Compiler Design

Lecture 4: Automatic Lexer Generation (EaC§2.4)

Christophe Dubach Winter 2023

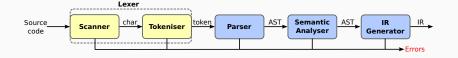
Timestamp: 2023/01/08 16:00:00

Table of contents

- Finite State Automata for Regular Expression
 - Finite State Automata
 - Non-determinism
- From Regular Expression to Generated Lexer
 - Regular Expression to NFA
 - From NFA to DFA

Final Remarks

Automatic Lexer Generation



- Starting from a collection of regular expressions (RE) we automatically generate a Lexer.
- · We use finite state automata (FSA) for the construction

Finite State Automata for Regular

Expression

Finite State Automata for Regular Expression

Finite State Automata

Definition: finite state automata

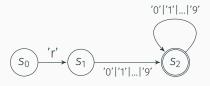
A finite state automata is defined by:

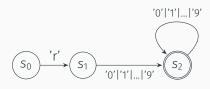
- S, a finite set of states
- \cdot Σ , an alphabet, or character set used by the recogniser
- $\delta(s,c)$, a transition function (takes a state and a character as input, and returns new state)
- s_0 , the initial or start state
- S_F , a set of final states (a stream of characters is accepted iif the automata ends up in a final state)

Finite State Automata for Regular Expression

Example: register namesregister ::= 'r' ('0'|'1'|...|'9') ('0'|'1'|...|'9')*

The RE (Regular Expression) corresponds to a recogniser (or finite state automata):





Finite State Automata (FSA) operation:

- Start in state s₀ and take transitions on each input character
- The FSA accepts a word \mathbf{x} iff \mathbf{x} leaves it in a final state (s_2)

Examples:

- r17 takes it through s_0, s_1, s_2 and accepts
- **r** takes it through s_0, s_1 and fails
- \cdot a starts in s_0 and leads straight to failure

Table encoding and skeleton code

To be useful a recogniser must be turned into code

Table encoding RE

	δ	'r'	'0' '1' '9'	others
	S ₀	S ₁	error	error
ſ	S ₁	error	S ₂	error
Ī	S ₂	error	S ₂	error

Skeleton recogniser

```
c = next character state = s_0 while (c \neq EOF) state = \delta(state, c) c = next character if (state final) return success else return error
```

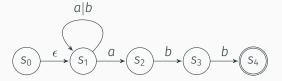
Finite State Automata for Regular Expression

Non-determinism

Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might be hard to construct directly.

What about an RE such as (a|b)*abb?



This is a little different:

- s_0 has a transition on ϵ , which can be followed without consuming an input character
- s₁ has two transitions on a
- This is a Non-determinisitic Finite Automaton (NFA)

Non-deterministic vs deterministic finite automata

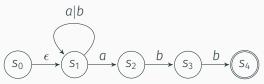
Deterministic finite state automata (DFA):

- All edges leaving the same node have distinct labels
- There is no ϵ transition

Non-deterministic finite state automata (NFA):

- Can have multiple edges with same label leaving from the same node
- Can have ϵ transition
- This means we might have to backtrack

Backtracking example for a NFA: input = aabb



From Regular Expression to

Generated Lexer

Automatic Lexer Generation

It is possible to systematically generate a lexer for any regular expression.

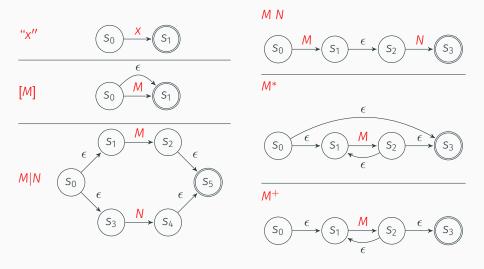
This can be done in three steps:

- 1. regular expression (RE) \rightarrow non-deterministic finite automata (NFA)
- 2. NFA \rightarrow deterministic finite automata (DFA)
- 3. DFA \rightarrow generated lexer

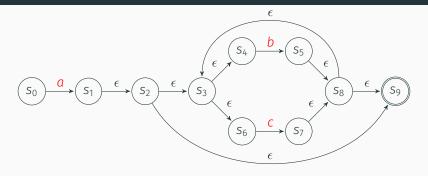
From Regular Expression to Generated Lexer

Regular Expression to NFA

1st step: RE \rightarrow NFA (Ken Thompson, CACM, 1968)



Example: $a(b|c)^*$



(automatic minimization possible)

From Regular Expression to Generated Lexer

From NFA to DFA

Step 2: NFA \rightarrow DFA

Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we want to construct a DFA from the NFA.

The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (*n*), the number of possible sets of states (*i.e.* powerset) is also finite:
 - · maximum 2ⁿ (hint: set encoded as binary vectors)

Assuming the state of the NFA are labelled s_i and the states of the DFA we are building are labelled q_i .

We have two key functions:

- reachable(s_i , α) returns the set of states reachable from s_i by consuming character α
- ϵ -closure(s_i) returns the set of states reachable from s_i by ϵ (e.g. without consuming a character)

The Subset Construction algorithm (Fixed point iteration)

```
q_0 = \epsilon\text{-}closure(s_0); \ Q = \{q_0\}; \ \text{add} \ q_0 \ \text{to WorkList} while (WorkList not empty) remove q from WorkList for each \alpha \in \Sigma subset = \epsilon\text{-}closure(reachable(q,\alpha)) \delta(q,\alpha) = subset if (subset \notin Q) then add subset to Q and to WorkList
```

The algorithm (in English)

- Start from start state s_0 of the NFA, compute its ϵ -closure
- Build subset from all states reachable from q_0 for character α
- Add this subset to the transition table/function δ
- · If the subset has not been seen before, add it to the worklist
- · Iterate until no new subset are created

Informal proof of termination

- Q contains no duplicates (test before adding)
- · similarly we will never add twice the same subset to the worklist
- bounded number of states; maximum 2^n subsets, where n is number of state in NFA

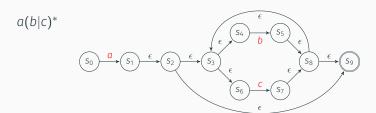
\Rightarrow the loop halts

End result

- · S contains all the reachable NFA states
- It tries each symbol in each s_i
- · It builds every possible NFA configuration

\Rightarrow O and δ form the DFA

$\mathsf{NFA} \to \mathsf{DFA}$



		ϵ -clos	sure(reachable($q, \alpha))$
	NFA states	a	b	С
90	S ₀	<i>q</i> ₁	none	none
91	$S_1, S_2, S_3,$	none	q ₂	<i>q</i> ₃
	S ₄ , S ₆ , S ₉			
q_2	S ₅ , S ₈ , S ₉ ,	none	9 ₂	<i>q</i> ₃
	S ₃ , S ₄ , S ₆			
q ₃	S ₇ , S ₈ , S ₉ , S ₃ , S ₄ , S ₆	none	q ₂	<i>q</i> ₃
	S ₃ , S ₄ , S ₆			

Resulting DFA for $a(b|c)^*$

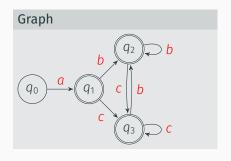


Table encoding					
	a	b	С		
90	91	error	error		
91	error	q ₂	q_3		
92	error	92	9 3		
q ₃	error	92	q ₃		

- · Smaller than the NFA
- · All transitions are deterministic (no need to backtrack!)
- Could be even smaller (see EaC§2.4.4 Hopcroft's Algorithm for minimal DFA)
- · Can generate the lexer using skeleton recogniser seen earlier

Final Remarks

What can be so hard?

Language design choice can complicate lexing:

- PL/I does not have reserved words (keywords):
 if (cond) then then = else; else else = then
 where are the variables?
- In Fortran & Algol68 blanks (whitespaces) are insignificant:
 do 10 i = 1,25 ≅ do 10 i = 1,25 (loop, 10 is statement label)
 do 10 i = 1,25 ≅ do10i = 1,25 (assignment)
- In C,C++,Java string constants can have special characters: newline, tab, quote, comment delimiters, . . .

Good language design makes lexing simpler:

e.g. identifier cannot start with a digit in most modern languages
 ⇒ when we see a digit, it can only be the start of a number!

What does a C lexer sees?

```
u24; // identifier u24
24; // signed number 24
24u; // unsigned number 24
```

Building Lexer

The important point:

- · All this technology lets us automate lexer construction
- · Implementer writes down regular expressions
- · Lexer generator builds NFA, DFA and then writes out code
- This reliable process produces fast and robust lexers

For most modern language features, this works:

- As a language designer you should think twice before introducing a feature that defeats a DFA-based lexer
- The ones we have seen (e.g. insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting

Lexer generators input example

```
https://www.cs.mcgill.ca/~cs520/2022/resources/ANSI-C-grammar-l.html
```

```
("["|"<:") { count(); return('['); }
```

Wait a minute, what's going on here??

Next lecture

Parsing:

- · Context-Free Grammars
- Dealing with ambiguity
- · Recursive descent parser