These slides are mainly compiled from the following resources.

- Professor Jaehyun Park’ slides CS 97SI
- Top-coder tutorials.
- Programming Challenges book.
Data Structure

- A way to store and organize data in order to support efficient insertions, queries, searches, updates, and deletions.
Data Structure

• Basic data structures (built-in libraries).
 • Linear DS.
 • Non-Linear DS.

• Data structures (Own libraries).
 • Graphs.
 • Union-Find Structures.
 • Segment Tree.
Data Structures

• Basic data structures (built-in libraries).
 • Linear DS (ordering the elements sequentially).
 • Static Array (Array in C/C++ and in Java).
 • Resizeable array (C++ STL<vector> and Java ArrayList).
 • Linked List: (C++ STL<list> and Java LinkedList).
 • Stack (C++ STL<stack> and Java Stack).
 • Queue (C++ STL <queue> and Java Queue).
Data Structures

- Basic data structures (built-in libraries).
 - Non-Linear DS.
 - Balanced Binary Search Tree (C++ STL `<map>`/<`set`> and in Java TreeMap/TreeSet).
 - AVL and Red-Black Trees = Balanced BST
 - `<map>` stores (key -> data) VS `<set>` only stores the key
 - Heap (C++ STL `<queue>`:priority_queue and Java PriorityQueue).
 - BST complete.
 - Heap property VS BST property.
 - Hash Table (Java HashMap/HashSet/HashTable).
 - Non synchronized vs synchronized.
 - Null vs non-nulls
 - Predictable iteration (using LinkedHashSet) vs non predictable.
Question for you.

- Basic data structures (built-in libraries).
- Non Linear DS (non-sequential ordering).
 - Balanced Binary Search Tree (C++ STL `<map>`/<`set`> and Java `TreeMap`/<`TreeSet`>)
 - AVL Tree and Red-Black = Balanced BST.
 - `<map>` stores (key -> data) VS `<set>` only stores the key
- Heap (C++ STL `<queue>` and Java `PriorityQueue`)
 - Heap property VS BST property.
 - Complete BST.
- Hash table
Question for you.

Do you recognize the problem?
Deciding the Order of the Tasks

- Returns the newest task (stack)
- Returns the oldest task (queue)
- Returns the most urgent task (priority queue)
- Returns the easiest task (priority queue)
STACK

- Last in, first out (Last In First Out)
- Stacks model piles of objects (such as dinner plates)
- Supports three constant-time operations
 - Push(x): inserts x into the stack
 - Pop(): removes the newest item
 - Top(): returns the newest item
- Very easy to implement using an array
STACK

• Have a large enough array s[] and a counter k, which starts at zero
 • Push(x) : set s[k] = x and increment k by 1
 • Pop() : decrement k by 1
 • Top() : returns s[k - 1] (error if k is zero)

• C++ and Java have implementations of stack
 • stack (C++), Stack (Java)
STACK

• Useful for:
 • Processing nested formulas
 • Depth-first graph traversal
 • Data storage in recursive algorithms
QUEUE

- First in, first out (FIFO)
- Supports three constant-time operations
 - Enqueue(x) : inserts x into the queue
 - Dequeue() : removes the oldest item
 - Front() : returns the oldest item
- Implementation is similar to that of stack
QUEUE

- Assume that you know the total number of elements that enter the queue
 - ... which allows you to use an array for implementation
 - ... If not, you can use linked lists or double linked lists
- Maintain two indices head and tail
 - Dequeue() increments head
 - Enqueue() increments tail
 - Use the value of tail - head to check emptiness
- You can use queue (C++) and Queue (Java)
QUEUE

• Useful for
 • implementing buffers
 • simulating waiting lists
 • shuffling cards
PRIORITY QUEUE

• Each element in a PQ has a priority value
• Three operations:
 • Insert(x, p) : inserts x into the PQ, whose priority is p
 • RemoveTop() : removes the element with the highest priority
 • Top() : returns the element with the highest priority
• All operations can be done quickly if implemented using a heap (if not use a sorted array)
• priority_queue (C++), PriorityQueue (Java)
• Useful for
 • Maintaining schedules / calendars
 • Simulating events
 • Sweepline geometric algorithms
Complete binary tree with the heap property:
- The value of a node \geq values of its children
- What is the difference between full vs complete?

The root node has the maximum value
- Constant-time top() operation

Inserting/removing a node can be done in $O(\log n)$ time without breaking the heap property
- May need rearrangement of some nodes
HEAP

• Start from the root, number the nodes 1, 2, . . . from left to right
• Given a node k easy to compute the indices of its parent and children
 • Parent node: floor($k/2$)
 • Children: $2k$, $2k + 1$
Heap – Inserting a Node

1. Make a new node in the last level, as far left as possible
 - If the last level is full, make a new one
2. If the new node breaks the heap property, swap with its parent node
 - The new node moves up the tree, which may introduce another conflict
Repeat 2 until all conflicts are resolved
Running time = tree height = $O(\log n)$
Heap – Deleting a Node

1. Remove the root, and bring the last node (rightmost node in the last level) to the root
2. If the root breaks the heap property, look at its children and swap it with the larger one
 - Swapping can introduce another conflict
3. Repeat 2 until all conflicts are resolved

Running time = $O(\log n)$
BINARY SEARCH TREE (BST)

• The idea behind is that each node has, at most, two children

• A binary tree with the following property: for each node v,
 • value of v ≥ values in v ‘s left subtree
 • value of v < values in v ‘s right subtree
BST

- Supports three operations
 - Insert(x) : inserts a node with value x
 - Delete(x) : deletes a node with value x, if there is any
 - Find(x) : returns the node with value x, if there is any

- Many extensions are possible
 - Count(x) : counts the number of nodes with value less than or equal to x
 - GetNext(x) : returns the smallest node with value $\geq x$
BST

- Simple implementation cannot guarantee efficiency
 - In worst case, tree height becomes n (which makes BST useless)
- Guaranteeing $O(\log n)$ running time per operation requires balancing of the tree (hard to implement).
 - For example AVL and Red-Black trees (We will skip the details of these balanced trees, but you should review it.).
 - What does balanced mean??
- Use the standard library implementations
 - set, map (C++)
 - TreeSet, TreeMap (Java)
bst

• Simple implementation cannot guarantee efficiency
 • In worst case, tree height becomes n (which makes BST useless)

• Guaranteeing $O(\log n)$ running time per operation requires balancing of the tree (hard to implement).
 • For example AVL and Red-Black trees (We will skip the details of these balanced trees, but you should be review it.).
 • What does balanced mean??=> The heights of the two child subtrees of any node differ by at most one.

• Use the standard library implementations
 • set, map (C++)
 • TreeSet, TreeMap (Java)
Question for you

• Why a binary tree is preferable to an array of values that has been sorted?
 • $O(\cdot)$ Finding a given key?
Question for you

• Why a binary tree is preferable to an array of values that has been sorted?
 • $O(\log n)$ to find a given key => traversing BST and binary search.
 • Problem is the adding of a new item.
Hash Tables

- A key is used as an index to locate the associated value.
 - Content-based retrieval, unlike position-based retrieval.
 - Hashing is the process of generating a key value.
 - An ideal algorithm must distribute evenly the hash values => the buckets will tend to fill up evenly = fast search.
- A hash bucket containing more than one value is known as a “collision”.
 - Open addressing => A simple rule to decide where to put a new item when the desired space is already occupied.
 - Chaining => We associate a linked list with each table location.
- Hash tables are excellent dictionary data structures.
Hash Function

• A function that takes a string and outputs a number
 • A good hash function has few collisions
 • i.e., If x ≠ y, H(x) ≠ H(y) with high probability

• An easy and powerful hash function is a polynomial mod some prime p.
 • Consider each letter as a number (ASCII value is fine)
 • $H(x_1 \ldots x_k) = x_1a^{k-1} + x_2a^{k-2} + \ldots + x_{k-1}a + x_k \pmod{p}$
Data Structures

- Data structures (Own Libraries).
 - Graph.
 - Lets talk about graphs later.
 - Union-Find Disjoint Sets
 - Segment tree.
Union-Find Structure

- Used to store disjoint sets
 - What is a disjoint set?
- Can support two types of operations efficiently
 - Find(x) : returns the “representative” of the set that x belongs
 - Union(x, y) : merges two sets that contain x and y
- Both operations can be done in (essentially) constant time
- Super-short implementation!
- Useful for problems involving partitioning.
 - Ex: keeping track of connected components.
 - Kruskal’s algorithm (minimum spanning tree).
Union-Find Structure

- Used to store disjoint sets
 - What is a disjoint set? => sets whose intersection is the empty set.
- Can support two types of operations efficiently
 - Find(x) : returns the “representative” of the set that x belongs
 - Union(x, y) : merges two sets that contain x and y
- Both operations can be done in (essentially) constant time
- Super-short implementation!
- Useful for problems involving partitioning.
 - Ex: keeping track of connected components.
 - Kruskal’s algorithm (minimum spanning tree).
Union-Find Structure

- Main idea: represent each set by a rooted tree
 - Every node maintains a link to its parent
 - A root node is the “representative” of the corresponding set
- Example: two sets \{x, y, z\} and \{a, b, c, d\}
Union-Find Structure

- **Find(x):** follow the links from x until a node points itself
 - This can take $O(n)$ time but we will make it faster
- **Union(x, y):** run Find(x) and Find(y) to find corresponding root nodes and direct one to the other.
- If we assume that the links are stored in $L[]$, then

```c
int Find(int x) {
    while(x != L[x]) x = L[x];
    return x;
}

void Union(int x, int y) {
    L[Find(x)] = Find(y);
}
```
Union-Find Structure

• In a bad case, the trees can become too deep
 • ... which slows down future operations
• Path compression makes the trees shallower every time Find() is called.
• We don’t care how a tree looks like as long as the root stays the same
 • After Find(x) returns the root, backtrack to x and reroute all the links to the root
Question for you

- How can you implement the operation isSameSet(i,j)?
Question for you

• How can you implement the operation isSameSet(i,j)?
 • simply calls findSet(i) and findSet(j) to check if both refer to the same representative.
Segment Tree

• DS to efficiently answer dynamic range queries.
 • Range Minimum Query (RMQ): finding the index of the minimum element in an array given a range: \([i..j]\).
 • Ex. RMQ(1, 3) = 2, RMQ(3, 4) = 4, RMQ(0, 0) = 0, RMQ(0, 1) = 1, and RMQ(0, 6) = 5.
 • Iterate takes \(O(n)\), let make it faster using a binary tree similar to heap, but usually not a complete binary tree (aka segment tree).

<table>
<thead>
<tr>
<th>Values</th>
<th>8</th>
<th>7</th>
<th>3</th>
<th>9</th>
<th>5</th>
<th>1</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array A =</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indices</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Segment Tree

- Binary tree.
- Each node is associated with some interval of the array.
- Each non-leaf node has two children whose associated intervals are disjoint.
- Each child’s interval has approximately half the size of the parent’s interval.
• Root => [0, N – 1] and for each segment [l,r] we split them into [l, (l + r) / 2] and [(l + r) / 2 + 1, r] until l = r.
Question for you

- What is the complexity of `built_segment_tree O(?)`?
- With segment tree ready, what is the complexity of answering an RMQ?
- Can you give the worst case? `RMQ(?,?)`
Question for you

- What is the complexity of built_segment_tree \(O(n) \)
 - There are total \(2n-1 \) nodes.
- With segment tree ready, what is the complexity of answering an RMQ \(\Rightarrow O(\log n) \) (2 root-to-leaf paths)
 - Ex RMQ(4,6) = blue line.
 - Ex RMQ(1,3) = red line.
 - Ex RMQ(3,4) = worst case \(\Rightarrow \) one path from \([0,6]\) to \([3,3]\) and another from \([0,6]\) to \([4,4]\).

![Segment Tree Diagram]

<table>
<thead>
<tr>
<th>idx</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>
Segment Tree

• If the array A is static, then use a Dynamic Programming solution that requires $O(n \log n)$ pre-processing and $O(1)$ per RMQ.
 • Segment tree becomes useful if array A is frequently updated.
 • Ex. Updating $A[5]$ takes $O(\log n)$ vs $O(n \log n)$ required by DP.
Fenwick Tree

- Full binary tree with at least \(n \) leaf nodes
 - We will use \(n = 8 \) for our example
- \(k \)th leaf node stores the value of item \(k \)
- Each internal node stores the sum of values of its children
 - e.g., Red node stores \(\text{item}[5] + \text{item}[6] \)
Summing Consecutive Values

• Main idea: choose the minimal set of nodes whose sum gives the desired value
 • at most 1 node is chosen at each level so that the total number of nodes we look at is $\log_2 n$
 • and this can be done in $O(\log n)$ time
Summing Consecutive Values

• Sum(7) = sum of the values of gold-colored nodes.
Summing Consecutive Values

- Sum(8) = sum of the values of gold-colored nodes.
Summing Consecutive Values

- $\text{Sum}(6) = \text{sum of the values of gold-colored nodes.}$
Summing Consecutive Values

- $\text{Sum}(3) = \text{sum of the values of gold-colored nodes.}$
Summing Consecutive Values

• Say we want to compute $\text{Sum}(k)$
 • Maintain a pointer P which initially points at leaf k
 • Climb the tree using the following procedure:
 • If P is pointing to a left child of some node:
 • Add the value of P
 • Set P to the parent node of P’s left neighbor
 • If P has no left neighbor, terminate
 • Otherwise:
 • Set P to the parent node of P

• Use an array to implement
Updating a Value

- Say we want to do Set(k, x) (set the value of leaf k as x)
 - 1. Start at leaf k, change its value to x
 - 2. Go to its parent, and recompute its value
 - 3. Repeat 2 until the root