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1 Introduction

1.1 Overview
The aim of this paper is to provide a framework for the discussion of math-
ematical ontology that is rooted in actual mathematical practice, i.e., the
way in which mathematicians have introduced and dealt with mathematical
objects. Using this framework, some general trends in the development of
mathematics, in particular the transition to modern abstract mathematics,
are formulated and discussed. Our paper consists of four parts: First, we
begin with a critical discussion of the notion of Aristotelian abstraction that
underlies a popular folk ontology and folk semantics of mathematics; sec-
ond, we present a conceptual framework based on the distinction between
bottom-up and top-down approaches to the introduction of mathematical
objects; in the third part we briefly discuss a number of historical episodes
in terms of this framework, illustrating a general move towards top-down
approaches and resulting in changes of the nature of mathematical objects;
finally, the effects of this change with regard to the role of visualization in
mathematics are discussed.

That mathematical objects are abstract posed a significant problem for
philosophers already in ancient Greece. However, it is a commonplace that
in the 19th century mathematics became more abstract.1 What this ‘more’
consists in, we claim, can be explicated as a shift from a traditional notion
of abstraction that goes back to Aristotle to a non-Aristotelian conception
of abstraction.2 This is closely related to the trend we identify in the devel-
opment of 19th century mathematics, which reveals an increased attention
to the study of mathematical relations as opposed to mathematical objects,
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based on the increased emphasis of top-down characterizations as opposed
to bottom-up ones (see Section 3). We argue that these developments are
best understood from a structuralist perspective, as opposed to a traditional
Aristotelian view that is based on the notion of substance.

1.2 Structures
To our mind, the development of mathematics during the 19th century
shows, certainly not in each single move mathematicians of the time took,
but in their overwhelming majority nonetheless, a clear tendency to prepare
and level the ground for 20th century structuralism. The term ‘structural-
ism,’ however, is ambiguous and can mean at least two different things.3

There is, first, the structuralism of the Bourbaki group, inspired by
advances in set theory. Here one starts with a set of elements, a domain D,
and then defines by set-theoretic operations alone a number of relations R
over D that obey certain axioms, thus yielding a structure S composed of D
andR.4 As such it can be seen as a basically bottom-up approach: one starts
out with intuitively given objects conceived of as elements over which first-
order quantifiers can range (like the natural numbers or points in a plane)
and then defines a relational super-structure by set-theoretic constructions
(identifying relations with certain n-tuples of the Cartesian product, etc.).
Studying the properties of a structure in this context entails knowing how
it is built up, its Bauplan. This reading of Bourbakian structuralism is well-
known in particular among philosophers as it resembles the approach taken
by model-theoretic semantics.

There is, second, the structuralism of those who champion category the-
ory, inspired by advances in algebra.5 Here one starts with a class of struc-
tured objects A,B,C, . . . (complex objects that are already equipped with
structural features), a class of mappings f, g, h, . . . among them, such that
those mappings have a number of desirable or ‘natural’ properties, and then
studies those transformations that preserve the structure of those objects.
As such it is a top-down approach: one starts with objects that usually
are quite complex (like all sets, all topological spaces) and assumes them
as already given. Studying the properties of a structure in this context en-
tails knowing what their structure-preserving transformations are or what
structures admit such transformations, but doesn’t require us to know the
structure’s Bauplan.6

3For a more detailed discussion of different versions of structuralism, see (Reck and
Price, 2000).

4See, e.g., (Bourbaki, 1950, §3, esp. p. 225 ff.).
5See, e.g., (Awodey, 1996).
6And to the extent that a certain structure is characterizable in the language of

category theory—say, a group (G, ·) as a category with a single object ? and all elements
a of G as morphisms a : ? → ?, or a poset as a category in which there is at most one
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While in general we lean towards an interpretation of structuralism as
inspired by category-theory, the notion of structuralism underlying this pa-
per is more broadly defined and also more vague. For lack of an established
term and for reasons to be adduced below we shall call it ‘non-Aristotelian
structuralism.’ We shall be concerned with what many felt (and many still
feel) is a development towards a mathematics that is more (sometimes too)
‘abstract’ and much less intuitive than it should be—a mathematics that
features objects not very amenable to visualizations; many think this a suf-
ficient reason to dismiss these developments. We think what causes this un-
easiness is a conflict, not well-understood and hence unresolved, between, on
one hand, a ‘folk ontology and semantics’ that starts with concretely given
objects and their properties and, on the other hand, a non-Aristotelian
structuralism that does not need such objects.

2 Folk ontology and folk semantics

We are surrounded in our daily lives by middle-sized concrete objects that
have properties conveyed to us through our senses; this, we are inclined to
think, captures what the furniture of the world is. This was also the starting
point for Plato; but things quickly proved to be much more difficult.7 When
he set out to refute the Sophists and in particular their claim that there is
neither truth nor falsehood but that man is the measure of all things, he
was faced with two opposing viewpoints that had emerged from Ionian nat-
ural philosophy. There was, first, Heraclitus’ doctrine that the true nature
of things—which love to disguise themselves and trick us into holding mere
subjective opinions8—is to be in constant flux propelled by never ending
opposition. Second, there was Parmenides’ doctrine that what truly exists
is eternal and immutable, implying that the language of change is decep-
tive and that everything we can hope to know must therefore be statements
that hold without any exceptions. These were serious issues of the time.
Plato’s teacher Cratylos inferred that, based on Heraclitean doctrines, it
is impossible for a language to have a denotational semantics and decided
to stop speaking but to point with his finger instead, while Antisthenes, a
student of Socrates like Plato, but later following Parmenides’ lead, found
it only possible to argue for the truth of analytical sentences and limited
his utterances to sentences like ‘a man is a man.’ Plato needed to develop

arrow between any two objects—then this doesn’t reveal the ‘familiar’ Bauplan of the
structure either.

7Scholars disagree on what the correct interpretation of Plato in the context of his
time is. We cannot hope to settle any of these disputes here; all we can do is to clearly
say where we stand, i.e., to acknowledge that our own account of Plato’s philosophy of
language is heavily indebted to Rehn (1982).

8‘Nature loves to hide itself’ (φύσις κρύπτεσθαι φιλε̃ι) is one of his more famous state-
ments; see (Diels and Kranz, 1952, frg. B 123) or (Marcovich, 2001), frg. 8.
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a theory of language that was able to refute the relativism of the Sophists
and to establish that declarative sentences can indeed be true or false; at
the same time he needed to accommodate Heraclitean and Parmenidean
arguments and find a way to reconcile the idea of permanent objects, as-
sumed to be one, with fleeting properties, which are many (the venerable
problem of ‘unity vs multiplicity’). Plato’s solution to this entangled knot of
problems was to develop a comprehensive theory of language and then base
crucial arguments upon that theory. Due to his efforts—and for his times
this was quite an accomplishment—Plato might have very well been the
first to clearly identify the grammatical structure of subject and predicate
as underlying declarative sentences; a sentence according to Plato always
is an artful ‘composition’ (σύνθεσις) or close ‘intertwining’ (συμπλοκή) of
‘nouns and verbs’ (ὀνομάτων καί ρημάτων).9

Aristotle adopted Plato’s basic insights about the linguistic functions
of nouns and verbs but not his teacher’s conclusions (e.g., that knowledge
of the physical world—knowledge here understood in its emphatic, Par-
menidean meaning of the word—is not possible as the world forms a realm
of change, becoming, not of being). Both, however, agree with Parmenides
that any sentence is ‘about something’ (περί τινος), where this ‘something’
always refers to a ‘state of affairs’ (πρα̃γμα).10 For Plato, this was just
a necessary condition to ensure the ‘matter-of-factness’ that characterizes
any declarative sentence, while Aristotle extended the ‘about something’
structure to a ‘something about something’ structure (τι κατά τινος). This,
then, was according to Aristotle the proper structural analysis: A declara-
tive sentence (λόγος ἀποφαντικός) features a subject S (ὑποκείμενον) and a
predicate P (κατηγορία), where the ‘predicate something’ is about the ‘sub-
ject something,’ or, as Aristotle would also formulate it, P is ‘predicated of’
(κατηγορε̃ιν) or ‘belongs to’ (ὑπάρχειν) S.

Unlike Plato, who addressed the Sophistic and Ionian challenges mainly
in the realm of language, Aristotle took an ontological turn—the solution, he
remarked, belongs to another field of investigation11—and stipulated that
the grammatical subject S always denotes (σημαίνει) an ‘ousia’ (οὐσία),12

and it was this concept of ousia (or, the ‘what is’ (τ́ι εστι) that was meant
to shoulder the main bulk of explanatory work.13

9See Plato, Cratylus 424e–425a; Sophistes 261c–262d.
10See Plato, Sophistes 263a, resp. ibid. 262e; Aristotle, Topica I.8, 103b7; English

translation can be found in (Cooper, 1997; Barnes, 1984).
11Aristotle, De Interpretatione V, 17a15.
12Defined as what can be predicated but is never predicated of; see Aristotle, Categoriae

V.
13Like in the case of Plato, there is quite some disagreement among scholars on the de-

tails of a proper understanding of Aristotle’s ontological doctrines, his ‘prima philosophia’
(πρώτη φιλοσοφία). As we are only interested in the mainstream views that emerged from
it, we feel free to gloss over all these difficulties. We skip in particular Aristotle’s quite
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We can capture the basics of what we need in the following by modify-
ing the account given by Spade (1985, p. 236ff). An individual substance
s, denoted by a grammatical subject S, does not change and thus allows
for knowledge, but also acts as a pincushion for its changing properties p,
represented by pins that come and go and denoted by predicates P . Some
of these ‘pin-properties,’ however, cannot be removed without ripping the
cushion apart. For they are properties that are ‘essential’ to s, while all
other properties, those whose pins may be added or removed, are ‘acciden-
tal.’ We cannot take away the property of rationality from a human being
without creating a freak of nature; but anyone can dye their hair a different
color every day without losing their humanity.

According to this approach knowledge is firmly rooted in sense experi-
ence and one arrives at an abstract object by zooming in on only certain
properties that constitute it. For example, if a basic geometrical object,
like a square, is conceived of as a boundary surface of a solid die, then it
does not exist independently of the die. The mind, however, can treat it as
an abstract object by focusing on just the square’s properties and thereby
grasping the latter’s form.14 The mental processes of focussing on some
aspects but neglecting others that enable the mind to take on the form of
an abstract object, i.e., to identify, grasp, and know it, do not necessarily
resemble the means we use to give a logical description of what it means to
identify or define an abstract object. The logical reconstruction usually em-
ploys the language of abstraction. If, in the example above, the composition
of the die has a number of properties p1, . . . , pn, then, by eliminating many
of them (like material, color, weight, etc.), we arrive at a sub-set pi1 , . . . , pik
of the die’s properties that characterizes an abstract object, or, in Aristo-
tle’s language, a ‘secondary ousia,’ like a square. We shall call this method
of arriving at new objects from old ones ‘Aristotelian’ or ‘eliminative ab-
straction.’ In more general terms, if ‘o1[abc]’ denotes some object that has,
among others, the properties a, b, c and o2[bcd] another object with proper-
ties b, c, d, then an object like o[bc]—that is characterized by what objects
o1 and o2 have in common—is obtained by eliminating those properties
that the two objects do not share, a and d, and possibly others. Due to

complex theory of forms (or causae) and how they contribute to the unity of objects,
especially when two or more of them coincide, and ignore the intricate theory of how
the soul, as the form of the human body, can come to know something by taking on the
form of that something. We follow common practice since Boethius, though, and render
‘ousia’ as ‘substance.’

14See Aristotle, De Anima, pt. 7. ‘The so-called abstract objects the mind thinks just
as, if one had thought of the snub-nosed not as snub-nosed but as hollow, one would have
thought of an actuality without the flesh in which it is embodied: it is thus that the mind
when it is thinking the objects of mathematics thinks as separate elements which do not
exist separate. In every case the mind which is actively thinking is the objects which it
thinks.’
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the denotational power of language, where subjects denote substances and
predicates denote properties, the process of abstraction is available in the
realm of language as well. The possibility of linguistic abstraction as well as
ontological abstraction has led to two different interpretations of Aristotle,
but we omit further discussion of this issue.15

Aristotle thus established, after a heated debate that lasted for many
generations and was fueled by conflicting intuitions about what the furniture
of the universe is and how language can refer to it, what would eventually
become a linguistic and ontological paradigm for the next two millennia.
And the resulting views were not too disquieting: We are surrounded by
middle-sized concrete objects whose properties are given by the senses; new
objects can be obtained by eliminative abstraction, and all objects and their
properties are amenable to human knowledge.16

The reason to call the Aristotelian paradigm ‘folk ontology and seman-
tics’ is that its underlying intuitions strike most people as so natural that
it requires a serious effort not think along its lines. Kant even went a step
further and turned thinking according to substance and predicate from a
psychological propensity into a logical necessity, i.e., made it a priori.17

Within this paradigm all concept formation is always bottom-up and
well-founded; a concept cannot be legitimately formed unless each property
P it contains can ultimately be traced back to some concretely given object
that instantiates P or its subordinated constituents. It is this that seems to
have motivated both the slogan of empiricism that nothing is in the mind
that was not in the senses before and Kant’s dictum that concepts without
objects given in intuition must be empty.18 Unsurprisingly, textbooks in
the semantics of natural languages often present concepts arranged in a
tree-structured hierarchy very much along the lines of Plato and Aristotle,
and similar to the Porphyrian trees that emerged from that tradition.

Mathematicians appear to have embraced this approach as well whenever
they proved new mathematical entities to exist by constructing them, in a
bottom-up fashion, from already existing mathematical objects; like von
Staudt constructed projective points as sets of ‘real’ points, Dedekind real
numbers as sets of rational numbers, Hamilton imaginary numbers as pairs
of real numbers, and so forth. (More on this in the next two sections.)

15See (Mueller, 1970; Lear, 1982).
16Recent decades have seen a revival of viable alternatives to an Aristotelian ontology

based on the notion of substance, like mereology and process ontology. We shall not,
however, explore their prospects in this article.

17By turning substance and predicate into pure concepts of the understanding and by
basing a synthetic judgement a priori, i.e., the first analogy of experience, on the notion
of substance; see (Kant, 1781, B 106, and B 244ff, resp.).

18See (Cranefield, 1970) on the history of the phrase nihil est in intellectu quod non
prius fuerit in sensu, and see (Kant, 1781, B 75) for Kant’s dictum.
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The Aristotelian paradigm emerged to accommodate the needs and the
language of everyday life and of sciences that hardly scratch on the surface
of things; it doesn’t seem to be the best choice available when it comes to
understanding modern mathematics, whose development picked up incred-
ible speed during the 19th century. We therefore wish to suggest that an
approach that leaves behind the Procrustean bed of an Aristotelian ontol-
ogy and the shackles of his doctrines is better suited to describe modern
mathematics.

This proposal is by no means new. In particular Cassirer in his book
Substance and Function argued for a similar point.19 We find, however,
first, his Neo-Kantian conclusions to be no longer defensible and, second,
some recent accounts on structuralism to be so confused that we believe it
is worthwhile to revisit the topic.20

We shall try to provide the evidence necessary to support our theses by
way of example, for two reasons. First, a fuller scrutiny of the historical
evidence would require a book-length study, something we cannot hope to
accomplish within the confines of an article. Second, and much more impor-
tantly, we do not claim that the mathematical community as a whole moves
(or has ever moved) like one solid block in just one direction; nothing could
be farther from the truth. We would rather compare the historical devel-
opment of the mathematical community with the movement of a body that
various people try to pull in different directions. The vector that describes
the actual movement of the body will then be the sum all those individual
vectors that represent the various people. The ‘vector’ that describes the
historical movement of the mathematical community as a whole results like-
wise, we suggest, from adding all individual vectors, and it points clearly,
we think, in the direction of a non-Aristotelian structuralism (see Figure 1).
We shall therefore be content with highlighting just a selection of those
achievements that contributed more than other developments to pull math-
ematics towards that structuralism and readily admit that it is easy to find
examples that suggest otherwise; sometimes even one and the same person
can serve as a witness for both sides. While these alleged counterexamples
clearly prove how diverse and vibrant the community of mathematicians
has been at any given time, we also claim that their ‘associated vectors’

19Cassirer argued for the stronger claim that all of modern science has moved away
from an Aristotelian ontology of substances; see (Cassirer, 1910). Although we believe
Cassirer to be basically correct about this, we have to limit our attention to mathematics.

Brendan Larvor was kind enough as to point out to the authors the work of Albert
Lautman, who provided another account of the shift in cognitive style from 19th to 20th
century mathematics. Since this paper is a programmatic outline only, we shall not
engage in a detailed discussion here; see, however, (Larvor, 2010).

20See, e.g., the controversy between Hellman (2003) and Awodey (2004), or the self-
inflicted difficulties Shapiro (2000) runs into when he tries to reconcile structuralism with
what we called folk ontology and semantics.
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Figure 1. How the mathematical community really moves . . .

have never carried weight enough to pull mainstream mathematics in their
direction.

3 Towards a new ontology and semantics of
mathematics

We have seen in the previous section that the notion of Aristotelian ab-
straction that underlies the ‘folk semantics and ontology’ can be interpreted
both ontologically and linguistically. These two perspectives allow for the
introduction of abstract objects in two different ways: in an ontological
‘bottom-up’ fashion and in a linguistic ‘top-down’ fashion.

Since our aim is not to discuss mathematics per se, presented in some
kind of canonical form, but mathematics as a historical enterprise, its meth-
ods are certainly not fixed and have changed over time. In the following,
we suggest a framework for discussing some of these developments. In par-
ticular, the move away from Aristotelian abstraction and towards ‘more’
abstract objects is interpreted as a move towards more ‘top-down’ charac-
terizations of mathematical objects.

The main components of our framework for discussing the historical
development of mathematics are illustrated in Figure 2. According to it the
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Description
Top-down ↓

Structure(s)

Complex objects
Bottom-up ↑

Given objects

Figure 2. ‘Bottom-up’ and ‘top-down’ characterizations of mathematical
objects.

introduction of mathematical objects can be achieved in two distinct ways:

I. They can be constructed by various means from other mathematical
objects that are considered to be previously given. Historically, cuts
of rational numbers and ideals have been introduced by Dedekind in
this way. We refer to this approach as ‘bottom-up,’ and as will be dis-
cussed below, it is closely related to the ‘folk ontology and semantics’
paradigm mentioned above.

II. Alternatively, mathematical structures can be defined by linguistic de-
scriptions purely in terms of their relational properties. Such defini-
tions can be of various degrees of specificity, with ‘implicit definitions’
by systems of axioms being the most common ones (e. g., for groups
and natural numbers). This ‘top-down’ approach is characteristic for
modern, abstract mathematics.

The distinction between these two modes of introducing mathemati-
cal objects or structures reflects Hilbert’s distinction between the ‘genetic’
and the ‘axiomatic method’ (Hilbert, 1900). As an example of the genetic
method Hilbert mentions the extension of the concept of number to include
real numbers, through the successive definition of negative numbers and ra-
tional numbers as pairs, and the definition of real numbers as cuts of rational
numbers. These definitions are all instances of what we call the ‘bottom-up’
approach, since the new objects are introduced as (set-theoretic) construc-
tions on the basis of the natural numbers, which are taken as given from the
outset. Hilbert’s example of the top-down, axiomatic method is Euclidean
geometry, where

one customarily begins by assuming the existence of all the elements,
i. e., one postulates at the outset three systems of things (namely,
the points, lines, and planes) and then [. . .] brings these elements
into relationship with one another by means of certain axioms [. . .]
(Hilbert 1900, p. 180; quoted from Ewald 1996, p. 1092).
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Semi-intuitive/quasi-empirical objects
Aristotelian abstraction: ↑

Physical objects (world)

Figure 3. Aristotelian abstraction as a special case of bottom-up construc-
tion.

The notion of ‘construction’ employed in our description of the bottom-
up approach is very general and should not be confused with the use of
constructive, as opposed to classical, methods. In particular, many debates
among mathematicians and philosophers, like that between Kronecker and
Dedekind, are exactly about what kinds of means should be taken as legiti-
mate for the construction of new objects. As Gray has argued, exactly such
disagreements were frequently the source of anxieties that put a strain on
discussions of that time (Gray, 2004). Moreover, which means are licensed
by the mathematical community changed considerably during the historical
development of mathematics: Cantor’s and Dedekind’s use of set-theoretic
definitions, e.g., represented a significant extension of these means.

In general, mathematical constructions take genuine mathematical ob-
jects, like numbers, functions, or spaces as their starting point; but there
is an important exception to this. A special case of this general notion of
construction is Aristotelian abstraction, where the given objects are taken
to be physical objects and the means of construction involve the deletion of
particular properties of these objects (see Figure 3). Thus, according to the
‘folk ontology and semantics’ this particular kind of bottom-up approach is
anchored in perceptible, real world objects. Such a grounding—understood
either epistemically or ontologically—as tenuous as it may be, need not exist
for mathematical concepts that are defined in a top-down fashion.

The determination of mathematical objects or structures by linguistic
means in terms of their relations to others finds its most mature form in the
implicit definitions based on systems of axioms. The axiomatic definitions of
algebraic structures or the axiomatizations of various geometries are promi-
nent examples. Drobisch’s notion of ‘abstraction by variation’ is another
example of this method of introducing mathematical concepts (Drobisch,
1875).

Despite the fact that the the top-down and bottom-up approaches are
distinct in nature, in practice they are often employed side by side (see Fig-
ure 4). On the one hand, a system of objects that is constructed is often
introduced with the explicit aim of satisfying particular axiomatic condi-
tions. Hamilton’s quaternions, designed to be an instance of a system in
which multiplication is not commutative, and Dedekind’s constructions of a
simply infinite system and the system of cuts of rational numbers are good
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Real numbers Non-commutative rings
Axioms
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N
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N
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Figure 4. Examples of connecting bottom-up and top-down approaches.

examples.21 On the other hand, axioms are often introduced to character-
ize a system of mathematical objects that has been constructed previously
(e. g., the axiomatization of a topological space intended to capture some
properties of the real line).22 In other words, the new objects that are
generated in a bottom-up fashion are often intended to instantiate a math-
ematical concept that has been defined using the top-down method; and
vice versa, new objects that are defined in a top-down fashion are meant to
be instantiated by objects that were (previously) constructed bottom-up.
Through this connection the two approaches are linked and mathematicians
often alternate between the two.

In our framework mathematical work happens in three places: In the
bottom-up constructions of new mathematical objects, in developing appro-
priate descriptions that are the starting points for the top-down approach,
and in establishing possible connections between the structures and the con-
structed objects (e.g., showing that they satisfy all postulated properties, or
that they are even isomorphic). Both top-down and bottom-up approaches
involve finding fundamental concepts and fruitful definitions, and working
out their consequences.

4 Historical examples

In the following we present brief sketches of historical episodes to illustrate
the point that in the development of mathematics from the 19th to the 20th
century one can identify a decrease of emphasis of bottom-up characteriza-
tions and an increased reliance on top-down characterizations. Many of the
historical developments that led to the emergence of modern mathematics
have been presented and discussed elsewhere, and this is not the place to

21See the discussion of Dedekind in (Sieg and Schlimm, 2005).
22See (Moore, 2008).
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add another such study. Instead, we adduce examples from a wide range of
developments to support our claim.

The framework introduced in the previous section allows us to view
seemingly very different approaches as instances of the bottom-up view.
A great example is Gauss’ view on the justification of new mathematical
objects. Fraenkel describes it as follows:

Gauss adopts a decidedly realist standpoint [ . . . ] according to which
an extension of a given domain of numbers is only justified, if it is
possible to intuitively associate with the new entities that are to be
accepted other things or concepts, which have already gained general
acceptance—for example, on the basis of spatial experience or spatial
intuition. (Fraenkel 1920; quoted from Volkert 1986, p. 40.)

Hamilton’s work on number pairs also fits right into this characteriza-
tion. And the so-called ‘formalism’ of late 19th century mathematicians like
Heine can also be understood as an instance of this general approach: In
order to justify the existence of the natural numbers they are themselves
reduced to something ‘more concrete,’ namely, written symbols. This way
of proceeding was famously criticized by Frege, but he was himself working
with a reductionist goal in mind (i.e., aiming at a bottom-up account), only
to different kinds of objects, namely logical ones.

These views stand in stark contrast to the ‘top-down’ approach of Dede-
kind and Hilbert, who are proponents of the modern view of mathematics,
according to which mathematical objects are regarded as being determined
purely by their descriptions. Such an exclusive reliance on the relations ex-
pressed in axioms was a demand also formulated by Pasch—in his famous
Vorlesungen über neuere Geometrie (1882):

Indeed, if geometry is to be really deductive, the deduction must
be independent of the [sc. bottom-up] meaning of geometrical con-
cepts, just as it must be independent of the diagrams; only the re-
lations specified in the propositions and definitions employed may
legitimately be taken into account. (Pasch, 1882, p. 98)

While Pasch himself made this demand for the sake of gap-free deductions
and did not regard mathematical objects to be defined in this way, it was
soon employed as a methodological desideratum also for definitions. An
early expression of this way of proceeding is given in the opening paragraph
of Dedekind’s Was sind und was sollen die Zahlen? (1888):

In what follows, I understand by thing every object of our thought.
In order to be able easily to speak of things, we designate them by
symbols, e. g., by letters [. . . ]. A thing is completely determined by
all that can be affirmed or thought about it. (Dedekind, 1888, p. 44)
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Reck refers to this as Dedekind’s ‘principle of determinateness’ and he con-
siders it to be a crucial component of Dedekind’s ‘logical structuralism’
(Reck, 2003, pp. 394 & 400). A similar formulation of this principle is
expressed by Hilbert:

[. . . ] by the set of real numbers we do not have to imagine, say,
the totality of all possible laws according to which the elements of a
fundamental sequence can proceed, but rather—as just described—
a system of things whose mutual relations are given by the finite
and closed system of axioms I–IV, and about which new statements
are valid only if one can derive them from the axioms by means of a
finite number of logical inferences. (Hilbert 1900, p. 184; quoted from
Ewald 1996, p. 1095.)

A mathematical notion whose characterization has changed dramatically
in the course of the 19th century is that of a function. Originally conceived
as a particular, rule-based relation between numbers, it gained more and
more generality in the hands of Dirichlet and Dedekind, until it was defined
purely in set-theoretic terms. For a wide range of different characterizations
of ‘function,’ see (Volkert, 1986, 55–57).

A similar development can be identified in abstract algebra, nowadays
considered a prime example of axiomatically characterized structures. How-
ever, it also began as the study of concrete sets of given objects. A ‘group,’
for example, was defined by Galois as a set of substitutions that is closed
under composition; and group-theoretic constructions were always made in
terms of substitutions. Only gradually the relational structure was empha-
sized and taken as the essential aspect of the theory. See (Wussing, 1984)
for the general development of group theory, and (Schlimm, 2008) for a
particular episode that nicely illustrates our main point.

In traditional geometry, its elements were construed as abstract, usually
obtained by some sort of Aristotelian abstraction. With the development
of projective geometry, ‘points at infinity’ or ‘ideal points’ were introduced,
but at first they were treated with the same skepticism that had been di-
rected at the negative and imaginary numbers before. The reduction of
these new geometric objects (i.e., the definition of them in terms of ‘real’
points and lines) was considered to be a great achievement. This senti-
ment is expressed, for example, in Torretti’s remark on Pasch’s treatment
of projective geometry (Pasch, 1882):

From a philosophical point of view, Pasch’s most remarkable feat is
the introduction of the ideal elements of projective geometry using
only the ostensive concepts of point, segment, and flat surface and
the empirically justifiable axioms S and E. (Torretti, 1978, p. 213)
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Only with Hilbert’s groundbreaking Foundations of Geometry (1899) the
idea of implicit definitions of mathematical structures slowly gained general
acceptance.

5 Visualizing mathematical objects

The historical transition discussed above has also had effects on the use
of visualizations in mathematics, to which we turn our attention next.23

We maintain, with Plato and Aristotle, that mathematical objects, as ab-
stract entities, cannot be directly visualized. Euclid’s definitions of a point
as ‘that which has no part’ and of a line as a ‘breadthless length’ (Heath,
1909, p. 153) clearly hint at the ontological and epistemological difficulties
that mathematical objects pose, but also at the problem of their accessibil-
ity to the senses. Both Plato and Aristotle agreed that these objects are not
to be found in our physical world. They disagreed on the accounts of where
mathematical object live and how they are related to the things we see with
our eyes. Recall Aristotle’s account (discussed in more detail above): the
mathematical objects are idealizations of physical objects, obtained through
a process of abstraction. Thus, even if there is no mathematical sphere—
sometimes called ‘perfect’ to flag its ideal character—in the physical world,
there are objects in our world that resemble such spheres to some degree.
Such physical objects, imperfect instantiations as they are, can nonetheless
be regarded as visualizations of their abstract counterparts. We can easily
see and touch spherical objects and also imagine them; if we stretch our
imagination just a little bit, we can imagine these objects to be perfectly
smooth and spherical, and thus we arrive at a representation of a mathe-
matical sphere. This representation is not identical to the sphere, but closer
to it in the relevant respects than any physical object could be.24

In sum, some mathematical objects can be construed as idealizations of
physical objects, and, accordingly, some objects are easier to visualize than
others. We may refer to these as elementary objects, and among them we
find the geometric notions of point, line, circle, square, cube, sphere, etc.,
the notions of natural and real numbers, and the modern notion of sets.
Many philosophers have limited their discussions of the nature of mathe-
matics to these objects and thus may have been influenced by the particular
character of these kinds of objects into thinking that all of mathematics can
be built up in this way.25 However, with the increased reliance on top-down

23In this programatic sketch, we are unable to do justice to all the ramifications of the
topic of visualization. For a more complete picture, the reader might want to look at
other studies, like the contributions by Marcus Giaquinto or Ken Manders in (Mancosu,
2008).

24See Klein’s discussion of the limits of our imagination in (Klein, 1893).
25The bottom-up generation of mathematical concepts via conceptual metaphors is

presented in (Lakoff and Núñez, 2000).
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characterizations of mathematical structures, this conception of visualiza-
tion soon reaches its limits and becomes untenable as being applicable for
all mathematical objects.

The relation between visual representations and mathematical objects
has been a topic of debate among mathematicians themselves. In partic-
ular with the growing emphasis on rigor in the 19th century the use of
diagrams was more and more scrutinized.26 However, such representations
play very different roles in mathematical practice that can be distinguished:
a) Visualizations as means to mathematical understanding and education;
b) visualizations as heuristics for mathematical inferences; c) visualizations
as justifications of mathematical inferences; d) visualizations as vehicles for
mathematical creativity.

Let us briefly illustrate these different roles of visualizations. Consider a
formulation of Hilbert’s first axiom of Euclidean geometry in the language
of first-order logic, ‘∀x∀y∃z P (x) ∧ P (y) ∧ L(z) ∧ on(x, z) ∧ on(y, z).’
To understand such a symbolic expression as a geometric statement the
primitive terms have to be interpreted and given meaning. Reformulated
into English, the statement then becomes ‘between any two points there is
a line.’ Since the words ‘points,’ ‘line,’ and ‘between’ are familiar to us,
we immediately understand the statement (or, at least, we think we do).
Thus, the familiar terms with their associated visual representations allow
us to grasp the content of a proposition much more easily. Accordingly,
complex geometric propositions are often visualized using diagrams.27 Once
a proposition has been represented by a diagram, the graphical information
can also be exploited for making inferences. For example, if you draw a
triangle with an additional straight line going through one of its sides not
at a vertex, that line, if drawn sufficiently long, will also go through one
of the other two sides of the triangle. This can be easily verified using
a diagram. However, diagrams can also be misleading and thus lead to
incorrect proofs. Because of this, and the renewed interest in mathematical
rigor in the 19th century, the tendency of rejecting the use of diagrams for
licensing inferences became stronger (Mancosu, 2005).28

Nevertheless, it was commonly agreed that visual representations are
very helpful tools in the process of forming new conjectures, since repre-
sentations can suggest previously unseen connections and completely new
directions of research. That multiplying and juxtaposing modes of represen-
tation leads to a ‘productive ambiguity’ that is crucial in the development
of science and mathematics has been argued by Grosholz (2007).

26See (Mancosu, 2005).
27For a colorful example, see (Byrne, 1847).
28We wish to note, however, that there is danger of oversimplifying these quite complex

movements within the mathematical community. Category theory, e.g., which freely and
deliberately embraces diagrams and their properties (and therefore sometimes dubbed
‘archery’), can serve as an antidote to such oversimplications.
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In our analysis of some developments of mathematics we found a general
tendency towards introducing mathematical objects in a top-down fashion,
and away from the more traditional bottom-up fashion. This move corre-
lates with a change of the role that visualizations play in mathematics. On
the one hand, their justificatory power was called into question by the more
urgent demands for increased rigor. On the other hand, however, visualiza-
tions became more important in their role as vehicles for promoting math-
ematical understanding. Since the structures defined in a top-down fashion
are initially more abstract, a need was felt to provide some substance to
flesh them out, and this substance was often furnished by visualizations.
Examples are Klein’s collections of mathematical models, or, more recently,
computer visualizations of fractals. In other words, the (purely linguistic)
combination of mathematical properties can lead to conceptions for which
no visualization immediately springs to mind: For example, a space in which
more than one parallel to a line through a given point exist, and Weierstrass’
continuous, but nowhere differentiable, curves. However, mathematicians
were not satisfied with this situation and put much effort into finding ways
of relating these new notions to others, which were previously available, for
example Beltrami’s, Klein’s, and Poincaré’s models for non-Euclidean ge-
ometry. Thus, in general we think it is incorrect to say that the amount of
and the need for visualizations has decreased in modern mathematics, but
rather that the roles they play in mathematical practice have been clarified
and have changed.

While bottom-up constructions of new mathematical objects were fa-
vored in the 19th century, it is characteristic for modern, 20th century
mathematics to rely heavily on top-down characterizations. This focus on
linguistic descriptions (axioms) went alongside the demands for more rigor
in mathematical argumentations and it also provided the means for extend-
ing the limits of what is possible. For example, the simple construal of a
space as R3 quickly led to the question of the nature of R4, and was gen-
eralized to Rn, which allowed for the possibility of R∞. Thus, hitherto
unthinkable generalizations became possible and were being pursued. As
consequences of these developments, visualizations lost their role as war-
rants of mathematical deductions and more abstract structures became the
objects of mathematical investigations for which Aristotelian abstraction no
longer works.
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