These slides are mainly compiled from the following resources.
- Professor Jaehyun Park’ slides CS 97SI
- Top-coder tutorials.
- Programming Challenges books.
Outline

• Graphs.
 • Representation.
 • Special Graphs.
 • Graph Traversal.
 • Topological Sort.
 • Eulerian Circuit.
 • Minimum Spanning Tree.
 • Strongly Connected Components.

• Divide and Conquer.
Graphs

- An abstract way of representing connectivity using nodes (also called vertices) and edges.
- m edges connect some pairs of nodes.
 - Edges can be either one-directional (directed) or bidirectional.
- Nodes and edges can have some auxiliary information.

![Graph Diagram](image-url)
Graphs

- Lots of problems formulated and solved in terms of graphs
 - Shortest path problems
 - Network flow problems
 - Matching problems
 - 2-SAT problem
 - Graph coloring problem
 - Traveling Salesman Problem (TSP): still unsolved!
 - and many more...
Graphs: Representation

- Need to store both the set of nodes V and the set of edges E
 - Nodes can be stored in an array
 - Edges must be stored in some other way
- Want to support operations such as:
 - Retrieving all edges incident to a particular node
 - Testing if given two nodes are directly connected
- Use either adjacency matrix or adjacency list to store the edges
Graphs: Adjacency Matrix

• An easy way to store connectivity information
 • Checking if two nodes are directly connected: $O(1)$ time

• Make an $n \times n$ matrix A
 • $a_{ij} = 1$ if there is an edge from i to j
 • $a_{ij} = 0$ otherwise

• Uses $O(n^2)$ memory
 • Only use when n is less than a few thousands,
 • and when the graph is dense
Graphs: Adjacency List

- Each node has a list of outgoing edges from it
 - Easy to iterate over edges incident to a certain node
 - The lists have variable lengths
 - Space usage: $O(n + m)$
Graphs: Implementing Adjacency List

• Solution 1. Using linked lists
 • Too much memory/time overhead
 • Using dynamic allocated memory or pointers is bad

• Solution 2. Using an array of vectors
 • Easier to code, no bad memory issues
 • But very slow

• Solution 3. Using arrays (!)
 • Assuming the total number of edges is known
 • Very fast and memory-efficient
Graphs: Implementing Adjacency List

- Solution 3. Using arrays (!)
 - Assuming the total number of edges is known
 - Very fast and memory-efficient

<table>
<thead>
<tr>
<th>ID</th>
<th>To</th>
<th>Next Edge ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Edge ID</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphs: Implementing Adjacency List

- Have two arrays E of size m and LE of size n
 - E contains the edges
 - LE contains the starting pointers of the edge lists
- Initialize LE[i] = -1 for all i
- Inserting a new edge from u to v with ID k
 - E[k].to = v
 - E[k].nextID = LE[u]
 - LE[u] = k
Graphs: Trees

- A connected acyclic graph
- Most important type of special graphs
 - Many problems are easier to solve on trees
- Alternate equivalent definitions:
 - A connected graph with $n - 1$ edges
 - An acyclic graph with $n - 1$ edges
 - There is exactly one path between every pair of nodes
 - An acyclic graph but adding any edge results in a cycle
 - A connected graph but removing any edge disconnects it
Graphs: Other Special Graphs

- Directed Acyclic Graph (DAG): the name says what it is
 - Equivalent to a partial ordering of nodes
- Bipartite Graph: Nodes can be separated into two groups S and T such that edges exist between S and T only (no edges within S or within T)
Graphs: Traversal

• The most basic graph algorithm that visits nodes of a graph in certain order
• Used as a subroutine in many other algorithms
• We will cover two algorithms
 • Depth-First Search (DFS): uses recursion (stack)
 • Breadth-First Search (BFS): uses queue
Graphs: Depth-First Search

- DFS(v): visits all the nodes reachable from v in depth-first order
 - Mark v as visited
 - For each edge v -> u:
 - If u is not visited, call DFS(u)
- Use non-recursive version if recursion depth is too big (over a few thousands)
 - Replace recursive calls with a stack
- dfs runs in O(V + E) and O(V^2) if the graph is stored as Adjacency List and Adjacency Matrix, respectively.
Graphs: Depth-First Search

- \(\text{dfs}(0) = 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \).
 - DS goes to the deepest possible vertex from the start vertex before attempting another branches.
- This sequence of visitation depends very much on the way we order neighbors of a vertex.
 - sequence \(0 \rightarrow 1 \rightarrow 3 \rightarrow 2 \) (backtrack to 3) \(\rightarrow 4 \) is also a possible.
Graphs: Breadth-First Search

- BFS(v): visits all the nodes reachable from v in breadth-first order
 - Initialize a queue Q
 - Mark v as visited and push it to Q
 - While Q is not empty:
 - Take the front element of Q and call it w
 - For each edge w -> u:
 - If u is not visited, mark it as visited and push it to Q
Graphs: Breadth-First Search

- Source Vertex s = 35
Graphs: DFS vs BFS

<table>
<thead>
<tr>
<th></th>
<th>$O(V + E)$ DFS</th>
<th>$O(V + E)$ BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Uses less memory</td>
<td>Can solve SSSP on unweighted graphs</td>
</tr>
<tr>
<td>Cons</td>
<td>Cannot solve SSSP on unweighted graphs</td>
<td>Uses more memory</td>
</tr>
<tr>
<td>Code</td>
<td>Slightly easier to code</td>
<td>Slightly longer to code</td>
</tr>
</tbody>
</table>
Graphs: Topological Sort

- Input: a DAG G = (V,E)
- Output: an ordering of nodes such that for each edge u→v, u comes before v
- There can be many answers
 - e.g., both {6, 1, 3, 2, 7, 4, 5, 8} and {1, 6, 2, 3, 4, 5, 7, 8} are valid orderings for the graph below.
Graphs: Topological Sort

- Any node without an incoming edge can be the first element
- After deciding the first node, remove outgoing edges from it
- Repeat!

- Time complexity: $O(n^2 + m)$
 - Too slow...
Graphs: Topological Sort

- Precompute the number of incoming edges $\text{deg}(v)$ for each node v
- Put all nodes v with $\text{deg}(v) = 0$ into a queue Q
- Repeat until Q becomes empty:
 - Take v from Q
 - For each edge $v \rightarrow u$:
 - Decrement $\text{deg}(u)$ (essentially removing the edge $v \rightarrow u$)
 - If $\text{deg}(u) = 0$, push u to Q
- Time complexity: $O(n + m)$
Graphs: Eulerian Circuit

- Given an undirected graph G
- Want to find a sequence of nodes that visits every edge exactly once and comes back to the starting point

- Eulerian circuits exist if and only if
 - G is connected
 - and each node has an even degree
Graphs: Related Problems

- Eulerian path: exists if and only if the graph is connected and the number of nodes with odd degree is 2.
 - An Euler path starts and ends at different vertices.
- Hamiltonian path/cycle: a path/cycle that visits every node in the graph exactly once. Looks similar but very hard (still unsolved)!
Graphs: Eulerian Circuit

Euler circuit: CDEBBBADC

Euler path: CDCBBBADEEB
Graphs: Eulerian Circuit

<table>
<thead>
<tr>
<th># odd vertices</th>
<th>Euler path?</th>
<th>Euler circuit?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No</td>
<td>Yes*</td>
</tr>
<tr>
<td>2</td>
<td>Yes*</td>
<td>No</td>
</tr>
<tr>
<td>4, 6, 8, ...</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1, 3, 5,</td>
<td>No such graphs exist</td>
<td></td>
</tr>
</tbody>
</table>

Provided the graph is connected.
Graphs: Eulerian Path

- Make sure the graph has either 0 or 2 odd vertices.
- If there are 0 odd vertices, start anywhere. If there are 2 odd vertices, start at one of them.
- Follow edges one at a time. If you have a choice between a bridge and a non-bridge, always choose the non-bridge.
- Stop when you run out of edges.
- This is called Fleury's algorithm,
Problem: Find an Euler circuit in the graph below.
There are two odd vertices, A and F. Let’s start at F.
Start walking at F. When you use an edge, delete it.
Path so far: FE
Path so far: FEA
Path so far: FEAC
Path so far: FEACB
Up until this point, the choices didn’t matter.

But now, crossing the edge BA would be a mistake, because we would be stuck there.

The reason is that BA is a bridge. We don’t want to cross (“burn”?) a bridge unless it is the only edge available.
Path so far: FEACB
Path so far: FEACBD.
Path so far: FEACBD. Don’t cross the bridge!
Path so far: FEACBDC
Path so far: FEACBDC Now we have to cross the bridge CF.
Path so far: FEACBDCF
Path so far: FEACBDCFD
Path so far: FEACBDCFDB
Euler Path: FEACBDCFDBA
Graphs: Minimum Spanning Tree

- Given an undirected weighted graph $G = (V,E)$
- Want to find a subset of E with the minimum total weight that connects all the nodes into a tree

- Two famous algorithms:
 - Kruskal’s algorithm
 - Prim’s algorithm
Graphs: Kruskal’s Algorithm

• Main idea: the edge e★ with the smallest weight has to be in the MST.

• Another main idea: after an edge is chosen, the two nodes at the ends can be merged and considered as a single node (supernode).

• Pseudocode:
 • Sort the edges in increasing order of weight
 • Repeat until there is one supernode left:
 • Take the minimum weight edge e★
 • If e★ connects two different supernodes, then connect them and merge the supernodes (use union-find)
 • Otherwise, ignore e★ and try the next edge
Graphs: Kruskal’s Algorithm
Graphs: Prim’s Algorithm

Main idea:
- Maintain a set S that starts out with a single node s
- Find the smallest weighted edge $e^* = (u, v)$ that connects $u \in S$ and $v \notin S$
- Add e^* to the MST, add v to S
- Repeat until $S = V$

Differs from Kruskal’s in that we grow a single supernode S instead of growing multiple ones at the same time
Graphs: Prim’s Algorithm
Graphs: Prim’s Algorithm

- Initialize $S := \{s\}$, $D_v := \text{cost}(s,v)$ for every v
 - If there is no edge between s and v, $\text{cost}(s, v) = 1$
- Repeat until $S = V$:
 - Find $v \notin S$ with smallest D_v
 - Use a priority queue or a simple linear search
 - Add v to S, add D_v to the total weight of the MST
 - For each edge (v,w):
 - Update $D_w := \min(D_w, \text{cost}(v,w))$
Graphs: Kruskal’s VS Prim’s

- Kruskal’s Algorithm
 - Takes $O(m \log(m))$ time
 - Pretty easy to code
 - Generally slower than Prim’s

- Prim’s Algorithm
 - Time complexity depends on the implementation:
 - Can be $O(n^2 + m)$, $O(m \log(n))$, or $O(m + n \log n)$
 - A bit trickier to code
 - Generally faster than Kruskal’s
Graphs: Strongly Connected Components

- Given a directed graph $G = (V,E)$
- A graph is strongly connected if all nodes are reachable from every single node in V
- Strongly connected components of G are maximal strongly connected subgraphs of G
- The graph below has 3 SCCs: $\{a, b, e\}$, $\{c, d, h\}$, $\{f, g\}$

Figure from Wikipedia
Graphs: Kosaraju’s Algorithm

- Initialize counter \(c := 0 \)
- While not all nodes are labeled:
 - Choose an arbitrary unlabeled node \(v \)
 - Start DFS from \(v \)
 - Check the current node \(x \) as visited
 - Recurse on all unvisited neighbors
 - After the DFS calls are finished, increment \(c \) and set the label of \(x \) as \(c \)
- Reverse the direction of all the edges
- For node \(v \) with label \(n, n - 1, \ldots, 1 \):
 - Find all reachable nodes from \(v \) and group them as an SCC