubles use 64

bits
• To use a float, write f after the number (e.g.

3.0f)
• 1 bit is for plus or minus
• 5 bits are for the exponent (1 of which is for

+/-)
• 10 bits are for the number

COMP-202 - Introduction 74

Types : Example: Storing a float
• A float normally takes up 32 bits in memory.
• 1 bit is for plus or minus
• 8 bits are for the exponent (1 of which is for

+/-)
• 23 bits are for the number

1 0 0000011
00000000000000000000010

sign signexp exponent base

COMP-202 - Introduction 75

Types : Example: Storing a float
• A float normally takes up 32 bits in memory.
• 1 bit is for plus or minus
• 8 bits are for the exponent (1 of which is for

+/-)
• 23 bits are for the number

1 0 0000011
00000000000000000000010

sign signexp exponent base

= 2 * 2^(-3)

COMP-202 - Introduction 76

Types : Example: Storing an int
• An int takes up 32 bits in memory
• 1 bit is for the sign
• other 31 bits are for the number

1 000000000000000000000000001010

sign number

COMP-202 - Introduction 77

Types : Example: Storing an int
• An int takes up 32 bits in memory
• 1 bit is for the sign
• other 31 bits are for the number

1 000000000000000000000000001010

sign number

= 10

COMP-202 - Introduction 78

Thought experiment

Suppose Java gave no error when we write:

int x = 6.0f ;
3.0f looks like the following as a float:

1 1 0000001
00000000000000000000011

sign signexp exponent base

i.e. 3.0 * 2^1

COMP-202 - Introduction 79

Thought experiment

1 1 0000001
00000000000000000000011

sign signexp exponent base

i.e. 3.0 * 2^1

When Java puts this number into an int, it will
be read totally differently!

COMP-202 - Introduction 80

Thought experiment

1 1000000100000000000000000000011

sign number

i.e. 1082130435

Some languages, such as C, will allow you to do
this without giving an error. (What are the
pluses and minuses of this?)

COMP-202 - Introduction 81

Types: Primitive vs. Reference
• There are two types in java: primitive and

reference
•

•

• So far we have only seen primitive, except for
String

•

• Primitive types represent very basic types
(int, double, etc)

COMP-202 - Introduction 82

Primitive Types
•
There are exactly 8 primitive types in Java
• Positive and negative whole numbers:
– byte, short, int, long
• Positive and negative numbers with decimal parts

(“floating
points numbers”):
– float, double
• Characters (like a & * 6 /)
– char
• And one of them represents boolean values (true or false):
– boolean

COMP-202 - Introduction 83

Real numbers vs floating point

In a computer, we don't have an infinite amount of
memory. Thus we can't actually store a number
such as PI

It is also difficult for a computer to store something
like

5.000000000000000000000000000000000001

Problem is it stores it as “base * 2^(some power)”

COMP-202 - Introduction 84

Char variables
•

•

• A character set is an ordered list of characters, and each
• character corresponds to a unique number
• • A char variable stores a single character from the Unicode
• character set
• char gender;
• gender = 'M';
• • Unicode is an international character set, containing

symbols
• and characters from many world languages
• • Character values, also called character literals are delimited
• by apostrophes:
• 'a' 'X' '7' '$' ',' '\n'

COMP-202 - Introduction 85

But what about '
•

• What if we want to store an ' inside of a char?
•

• char x = '''; // (three single quotes)
•

•

• It will think the 2nd ' marks the end of the char!
•

• Answer: Use an escape sequence. To do this, write a \ before the
• character.
•

• char x = '\'';

COMP-202 - Introduction 86

Boolean Values
•

•

• Boolean values are used to store things that are either
“true” or “false”

•

• For example, we could create the variable.
•

• boolean isClassAlmostOver;

COMP-202 - Programming Basics 87

Arithmetic Expressions
•An expression is any combination of
operands and [optional] operators.

• An operand can be a literal value (like
5 or 3.14 or 'a'), a variable, or the value
returned by a method call (like
nextInt())

•Arithmetic expressions use the following operators
• Addition: x + y

• Subtraction: x – y

• Multiplication: x * y

• Division: x / y

• Remainder: x % y

• Negation: -x

COMP-202 - Programming Basics 88

Integer Division
•
•
•If both operands to the division operator (/) are
integers, the result is an integer (the fractional part is
discarded)

– 9 / 2 = 4
•The remainder operator (%) returns the remainder after
dividing the second operand by the first

– 1 0 % 3 = 1
●Division by 0 with integers (e.g. 1 / 0)
●Produces run-time error
●The program has to avoid it, or it will crash

COMP-202 - Programming Basics 89

Careful!

You have to be careful. Things that are true in
math are not necessarily true in Java.

int x = (1 / 2) + (1 / 2) ;

What is x?

COMP-202 - Programming Basics 90

Careful!

double x = 1/2;

This does not work either. The problem is that
both 1 and 2 are ints. When you divide 1 by 2 as
ints you get 0. Then it is converted to a double
but it is too late

COMP-202 - Programming Basics 91

Better:

double x = 1.0/2.0;

OR

double x = .5;

COMP-202 - Programming Basics 92

Operator Precedence
•
•Operators can be combined into complex expressions:

result = total + count / max – offset;

•Operators have a well-defined precedence which determines
the order in which they are evaluated

1)Expressions inside parentheses.
2)Multiplication (*), division (/), and remainder (%)
3)Addition (+) and subtraction (-)

•Parentheses and arithmetic operators with the same
precedence are evaluated from left to right

COMP-202 - Programming Basics 93

Operator Precedence
Examples

•What is the order of evaluation in the
following expressions?a + b + c + d + e

1 2 3 4

a + b * c - d / e

a / (b + c) - d % e

a / (b * (c + (d - e)))

COMP-202 - Programming Basics 94

Assignment Operator Sides
•The left-hand and right-hand sides of an
assignment statement can contain the
same variable:

count = count + 1;

First, 1 is added to the
original value of count; the
result is stored in a
temporary memory locationThen, the overall result is stored into

count, overwriting the original value

•The fact that the assignment operator has
lower precedence than arithmetic
operators allows us to do this

COMP-202 - Programming Basics 95

Meaning of life (part deux)

Another explanation for 9*6 = 42 is order of operations

Someone decided to be clever and write 9 as 1+8 and 6
as 5+1

1 + 8 * 5 + 1 = 42

COMP-202 - Programming Basics 96

Converting from one type to
another

Sometimes we want to convert from one
type to another. For example, you might
want to put an int into a double or a
double into an int (as best you can).

COMP-202 - Programming Basics 97

Widening conversion

Converts something that takes up less
memory to something that takes up more.

e.g.

int -----> double

Usually no information lost.

COMP-202 - Programming Basics 98

Narrowing conversion
Converts something that takes up more
memory to something that takes less
more.

e.g.

double ----> int

Usually some information lost.

COMP-202 - Programming Basics 99

Types: Mixed Expressions
•
•Sometimes expressions will be complicated and
have more than 1 type in them
•What if you try to do a mathematical operation
on two different types.

Ex:

3.5 * 2

The first operand is a double. The second
operand is an int.

COMP-202 - Programming Basics 100

Types: Mixed Expressions

When you have mixed types like this, Java will
always try to convert the NARROWER type to the
WIDER type

For example, if you mix an int and double in an
expression, Java will convert the int to a double

int x = 3.5 * 2; // error---> trying to put a double
into int

COMP-202 - Programming Basics 101

Types: Mixed Expressions

What will x equal in the following?

double x = 1.0 / 2 ;

COMP-202 - Programming Basics 102

Types: Mixed Expressions

What will y equal in the following?

double y= 4 / 3 + 4.0 / 3;

COMP-202 - Programming Basics 103

Casting

Sometimes you will want Java to force Java to
turn an
expression from one type to another

For example, maybe we want to get the integer
part of a number.

Then you can CAST a double to an int.

COMP-202 - Programming Basics 104

Casting
Write in parenthesis the type you want to convert
to, and place
that before the expression you want to convert.

e.g.

int x = (int) 7.5;

x is now set to be 7.

Note: The conversions always round DOWN

COMP-202 - Programming Basics 105

Casting

Casting is very powerful

Casting is very dangerous. You can lose information!

COMP-202 - Programming Basics 106

Casting

Casting is temporary: it does not change the
type of the value in a variable for the rest of the
program, only for the operation in which the
value is cast

e.g. double x = 3.5;
int y = (int) x;

x is still a double!

COMP-202 - Programming Basics 107

Casting : Integer Division

What happens in the following:

double x = (double) 1 / 2;

Note: The casting operation is performed BEFORE any
other
operation (unless there are parenthesis saying
otherwise)

COMP-202 - Programming Basics 108

Careful again!

What happens in the following:

double x = (double) (1 / 2);

This is a case where you cast, but it is too late. The
integer division has already been performed
because of the parentheis

Part 4: String Basics

System.out.println(“A String is ”
+ “a sequence of characters “
+ “inside quotation marks.”);

COMP-202 - Programming Basics 110

The String Type (1)

•
•As we saw earlier, a variable of type char
can only store a single character value

char c1 = 'a';
char c2 = '%';

•To store an ordered sequence of
characters, like a whole sentence, we can
use a variable of type String

COMP-202 - Programming Basics 111

String Concatenation (+)

•In Java, + can be used to concatenate strings
–“hello” + ”world” results in "helloworld"
–“hello” + “ world” results in “hello world”

• Notice the space before world
–“number ” + (5 + 2) results in “number 7”

COMP-202 - Programming Basics 112

A String literal cannot be broken
across two lines of source code

•The following code fragment causes an
error:

"This is a very long literal
that spans two lines"

•The following code fragment is legal:

"These are 4 short concatenated "
+ "literals "
+ "that are on separate source-code " +
"lines"

COMP-202 - Programming Basics 113

String Variables and Values

•Variables of type String are declared just
like variables of other types

• String message;
•
•Actual String literals are delimited by double
quotation marks (")

 String greeting = “Hello!”;

COMP-202 - Programming Basics 114

Comparing Strings

•Strings are reference types. This means that the
value in the variable is actually the location in
memory that the actual data is stored in (as
opposed to just storing the data)

What does this mean? Two Strings can actually
store the different values (addresses) but the
different addresses have the same contents! This
will matter when we discuss comparing variables

COMP-202 - Programming Basics 115

Mixed-Type Concatenation

Remember: the plus operator (+) is used for both
arithmetic addition and for string concatenation
The function that the + operator performs
depends on the type of the values on which it
operates
–If both operands are of type String, or if one
is of type String and the other is numeric, the
+ operator performs string concatenation (after
"promoting" the numeric operand, if any, to type
String by generating its textual representation)

COMP-202 - Programming Basics 116

Mixed-Type Concatenation

This suggests a useful trick to convert a
value whose type is a primitive type to a
String: concatenate the empty String
"" with the value

int i = 42;
String s = "" + i;
// s contains the String

"42"

COMP-202 - Programming Basics 117

Trick questions

System.out.println(“5 + 3 =” + 5 + 3);

System.out.println(5 + 3 + “is the same as
5+3”);

System.out.println(“5+3 =” + (5+3));

Note: The + operator is evaluated from left to
right

COMP-202 - Programming Basics 118

+= assignment

Programmers got lazy and sick of constantly
writing statements like

x = x +5;

So as a shortcut, you can write

x += 5 ;

to mean the same thing

COMP-202 - Programming Basics 119

+=, -=, *=, /= assignment

You can also do this with -,*, and /

COMP-202 - Programming Basics 120

++ operator

They then got even lazier......

The ++ operator can be used to add one
to an int.

int x = 5;
x++;

//adds one to x

COMP-202 - Programming Basics 121

++ operator

You can also write it before the variable

int x = 5;
++x;

//adds one to x

COMP-202 - Programming Basics 122

++ operator

The difference is the order of operations.
x++ increments AFTER getting the value,
++x increments BEFORE getting the value

int x = 5, y=5;
System.out.println(x++); // prints 5, makes
x=6
System.out.println(++y); //prints 6, makes
y=6

COMP-202 - Programming Basics 123

-- operator

Same as ++ except it decreases the value of
the variable.

int x = 5;
x--;

COMP-202 - Programming Basics 124

Recommendation

To avoid any confusion here, it is strongly
recommend that you only use increment
statements by themselves.

Do not do things like the following!

double wtf = (double) (x++ + --x);

It will just be confusing

COMP-202 - Programming Basics 125

Constants (1)
•A constant is an identifier that is similar to a variable
except that it holds one value for its entire existence
•In Java, we use the final modifier to declare a constant

final double PI = 3.14;

•The compiler will issue an error if you try to assign a value to
a constant more than once in the program

final double PI = 3.14;
// Some more statements...
PI = 2.718;

// Error: cannot assign a value to a
// final variable more than once

COMP-202 - Programming Basics 126

Next Class

•If statements
•Boolean (true/false) expressions
•Loops

