
Modeling Ancient and Modern Arithmetic Practices:
Addition and Multiplication with Arabic and Roman Numerals

Dirk Schlimm (dirk.schlimm@mcgill.ca)
Department of Philosophy, McGill University

855 Sherbrooke St. W., Montreal, QC H3A 2T7, Canada

Hansjörg Neth (nethh@rpi.edu)
Cognitive Science Department, Rensselaer Polytechnic Institute

Carnegie 108, 110 8th Street, Troy, NY 12180, U.S.A.

Abstract
To analyze the task of mental arithmetic with external repre-
sentations in different number systems we model algorithms
for addition and multiplication with Arabic and Roman numer-
als. This demonstrates that Roman numerals are not only infor-
mationally equivalent to Arabic ones but also computationally
similar—a claim that is widely disputed. An analysis of our
models’ elementary processing steps reveals intricate trade-
offs between problem representation, algorithm, and interac-
tive resources. Our simulations allow for a more nuanced view
of the received wisdom on Roman numerals. While symbolic
computation with Roman numerals requires fewer internal re-
sources than with Arabic ones, the large number of needed
symbols inflates the number of external processing steps.

Keywords: Numeral systems; arithmetic algorithms; mathe-
matical practice; immediate interactive behavior

Introduction
Everybody knows that it is very difficult to do arithmetic

with Roman numerals. When asked to compute CXII plus

MMMDCCCCXX or LVI times LXXII most readers will find

this task rather daunting. But how much of this sentiment is

based on inherent limitations of Roman numerals as opposed

to our lack of familiarity with this particular representational

system? This paper investigates whether an educated Roman

citizen would have shared or mocked our present difficulties.

The intuition that arithmetic computations with Roman nu-

merals are impossible or extremely difficult is widely shared

by influential historians of mathematics (e. g., Cajori, 1919;

Menninger, 1969). Some authors contend that Roman addi-

tion is simpler than ours (Norman, 1993), but almost all agree

on the infeasibility of Roman multiplication. These views

are regularly reiterated in popular expositions of mathemat-

ics (Hankel, 1874; Hogben, 1951; Dantzig, 1954; Murray,

1978; Ifrah, 1985; Kaplan, 2000), and echoed by cognitive

scientists (Marr, 1982; Dehaene, 1997; Butterworth, 1999).

Although a few authors suggest that our familiar algo-

rithms can be readily adapted to Roman numerals (most no-

tably Turner, 1951; Maher & Makowski, 2001), they merely

provide rough sketches that lack procedural details or multi-

plication tables. These contributions do not seem to have been

much noticed. On the contrary, in order to show that compu-

tations with Roman numerals are possible in principle, some

authors have presented rather involved and complicated-

looking algorithms which may have only reinforced the view

that such computations are inherently troublesome (Detlef-

sen et al., 1975; Kennedy, 1981). Thus, there almost appears

to be some kind of conspiracy against the suitability of Ro-

man numerals for multiplication. This paper aims to dispel

this myth by exemplifying a modeling framework that illus-

trates the trade-offs between cognitive, perceptual and motor

resources afforded by different number systems.

Number Systems In a place-value system with base p, the

value of a numeral anan−1 . . .a2a1a0 depends on the system’s

base and the value and position of each symbol. Thus, any

multi-digit numeral (like 12) denotes different numbers in dif-

ferent bases and the symbol ‘2’ has different meanings in 12

and 21. Place-value notation allows for a very concise repre-

sentation of numbers, but also necessitates the consideration

of symbol positions during computations. While early place-

value notations have been used by Babylonians and in India,

we will refer to our common base-10 place-value system as

the Arabic numeral system.

The Roman numeral system discussed in this paper is a

purely additive system, in which each symbol represents a

fixed value and the value of a numeral is obtained by adding

the values of all its symbols. (The subtractive notation, in

which 4 is represented by IV, became common only in the

Middle ages.) The basic Roman symbols are I, V, X, L, C,

D, and M, representing the values 1, 5, 10, 50, 100, 500,

and 1000, respectively. Thus, the Roman numeral for 512 is

DXII. With the 7 symbols mentioned above, however, Roman

numerals can only represent values up to 4,999. To overcome

this limitation, Romans introduced new symbols by writing

a bar over a numeral to signify that the value of the basic

symbol was to be multiplied by 1,000 (Hankel, 1874). For

convenience, we will use lower case letters to represent the

values from 5,000 (v) to 1,000,000 (m). Thus, with the addi-

tional symbols v, x, l, m, c, d, and m we can express values

up to 4,999,999.

From Mental to ‘Environmental’ Arithmetic Cognitive

scientists have long been interested in the properties of rep-

resentational systems and the interactions between cognitive

agents, tasks, and tools (Nickerson, 1988; Norman, 1993;

Zhang & Norman, 1995). On one hand, numbers are abstract

entities whose properties (e. g., being a prime) and manifold

relations (e. g., being a multiple of) are studied by mathemati-

cians and are independent of any notational system. On the

other hand, numbers need to be expressed in some system of

numerals to be perceived and manipulated by humans. Thus,

Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication
with Arabic and Roman numerals. To appear in V. Sloutsky, B. Love & K. McRae (Eds.), Proceedings of the thirtieth

annual meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

number systems are representational artifacts that act as in-

terfaces between cognition and the realm of numbers.

Different representations of the same entity can vary in

their informational and computational characteristics (Simon,

1978; Larkin & Simon, 1987). Two representations are infor-
mationally equivalent if they allow for the same information

to be represented. For computational equivalence informa-

tion that can be inferred ‘easily and quickly’ from one repre-

sentation also needs to be available ‘easily and quickly’ in the

other. As it is readily apparent that Arabic and Roman numer-

als are informationally equivalent our investigation concerns

their computational characteristics.

Recent research has provided strong support for the view

that most real-world cognition recruits external resources and

achieves its goals through an intricate process of interaction

with the physical environment (Hutchins, 1995; Kirsh, 1996;

Clark, 1997). Whenever problem solving is studied in the

context of environments that provide means of physical in-

teraction, humans spontaneously distribute memory demands

over internal and external resources (e. g., Cary & Carlson,

2001) and use their hands and other available resources to ar-

range, add, and count items (Kirsh & Maglio, 1994; Neth &

Payne, 2001). To account for these phenomena, cognitive sci-

ence has seen an upsurge of approaches that try to cross the

traditional divide between thought and action by mapping the

links between mental processes, tools, and task environments

(e. g., Suchman, 1987; Hollan, Hutchins, & Kirsh, 2000).

Number systems provide a great arena to study cognition in

action: Different numerals can denote the same number; each

notational system introduces regularities for the representa-

tion and manipulation of symbols; and the familiarity with

number systems can easily be controlled. The combination

of these properties make number systems an ideal drosophila

for investigations into the nature of distributed cognition.

Our Approach Our initial motivation to compare the Ara-

bic and Roman number systems was rooted in surprise and

disbelief. Given the myth that Roman numerals are unsuited

for arithmetic computations it is puzzling how Romans could

conduct commerce, administer armies, or rule an empire.

Methodological hurdles that had to be overcome included

the fact that most details about how Romans actually used

their numerals have been forgotten (Maher & Makowski,

2001) and that it is impossible to recruit experimental partici-

pants that have the same level of familiarity with Roman and

Arabic numerals. To sidestep these practical problems we

adopted a computational cognitive modeling approach. Al-

though this method abstracts away from many constraints,

it targets our main focus in a very systematic fashion. For

a principled investigation of each system’s capabilities and

trade-offs, the ability to study them independently of the va-

garies of historical accidents is more of a boon than a burden.

Modeling Arithmetic Practices
In this section we describe a total of four computational

agents—one for each combination of notational system (Ara-

bic and Roman) and mathematical algorithm (addition and

multiplication).

General Assumptions Our models were implemented in

Lisp and inspired by the ACT-R cognitive architecture (An-

derson et al., 2004). Consequently, they share many of ACT-

R’s basic assumptions concerning the modular and functional

organization of cognition. For instance, we assume a gen-

eral distinction between declarative (factual) and procedural

(how-to) knowledge, even though our current code does not

implement any symbolic or subsymbolic dynamics of mem-

ory activation or learning.

All our artificial agents possess the ability to recognize

and interpret the numerical quantities of symbols in their

respective notational systems and are endowed with knowl-

edge structures and routines that enable them to operate upon

these quantities and their visuo-spatial representations. For

instance, agents possess the perceptual-motor abilities to read

and write externally represented symbols. To navigate to and

encode different elements of an external problem display we

assume that our agents’ visual attention can only be directed

at a single location at any particular moment.

To traverse a two-dimensional array of alpha-numeric sym-

bols, agents shift their location of visual attention either rel-

ative to its current location (e. g., one row up) or to some ex-

treme position in the currently attended row or column (e. g.,

to the top of a column). By contrast, shifting attention to any

absolute coordinate requires storage and retrieval of a previ-

ously attended location index from working-memory.

All procedural operations (shifting attention, encoding

symbols, storing and retrieving pointers, and perceptuo-

motor operations) are modeled in a manner reminiscent of the

elementary information processes (EIPs) of Payne, Bettman,

and Johnson (1993). In this way the same EIPs can consis-

tently be used across all four model agents discussed in this

paper. In addition, different versions of one algorithm and al-

gorithms operating on different numeral systems can be com-

pared by quantifying the types and frequencies of EIPs em-

ployed to complete the task. To facilitate the presentation of

our results, we categorize EIPs into functional units of per-

ception, attention, memory, and motor actions, even though

any such alignment of algorithmic operations with psycho-

logical constructs contains some arbitrary elements.

Our agents are disembodied entities that exist merely in the

ephemeral realms of code. Nevertheless, the nature of their

inputs and outputs profoundly affects their organization and

operation. Not only are the agents presented with an external

(but simulated) representation of a problem, but this represen-

tation is changed throughout an algorithm’s execution (e. g.,

by writing or deleting symbols). This yields a modified out-

put representation that contains not just the desired result but

also traces of the completed process.

Arabic Addition Agent Our Arabic addition agent has

declarative knowledge of the sums of all 100 single-digit ad-

dition facts (from 0 + 0 to 9 + 9). To invoke its procedural

Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication
with Arabic and Roman numerals. To appear in V. Sloutsky, B. Love & K. McRae (Eds.), Proceedings of the thirtieth

annual meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

knowledge, it first must be presented with a problem. More

precisely, the agent requires a written representation of Ara-

bic numerals in which all addends have been written out in

right-justified rows of a two-dimensional array, each addend

in its own row. For instance, to add 3920 and 112 the agent

would have to be presented with the following array:

- - - -
3 9 2 0
- 1 1 2
? ? ? ?

Initially, the agent directs its visual attention to the right-

most column of the bottom number row. The symbol there

is encoded and recognized as denoting the numerical quan-

tity 2, which initializes an internal memory slot (ims-01) to

store intermediate results. Next, the agent shifts its attention

one row up to encounter and encode the numeral 0. It then

retrieves the addition fact that 2+0 = 2, updates its ims-01 to

the current sum of 2, and shifts its attention up another cell.

Upon encoding that the attended location is empty it attends

the bottom of the column and writes down the numeral rep-

resenting the current ims-01 value of 2. The agent then shifts

its attention one column to the left and proceeds to add its

elements in the same way.

As most readers will be familiar with this algorithm, we

only point out some non-intuitive aspects: First, the single-

digit limit on addition facts necessitates an underlying knowl-

edge structure that represents double-digit numbers into sep-

arate digits for tens (ims-10) and units (ims-01). Whenever

ims-01+a reaches or crosses a decade boundary multiple

memory updates (of ims-01 and ims-10) ensue. For instance,

adding 28+6 = 34 requires the retrieval of two addition facts

(8 + 6 = 14 and (2 + 1 = 3) and sets ims-01 to 4 and ims-

10 to 3. Secondly, whenever ims-10 is non-zero after adding

all numbers of a given column, its value is written into the

uppermost cell of the column to its left as a carry. As the

agent always checks one cell above the row containing the

first addend when traversing a column from bottom to top, it

automatically encodes and adds any carry when processing

the next column.

The agent’s output is a processed number array containing

the resulting sum 4032 (in the last row), but also any written

carries in the top row as markers of its process:

1 - - -
3 9 2 0
- 1 1 2
4 0 3 2

Notice that supplying the agent with an input array of right-

justified numerals caters towards certain properties of place-

value notations and facilitates the processing of columns by

vertically aligning numerals of the same level of magnitude.

Roman Addition Agent The knowledge structures neces-

sary to compute with Roman numerals include the order of

basic symbols (according to their value) and a simplification

rule for each symbol, like IIIII → V, or VV → X. Apply-

ing these rules requires the agent to be able to count up to 5

symbols. Simplification is similar to the ‘carry’ used in the

Arabic algorithm, since it results in a change in the symbols

representing values at the next order of magnitude.

The most direct algorithm for adding two Roman numer-

als would just write them one after the other, order the sym-

bols by their values, and then simplify. While this proce-

dure is conceptually very simple, it involves numerous write

and delete operations that are costly on paper. Thus, rather

than computing with the Roman numerals as a single string

of symbols, it is more convenient to arrange the symbols in a

separate ‘working table,’ each row of which contains all sym-

bols of a particular kind. (For illustrative purposes, these rows

are labeled “Line I”, “Line V,” etc. below.)

The problem presentation to the Roman addition agent is

in the form of a right-justified two-dimensional array. Thus,

the task of adding 3920 and 112 is presented as:

M M M D C C C C X X
- - - - - - C X I I

Each addition task is divided into two sub-tasks: (i) Copy

every symbol into the respective row of the working table,

and then (ii) simplify this table according to the simplification

rules. In the first sub-task, as long as there are symbols in the

array, the agent has to shift its attention to a specific symbol

in the array, read it, delete it (so that it will not be copied

again), then shift its attention to the first empty position in

the respective row of the table, and finally write the symbol

into the table. Since there are 14 symbols in the array shown

above, this series of activities has to be carried out 14 times,

resulting in the following working table:

Line M : M M M
Line D : D
Line C : C C C C C
Line L : -
Line X : X X X
Line V : -
Line I : I I

The exact number and kind of the various required shifts

of attention depend entirely on the specific addition algorithm

that is being modeled. For example, instead of deleting each

symbol that the agent read from the array and later searching

the array for the next non-empty position (which results in

a large number of read operations and attention shifts to the

next element on the right), the agent could also have remem-

bered the array position of read symbols and later recalled

them to shift its attention to the next symbol on the right.

Such an alternative addition algorithm would have resulted in

fewer read and attention-shift operations at the cost of storing

and retrieving absolute locations in working memory. Thus,

our modeling approach allows to identify strengths and weak-

nesses of particular algorithms and uses them to assess spe-

cific demands on cognitive abilities, motor skills, etc.

Before the final result of the addition can be read off, the

working table needs to be simplified. In this sub-task the

agent traverses each of the lines in the table, beginning with

the one on the bottom. In each line, it counts the symbols

until the maximum number of allowed symbols is reached,

in which case these symbols are deleted and a new symbol is

added in the line above. In our model the knowledge about

Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication
with Arabic and Roman numerals. To appear in V. Sloutsky, B. Love & K. McRae (Eds.), Proceedings of the thirtieth

annual meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

the number of symbols maximally allowed in a line is coded

in the respective simplification rule, which is stored in the

agent’s long-term memory. Thus, the agent has to count up

to 5 symbols in each line until it can apply the simplification

rules (in this example both CCCCC → D and DD → M are

applied once), which puts additional demands on working

memory. The simplifications themselves involve writing one

D and two new Ms into the table and deleting a total of 7

symbols (five Cs and two Ds). Once all lines are simplified,

the end result can be read off line by line (from top to bottom)

as MMMMXXXII, representing 4032.

Arabic Multiplication Agent Our Arabic multiplication

model implements the long multiplication algorithm taught

in grade schools. The corresponding agent is based on the

Arabic addition agent, extended by declarative knowledge of

all 100 single-digit multiplication facts (0× 0 to 9× 9) and

procedural knowledge that allows to process written repre-

sentations of arbitrary 2-factor multiplication problems. For

instance, to multiply 56 × 72 the agent’s input is simply

‘5 6 * 7 2’.

In essence, the long multiplication algorithm multiplies

each digit of the second factor (72) with each digit of the first

(56), requiring four separate multiplications. Whenever a re-

trieved product exceeds 9 (e. g., 2× 6 = 12) only the ‘ones’

digit (ims-01=2) is offloaded into the mid-section of the ar-

ray, whereas the ‘tens’ digit (ims-10=1) is carried to the top

of the next digit of the second factor (above the 5) to be added

to the next intermediate product (2×5 = 10).

In contrast to the Arabic addition agent, the multiplication

model routinely relies on its ability to store and retrieve the

position of currently processed digits. Without this working

memory resource it neither would be able to jump back and

forth between currently focused digits nor would it find the

locations to which it needs to offload intermediate results for

subsequent addition. To find these locations, the model not

only uses remembered positional indices but also relies on

the symbols it has already written. Again, the details of the

model’s processing characteristics jointly depend on the prob-

lem, its procedural knowledge, and the outputs of previous

processing steps.

Another novelty in the Arabic multiplication model is the

necessity to delete already added carries (operationalized by

writing ‘x’ in their location). This is done to prevent the

model from processing them repeatedly. Instantly dealing

with carries adds complexity to the overall process and in-

creases mental and perceptual-motor efforts (by interleaving

addition with multiplication), but yields the benefit of reduc-

ing the number of addends to be processed later.

After completing all multiplications, the model’s external

problem representation is:

x - - - -
5 6 * 7 2
- - - - -
- 3 9 2 -
- - 1 1 2
? ? ? ? ?

Table 1: Multiplication table for Roman numerals.

× I V X L C D M

I I V X L C D M
V V XXV L CCL D MMD v
X X L C D M v x
L L CCL D MMD v xxv l
C C D M v x l c
D D MMD v xxv l ccl d
M M v x l c d m

At this point, the model needs to add the two intermedi-

ate factors (3920 + 112). This problem has already been de-

scribed to illustrate the Arabic addition agent. Thus, mastery

of addition is a prerequisite for multiplication with Arabic nu-

merals just as applying simplification rules is an integral part

of addition with Roman numerals.

Roman Multiplication Agent Analogous to the Arabic

multiplication agent the Roman multiplication agent requires

declarative knowledge of all necessary single-symbol multi-

plication facts (see Table 1). Interestingly, the Roman multi-

plication table has only 49 entries (for factors up to M) and is

thus smaller than the Arabic one, and it also shows a greater

degree of regularity. As before, these multiplication facts are

assumed to reside in the agent’s long-term memory. As with

the other agents, the factors to be multiplied are presented in

an input array of symbols, e. g., for 56×72:

- - L V I
L X X I I

Our algorithm for multiplying two Roman numerals is sim-

ple (in terms of required cognitive resources) and could eas-

ily be taught. Its two phases are identical to those of mul-

tiplying Arabic numerals: (i) Multiply each symbol of one

factor with each symbol of the other factor, and (ii) add the

intermediate results. The Roman multiplication agent begins

by moving through the two input rows and multiplying each

symbol of the first factor with each symbol of the second

one. The results of these single-symbol multiplications are

retrieved from memory and are written directly in a working

table like that used for addition. In the example of 56×72, the

15 single-symbol multiplications yield the following table:

Line M : M M
Line D : D D D
Line C : C C
Line L : L L L L L L
Line X : X X
Line V : V V
Line I : I I

Notice that no special operations for adding the intermedi-

ate results are necessary after all products have been written

into the working table. After simplification the table shows

the final product MMMMXXXII. Although this final result is

the same as in the previous addition example the intermediate

working table that had to be simplified was different. Thus,

different steps were involved in the simplification process, us-

ing different elementary operations. We notice again how the

necessary cognitive and motor operations depend crucially on

the external format of the problem at hand.

Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication
with Arabic and Roman numerals. To appear in V. Sloutsky, B. Love & K. McRae (Eds.), Proceedings of the thirtieth

annual meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

Table 2: Operator counts for simulating 1,000,000 additions of the form x+ y+ z (for x,y,z = 1 . . .100) and 10,000 multiplica-

tions of the form x× y (for x,y = 1 . . .100). A unit corresponds to 1,000 operations and values were rounded.

Addition Multiplication

Module Measure Arabic Roman Ratio Arabic Roman Ratio

Input Total number of symbols 5,760 15,030 2.61 38 100 2.63

Perception Total READs 8,116 244,166 30.08 325 1,332 4.10

Attention Total SHIFTs (abs. and rel.) 16,625 336,413 20.24 601 2,891 4.81

Memory (LTM) Addition facts recalled 4,437 – 36 –
Multiplication facts recalled – – 37 251 6.78
Simplification rules applied – 3,670 – 88

Memory (WM/STM) Carries during addition 1,608 – 5 –
Carries during multiplication – – 24 –
ims-01 changes 8,953 – 135 –
ims-10 changes 3,498 – 37 –
STOREs of locations – 3,670 56 329 5.88
RETRIEVEs of locations – 3,670 93 329 3.54
Counting steps – 31,380 – 636

Output/Motor Actions Total WRITEs 3,637 18,700 5.14 102 359 3.52
Total DELETEs – 27,710 10 277 27.70

Methodology Due to the intricate dependencies between

task, algorithms, and internal and external resources, the

selection of problems profoundly affects the complexity of

computational processes. For instance, if the Roman addition

agent was asked to add IIII, V, and XXXX, no simplifica-

tions would be necessary after the inputs had been written

into the working table. Likewise, the Arabic multiplication

agent would not need any operations for dealing with carries

when asked to multiply 124 by 201.

In order not to favor or discriminate against any agent or

system we selected the ranges of our simulations solely on

the basis of numerosity. For the addition agent we simulated

all additions of three numbers ranging from 1 to 100, i. e.,

x + y + z (for x,y,z = 1 . . .100), and for the multiplication

agents all multiplications of two numbers of the same range,

i. e., x× y (for x,y = 1 . . .100). Thus, our results are based on

agent solutions to 1,000,000 addition problems and 10,000

multiplication problems. This large range of problems far ex-

ceeds the number of problems that could be performed in an

experimental setting by human subjects, which demonstrates

the power of our modeling approach. Moreover, we believe

that there is some face validity to our samples, as arithmetic

problems with small numbers of addends and factors occur

frequently in naturalistic settings.

Results and Discussion
The results of our simulations are summarized in terms of

the total number of elementary processing steps in Table 2.

Prior to any further analysis, the mere fact that our agents

could successfully solve all problems demonstrates that ad-

dition and multiplication with Roman numerals can be car-

ried out with the same interactive (cognitive and perceptual-

motor) resources as computations with Arabic numerals.

A closer look reveals that some operations are needed in

one system but not the other. Roman agents never need to

recall any addition facts, but rely on memorized rules to sim-

plify intermediate results. Notice, however, that the require-

ment to remember seven simplification rules contrasts sharply

with the 100 single-digit addition facts to be remembered by

the Arabic agents. Similarly, the Roman addition agent only

needs to count up to five symbols during the simplification

phase, whereas its Arabic counterpart has to compute and re-

tain many different intermediate sums in working memory.

Comparisons between agents reveal that the Roman agent’s

perceptual steps, attention shifts, and motor actions are vastly

more numerous than those of the Arabic agent. This is in part

due to the fact that the first sub-task when adding with Roman

numerals is to copy the input into the working table, which re-

quires many elementary operations. One reason for the lower

counts for Arabic numerals is that the assumed problem pre-

sentation favors the Arabic agent by reducing its perceptual

and attentional steps. Indeed, the ratios of the number of op-

erations between the Arabic and the Roman algorithms for

multiplication are much lower.

A striking difference between the Arabic and the Roman

agents is the different lengths of their inputs, whose ratio

is roughly 1 : 2.6. This lets the number of required multi-

plications grow at a rate of 2.62 = 6.8. Consequently, the

Roman multiplication agent recalls individual multiplication

facts much more frequently. However, due to its smaller set of

multiplication facts we can assume that the retrieval of these

facts is much more practiced and error-proof than in the Ara-

bic case.

The overall complexity of the computations depends cru-

cially on the precise format of external inputs and the avail-

ability of interactive resources. Imagine how the addition al-

gorithms would differ if the input was presented as a linear

sequence of numerals: Whereas the Roman agent could re-

main virtually unchanged, the Arabic agent would either have

to rewrite the numerals into its standard column format or use

greater working-memory resources to keep track of the rela-

tive positions within numerals. Similarly, using artifacts like

Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication
with Arabic and Roman numerals. To appear in V. Sloutsky, B. Love & K. McRae (Eds.), Proceedings of the thirtieth

annual meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

fingers or an abacus instead of paper and pencil profoundly

affects the balance of elementary operations. In fact, by us-

ing an abacus instead of the working table, our Roman agents

could dramatically reduce their write and delete operations,

as well as the information to be held in working memory.

Using our models to identify the precise effects of changes

in task format or interactive resources presents important op-

portunities for optimizations. For instance, the Roman algo-

rithms could be made much more efficient by streamlining

the second phase of simplifying the working table, e. g. by

replacing the counting and deleting of individual symbols by

steps that allow for the perception of symbol strings akin to

the reading of words (instead of individual letters).

In future work we intend to address numerous limitations

of our current models: Adding time estimates (e. g. by em-

pirical validation studies) will allow to use temporal dura-

tion as a common currency for the comparison between algo-

rithms. Re-implementing our agents in ACT-R will allow to

explore dynamic memory and learning processes. Models of

higher fidelity will enable us to study alternative algorithms

(e. g., Arabic addition with minimal internalization and op-

timized Roman algorithms), generalize to other numeral sys-

tems (e. g., binary arithmetic and the sexagesimal system used

by the ancient Babylonians), and combine algorithms with

artifacts (e. g., an abacus) to analyze the resulting trade-offs

between cognitive and motor skills.

Conclusion
We demonstrated that symbolic computations are certainly

possible with Roman numerals, thus dispelling the myth men-

tioned in the introduction. Moreover, by modeling arithmetic

algorithms we were able to conduct a quantitative analysis of

their performance characteristics, which allowed us to pro-

vide a more nuanced assessment of the computational prop-

erties of the Arabic and Roman numeral systems.

We can now qualify the view that addition with Roman nu-

merals is simpler than with Arabic ones: It is simpler only

insofar as it does not require recalling any addition facts from

long-term memory, nor keeping intermediate results in work-

ing memory. However, it does require the repeated counting

of up to five symbols, the copying of symbols into the work-

ing table, and a vast number of basic perceptual-motor op-

erations during the simplification process. Similar trade-offs

between perceptual-motor and memory operations have been

found for multiplication, for which the longer length of Ro-

man numerals becomes a considerable disadvantage.

Overall, we have shown that the Achilles heel of Roman

numerals is not that they are (qualitatively) unsuitable for al-

gorithmic usage, but their greater cost in terms of the number

of necessary elementary information processes, especially

those using external resources. Hence, one must not always

believe what ‘everybody knows.’

Acknowledgements
We are grateful to PhiMSAMP and the DFG for providing the

opportunity and funding that sparked this research.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere,

C., & Qin, Y. (2004). An integrated theory of the mind. Psycho-
logical Review, 111(4), 1036–1060.

Butterworth, B. (1999). The mathematical brain. London: Paper-
mac.

Cajori, F. (1919). A history of mathematics. Macmillan, New York.
Cary, M., & Carlson, R. A. (2001). Distributing working mem-

ory resources during problem solving. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 27(3), 836–848.

Clark, A. (1997). Being there: Putting brain, body, and world
together again. Cambridge, MA: The MIT Press.

Dantzig, T. (1954). Number, the language of science (4th, revised
and augmented ed.). Macmillan. (First edition 1930.)

Dehaene, S. (1997). The number sense: How the mind creates
mathematics. New York: Oxford University Press.

Detlefsen, M., Erlandson, D. K., Heston, J. C., & Young, C. M.
(1975). Computation with Roman numerals. Archive for History
of Exact Sciences, 15, 141–148.

Hankel, H. (1874). Zur Geschichte der Mathematik in Alterthum
und Mittelalter. Leipzig: B. G. Teubner.

Hogben, L. (1951). Mathematics for the million (3rd ed.). New
York: W. W. Norton. (First edition 1937.)

Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cogni-
tion: toward a new foundation for human-computer interaction
research. ACM Transactions on Computer-Human Interaction
(TOCHI), 7(2), 174–196.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: The
MIT Press.

Ifrah, G. (1985). From one to zero: A universal history of numbers.
New York: Viking.

Kaplan, R. (2000). The nothing that is. A natural history of zero.
Oxford: Oxford University Press.

Kennedy, J. G. (1981). Arithmetic with Roman numerals. American
Mathematical Monthly, 88(1), 29–32.

Kirsh, D. (1996). Adapting the environment instead of oneself.
Adaptive Behavior, 4(3–4), 415–452.

Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from
pragmatic action. Cognitive Science, 18(4), 513–549.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes)
worth ten thousand words. Cognitive Science, 11(1), 65–100.

Maher, D. W., & Makowski, J. F. (2001). Literary evidence for Ro-
man arithmetic with fractions. Class. Philology, 96(4), 376–99.

Marr, D. (1982). Vision: A computational investigation into the
human representation and processing of visual information. San
Francisco: W. H. Freeman.

Menninger, K. (1969). Number words and number symbols. Cam-
bridge, MA: MIT Press.

Murray, A. (1978). Reason and society in the middle ages. Oxford:
Clarendon Press.

Neth, H., & Payne, S. J. (2001). Addition as Interactive Problem
Solving. In J. D. Moore & K. Stenning (Eds.), Proceedings of the
Twenty-Third Annual Conference of the Cognitive Science Society
(pp. 698–703). Mahwah, NJ: Lawrence Erlbaum Associates.

Nickerson, R. S. (1988). Counting, computing, and the representa-
tion of numbers. Human Factors, 30(2), 181–199.

Norman, D. A. (1993). Things that make us smart. defending human
attributes in the age of the machine. Cambridge, MA: Perseus
Books.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive
decision maker. Cambridge University Press.

Simon, H. A. (1978). On the forms of mental representation. In
C. W. Savage (Ed.), Perception and cognition. Issues in the foun-
dations of psychology (Vol. IX, pp. 3–18). University of Min-
nesota Press, Minneapolis.

Suchman, L. A. (1987). Plans and situated actions: The problem
of human-machine communication. Cambridge, UK: Cambridge
University Press.

Turner, J. H. (1951, Nov.). Roman elementary mathematics: The
operations. The Classical Journal, 47(2), 63–74, 106–108.

Zhang, J., & Norman, D. A. (1995). A representational analysis of
numeration systems. Cognition, 57, 271–295.

Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication
with Arabic and Roman numerals. To appear in V. Sloutsky, B. Love & K. McRae (Eds.), Proceedings of the thirtieth

annual meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

