Compiler Design

Lecture 19: Instruction Selection via Tree-pattern matching

Christophe Dubach Winter 2023

(EaC-11.3)

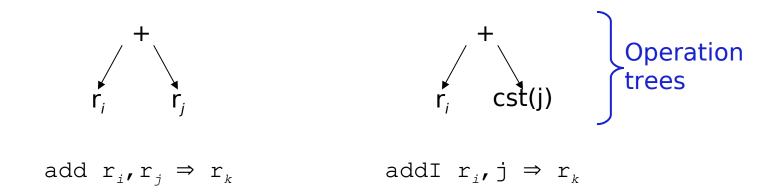
Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.

Many compilers use tree-structured IRs

- Abstract syntax trees generated in the parser
- Trees or DAGs for expressions

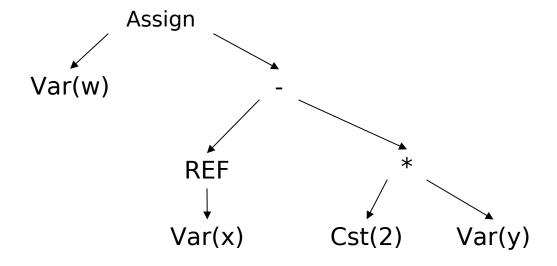
These systems might well use trees to represent target ISA

Consider the add operators



What if we could match these "pattern trees" against IR tree?

AST for $w \leftarrow (*x) - 2 * y$



Assign

Var(w)

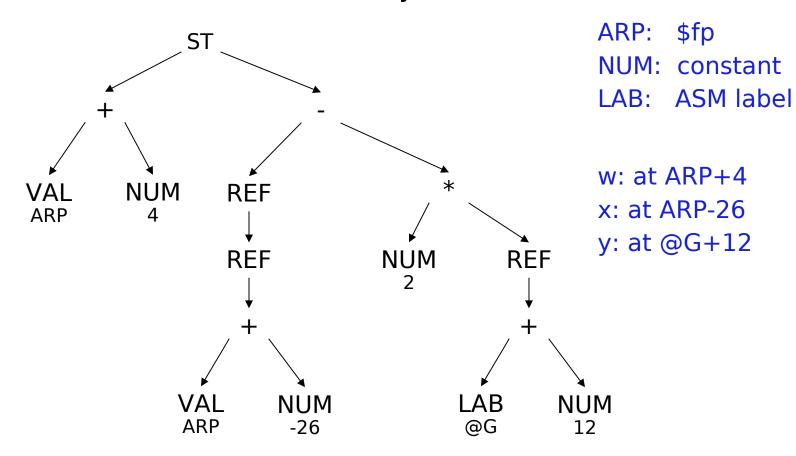
REF

Var(x)

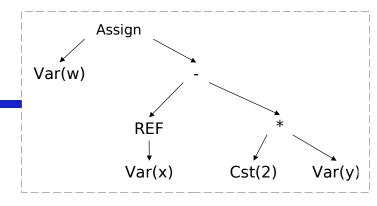
Cst(2)

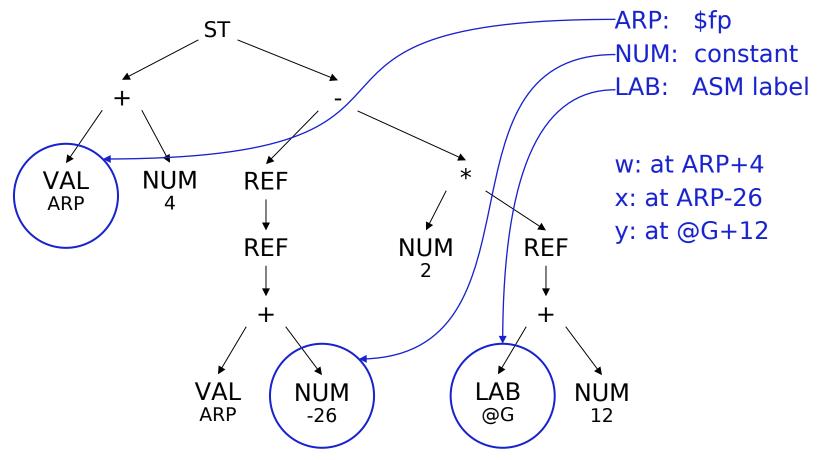
Var(y)

Low-level AST for $w \leftarrow (*x) - 2 * y$



Low-level AST for $w \leftarrow (*x) - 2 * y$



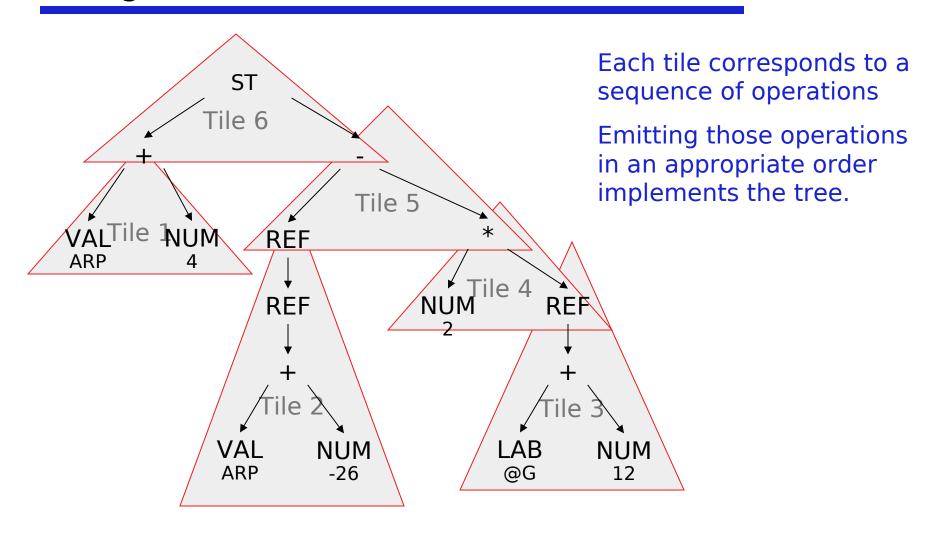


ARP = Activation Record Pointer = **frame pointer**

Tree-pattern matching

Goal is to "tile" AST with operation trees

- A tiling is collection of <ast,op > pairs
 - → ast is a node in the low-level AST
 - → op is an operation tree
 - \rightarrow <ast, op > means that op could implement the subtree at ast
- A tiling 'implements" an AST if it covers every node in the AST and the overlap between any two trees is limited to a single node
 - \rightarrow <ast, op> \in tiling means AST is also covered by a leaf in another operation tree in the tiling, unless it is the root
 - → Where two operation trees meet, they must be compatible (expect the value in the same location)



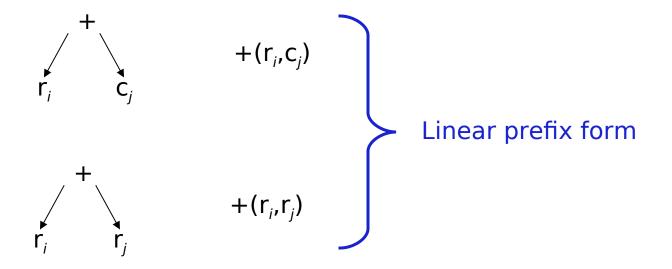
Generating Code

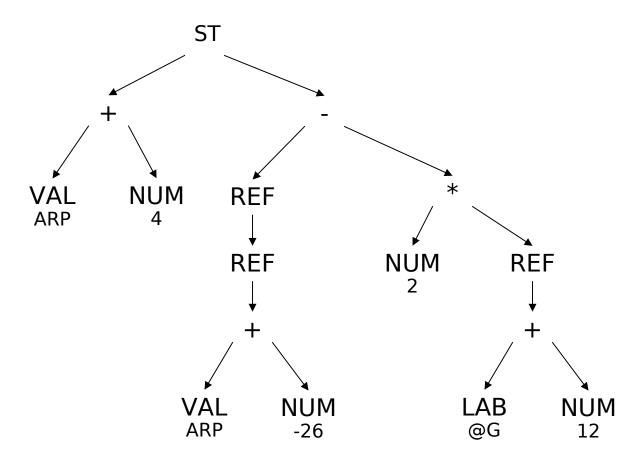
Given a tiled tree

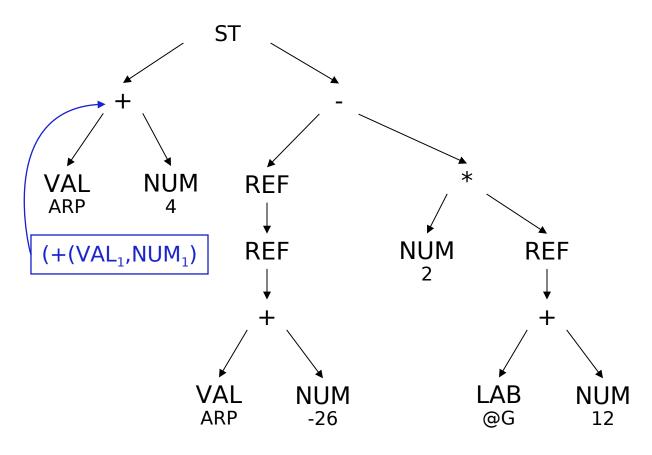
- Postorder treewalk, with node-dependent order for children
 - → Right child of ← before its left child
 - → Might impose "most demanding first" rule ...
- Emit code sequence for tiles, in order
- Tie boundaries together with register names
 - → Tile 6 uses registers produced by tiles 1 & 5
 - → Tile 6 emits "store $r_{tile 5} \Rightarrow r_{tile 1}$ "
 - → Can incorporate a "real" register allocator or just use virtual registers

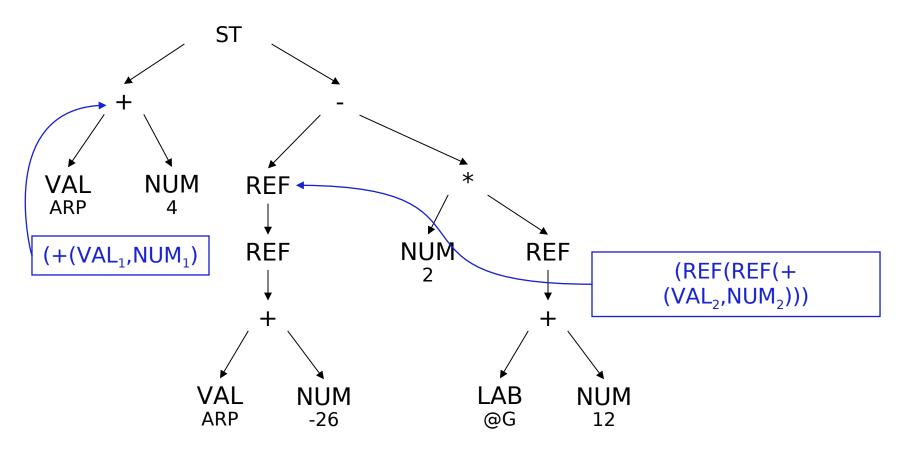
Finding the matches to tile the tree

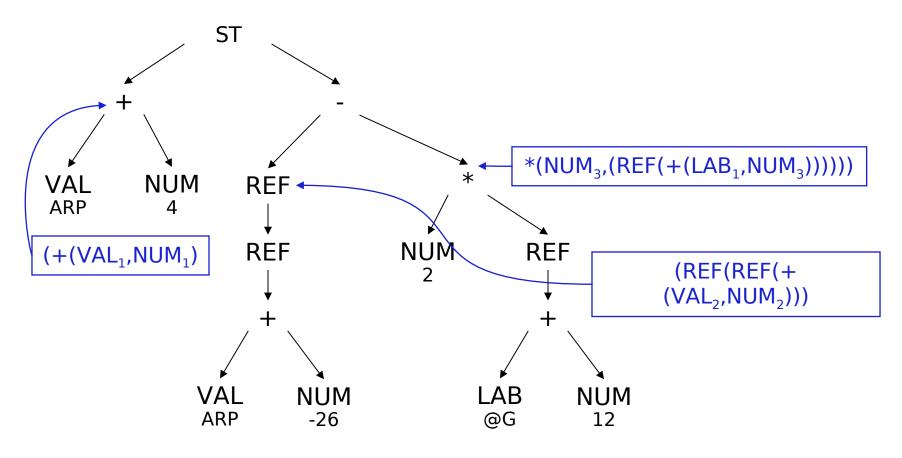
- Compiler writer connects operation trees to AST subtrees
 - → Encode tree syntax, in linear form
 - → Provides a set of rewrite rules
 - → Associated with each is a code template

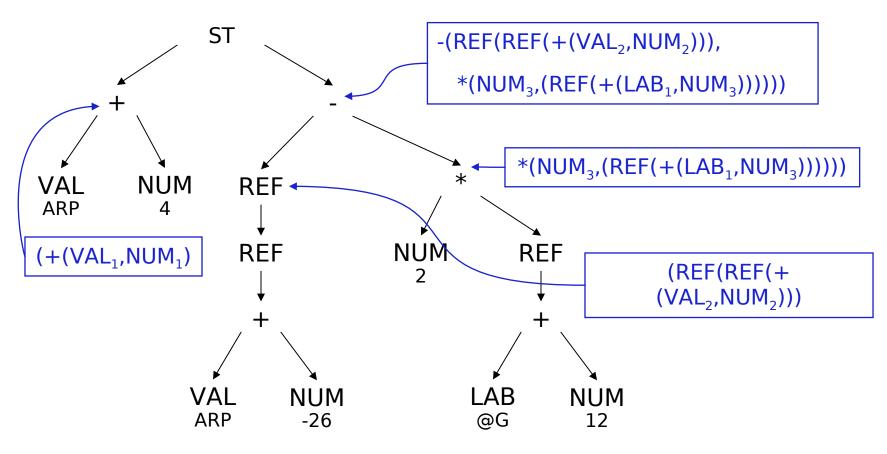




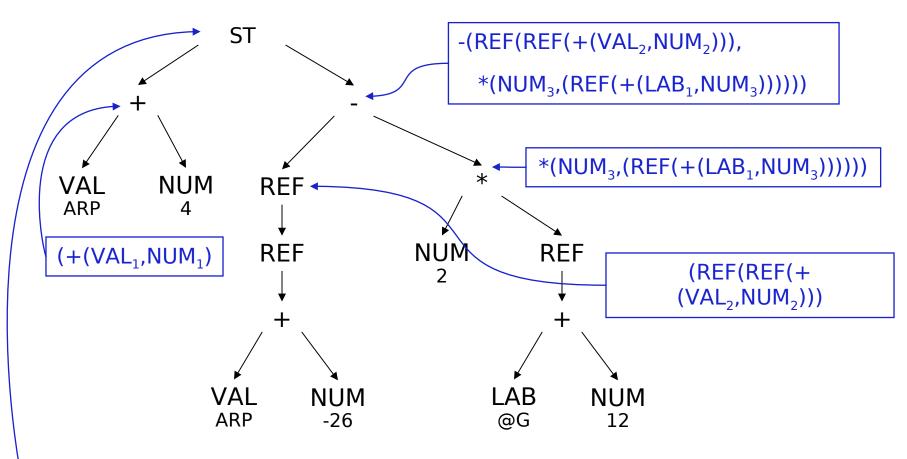








To describe these trees, we need a concise notation



 $ST(+(VAL_1,NUM_1), -(REF(REF(+(VAL_2,NUM_2))), *(NUM_3,(REF(+(LAB_1,NUM_3))))))$

Rewrite rules: LL Integer AST into ILOC

	Rule	Cost	Template
1	Goal → Assign	0	
2	Assign \rightarrow ST(Reg ₁ ,Reg ₂)	1	store $r_2 \Rightarrow r_1$
3	Assign \rightarrow ST(+(Reg ₁ ,Reg ₂),Reg ₃)	1	storeAO $r_3 \Rightarrow r_1, r_2$
4	Assign \rightarrow ST(+(Reg ₁ ,NUM ₂),Reg ₃)	1	storeAI $r_3 \Rightarrow r_1, n_2$
5	Assign \rightarrow ST(+(NUM ₁ ,Reg ₂),Reg ₃)	1	storeAI $r_3 \Rightarrow r_2, n_1$
6	$Reg \rightarrow LAB_1$	1	loadI $l_1 \Rightarrow r_{new}$
7	$Reg \rightarrow VAL_1$	0	
8	$Reg \rightarrow NUM_1$	1	loadI $n_1 \Rightarrow r_{new}$
9	$Reg \rightarrow REF(Reg_1)$	1	load $r_1 \Rightarrow r_{new}$
10	$Reg \rightarrow REF(+ (Reg_1, Reg_2))$	1	loadAO $r_1, r_2 \Rightarrow r_{new}$
11	$Reg \rightarrow REF(+ (Reg_1, NUM_2))$	1	loadAI $r_1, n_2 \Rightarrow r_{new}$
12	$Reg \rightarrow REF(+ (NUM_1, Reg_2))$	1	loadAI $r_2, n_1 \Rightarrow r_{new}$

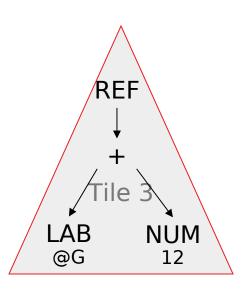
Rewrite rules: LL Integer AST into ILOC (part II)

	Rule	Cost	Template
13	$Reg \rightarrow REF(+ (Reg_1, Lab_2))$	1	loadAI $r_1, l_2 \Rightarrow r_{new}$
14	$Reg \rightarrow REF(+ (Lab_1, Reg_2))$	1	loadAI $r_2, l_1 \Rightarrow r_{new}$
15	$Reg \rightarrow + (Reg_1, Reg_2)$	1	addI $r_1, r_2 \Rightarrow r_{new}$
16	$Reg \rightarrow + (Reg_1, NUM_2)$	1	addI $r_1, n_2 \Rightarrow r_{new}$
17	$Reg \rightarrow + (NUM_1, Reg_2)$	1	addI $r_2, n_1 \Rightarrow r_{new}$
18	$Reg \rightarrow + (Reg_1, Lab_2)$	1	addI $r_1, l_2 \Rightarrow r_{new}$
19	$Reg \rightarrow + (Lab_1, Reg_2)$	1	addI $r_2, l_1 \Rightarrow r_{new}$
20	$Reg \rightarrow - (NUM_1, Reg_2)$	1	rsubI $r_2, n_1 \Rightarrow r_{new}$

A real set of rules would cover more than signed integers ...

Need an algorithm to AST subtrees with the rules

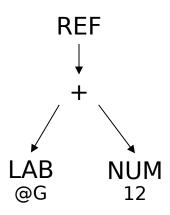
Consider tile 3 in our example



Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example

What rules match tile 3?



Need an algorithm to AST subtrees with the rules

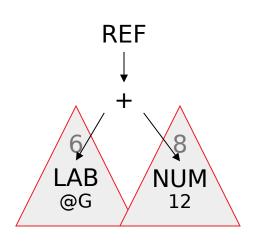
Consider tile 3 in our example

REF + + LAB NUM @G 12 What rules match tile 3?

6: Reg → LAB₁ tiles the lower left node

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example



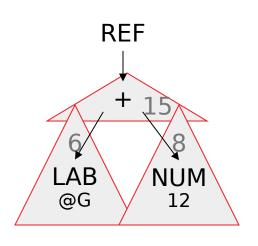
What rules match tile 3?

6: Reg → LAB₁ tiles the lower left node

8: Reg → NUM₁ tiles the bottom right node

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example



What rules match tile 3?

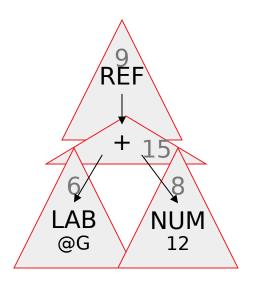
6: Reg → LAB₁ tiles the lower left node

8: Reg → NUM₁ tiles the bottom right node

15: $Reg \rightarrow + (Reg_1, Reg_2)$ tiles the + node

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example



What rules match tile 3?

6: Reg → LAB₁ tiles the lower left node

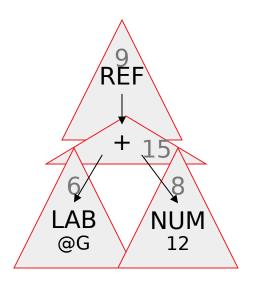
8: Reg → NUM₁ tiles the bottom right node

15: $Reg \rightarrow + (Reg_1, Reg_2)$ tiles the + node

9: Reg → REF(Reg₁) tiles the REF

Need an algorithm to AST subtrees with the rules

Consider tile 3 in our example



What rules match tile 3?

6: Reg → LAB₁ tiles the lower left node

8: Reg → NUM₁ tiles the bottom right node

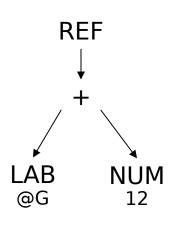
15: $Reg \rightarrow + (Reg_1, Reg_2)$ tiles the + node

9: Reg → REF(Reg₁) tiles the REF

We denote this match as <6,8,15,9> Of course, it implies <8,6,15,9> Both have a cost of 4

Finding matches

Many Sequences Match Our Subtree



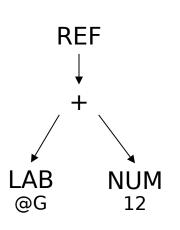
Cost	Sequences			
2	6,11	8,14		
3	6,8,10	8,6,10	6,16,9	8,19,9
4	6,8,15,9	8,6,15,9		

In general, we want the low cost sequence

- Each unit of cost is an operation (1 cycle)
- We should favour short sequences

Finding matches

Low Cost Matches



Sequences with Cost of 2				
6: Reg → LAB ₁	loadI @G \Rightarrow r_{i}			
11: $Reg \rightarrow REF(+(Reg_1, NUM_2))$	loadAI r_i , 12 \Rightarrow r_j			
8: Reg → NUM ₁	loadI 12 $\Rightarrow r_i$			
14: $Reg \rightarrow REF(+(LAB_1, Reg_2))$	loadAI r_{i} , @G \Rightarrow r_{j}			

These two are equivalent in cost

6,11 might be better, because @G may be longer than the immediate field

Still need an algorithm

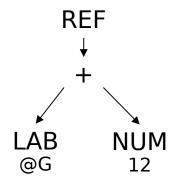
- Assume each rule implements one operator
- Assume operator takes 0, 1, or 2 operands Now, ...

```
Tile(n)
  Label(n) \leftarrow \emptyset
  if n has two children then
     Tile (left child of n)
     Tile (right child of n)
                                                          Match binary nodes
     for each rule r that implements n
                                                          against binary rules
        if (left(r) \in Label(left(n))) and
          (right(r) \in Label(right(n)))
         then Label(n) \leftarrow Label(n) \cup { r }
 else if n has one child
     Tile(child of n)
                                                          Match unary nodes
     for each rule r that implements n
                                                          against unary rules
        if (left(r) \in Label(child(n)))
          then Label(n) \leftarrow Label(n) \cup { r}
 else /* n is a leaf */
                                                          Handle leaves with
     Label(n) \leftarrow {all rules that implement n}
                                                           lookup in rule table
```

Notes:

- · left and right refer to the children of the AST node or left/right-hand sides of a rule
- implements: e.g. rule 9 implements REF

```
Tile(n)
  Label(n) \leftarrow \emptyset
  if n has two children then
     Tile (left child of n)
     Tile (right child of n)
     for each rule r that implements n
        if (left(r) \in Label(left(n))) and
          (right(r) \in Label(right(n)))
          then Label(n) \leftarrow Label(n) \cup { r }
 else if n has one child
     Tile(child of n)
     for each rule r that implements n
        if (left(r) \in Label(child(n)))
          then Label(n) \leftarrow Label(n) \cup { r }
 else /* n is a leaf */
     Label(n) \leftarrow {all rules that implement n }
```



	Rule	\$	Template
1	Goal → Assign	0	
2	$Assign \to ST(Reg_1, Reg_2)$	1	store $r_2 \Rightarrow r_1$
3	$Assign \rightarrow ST(+(Reg_1,Reg_2),Reg_3)$	1	storeAO $r_3 \Rightarrow r_1, r_2$
4	Assign \rightarrow ST(+ (Reg ₁ ,NUM ₂),Reg ₃)	1	storeAI $r_3 \Rightarrow r_1, n_2$
5	Assign \rightarrow ST(+ (NUM ₁ ,Reg ₂),Reg ₃)	1	storeAI $r_3 \Rightarrow r_2, n_1$
6	$Reg \rightarrow LAB_1$	1	loadI $l_1 \Rightarrow r_{new}$
7	$Reg \rightarrow VAL_1$	0	
8	$Reg \rightarrow NUM_1$	1	loadI $n_1 \Rightarrow r_{new}$
9	$Reg \rightarrow REF(Reg_1)$	1	load $r_1 \Rightarrow r_{new}$
10	$Reg \rightarrow REF(+ (Reg_1, Reg_2))$	1	loadAO $r_1, r_2 \Rightarrow r_{new}$
11	$Reg \rightarrow REF(+ (Reg_1,NUM_2))$	1	loadAI $r_1, n_2 \Rightarrow r_{new}$
12	$Reg \rightarrow REF(+ (NUM_1, Reg_2))$	1	loadAI $r_2, n_1 \Rightarrow r_{new}$
13	$Reg \to REF(+ (Reg_1, Lab_2))$	1	loadAI $r_1, l_2 \Rightarrow r_{new}$
14	$Reg \rightarrow REF(+ (Lab_1, Reg_2))$	1	loadAI $r_2, l_1 \Rightarrow r_{new}$
15	$Reg \rightarrow + (Reg_1, Reg_2)$	1	addI $r_1, r_2 \Rightarrow r_{new}$
16	$Reg \rightarrow + (Reg_1, NUM_2)$	1	addI $r_1, n_2 \Rightarrow r_{new}$
17	$Reg \rightarrow + (NUM_1, Reg_2)$	1	addI $r_2, n_1 \Rightarrow r_{new}$
18	$Reg \rightarrow + (Reg_1, Lab_2)$	1	addI $r_1, l_2 \Rightarrow r_{new}$
19	$Reg \rightarrow + (Lab_1, Reg_2)$	1	addI $r_2, l_1 \Rightarrow r_{new}$
20	$Reg \rightarrow - (NUM_1, Reg_2)$	1	rsubI $r_2, n_1 \Rightarrow r_{new}$

Label(Ref) = Label(+) = Label(Lab) = Label(Num) =

```
Tile(n)
  Label(n) \leftarrow \emptyset
  if n has two children then
     Tile (left child of n)
     Tile (right child of n)
     for each rule r that implements n
        if (left(r) \in Label(left(n))) and
          (right(r) \in Label(right(n)))
          then Label(n) \leftarrow Label(n) \cup { r }
 else if n has one child
     Tile(child of n)
     for each rule r that implements n
        if (left(r) \in Label(child(n)))
          then Label(n) \leftarrow Label(n) \cup { r }
 else /* n is a leaf */
     Label(n) \leftarrow {all rules that implement n }
```

This algorithm

- Finds all matches in rule set
- Labels node n with that set
- Can keep lowest cost match at each point for each type of nodes
- → Dynamic programming
- Spends its time in the two matching loops

The Big Picture

- Tree patterns represent AST and ASM
- Can use matching algorithms to find low-cost tiling of AST
- Can turn a tiling into code using templates for matched rules
- Techniques (& tools) exist to do this efficiently

Hand-coded matcher like <i>Tile</i>	Avoids large sparse table Lots of work
Encode matching as an automaton	O(1) cost per node Tools like BURS (bottom-up rewriting system), BURG
Use parsing techniques	Uses known technology Very ambiguous grammars
Linearize tree into string and use string searching algorithm (Aho-Corasick)	Finds all matches

Next Lecture

Object Oriented Programming Support