
COMP 520 Winter 2020 Parsing (1)

Parsing
COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca

MWF 10:30-11:30, TR 1100
http://www.cs.mcgill.ca/~cs520/2020/

COMP 520 Winter 2020 Parsing (2)

Announcements (Monday, January 13th)
Milestones

• Continue picking your group (3 recommended). Who doesn’t have a group?

• Learn flex/bison or SableCC – Assignment 1 out today!

Midterm

• Date: Tuesday, February 25 from 18:00-19:30

• Let me know if there are any conflicts!

Office Hours (MC 226/234)

• Monday/Wednesday: Alex - 11:30-12:30

• Tuesday/Thursday: Jason - 14:45-15:45

• Friday: Adrian (MC 235) - 12:00-13:00

• If this does not work for you then please do send a message via email, Facebook group, etc.

COMP 520 Winter 2020 Parsing (3)

Readings
Crafting a Compiler (recommended)

• Chapter 4.1 to 4.4

• Chapter 5.1 to 5.2

• Chapter 6.1, 6.2 and 6.4

Crafting a Compiler (optional)

• Chapter 4.5

• Chapter 5.3 to 5.9

• Chapter 6.3 and 6.5

Modern Compiler Implementation in Java

• Chapter 3

Tool Documentation (links on http://www.cs.mcgill.ca/~cs520/2020/)

• flex, bison, and/or SableCC

COMP 520 Winter 2020 Parsing (4)

Parsing
The parsing phase of a compiler

• Is the second phase of a compiler;

• Is also called syntactic analysis;

• Takes a string of tokens generated by the scanner as input; and

• Builds a parse tree using a context-free grammar.

Internally

• It corresponds to a deterministic pushdown automaton;

• Plus some glue code to make it work; and

• Can be generated by bison (or yacc), CUP, ANTLR, SableCC, Beaver, JavaCC, . . .

COMP 520 Winter 2020 Parsing (5)

Parsing
Context-Free Languages

Other Representations

Bison

SableCC (Optional)

Top-Down (LL) Parsers

Bottom-Up (LR) Parsers

Summary

COMP 520 Winter 2020 Parsing (6)

Pushdown Automata
Regular languages (equivalently regexps/DFAs/NFAs) are not sufficient powerful to recognize some
aspects of programming languages. A pushdown automaton is a more powerful tool that

• Is a FSM + an unbounded stack;

• The stack can be viewed/manipulated by transitions;

• Is used to recognize a context-free language;

• i.e. A larger set of languages to DFAs/NFAs.

Example: How can we recognize the language of matching parentheses using a PDA? (where the
number of parentheses is unbounded)

{(n)n | n ≥ 1} = (), (()), ((())), . . .

Key idea: We can use the stack for matching!

COMP 520 Winter 2020 Parsing (7)

Context-Free Languages
A context-free language is a language derived from a context-free grammar

Context-Free Grammars

A context-free grammar is a 4-tuple (V,Σ, R, S), where

• V : set of variables (or non-terminals)

• Σ: set of terminals such that V ∩ Σ = ∅

• R: set of rules of the form A→ γ where A is a variable, and γ is a sequence of terminals and
variables

• S ∈ V : start variable

COMP 520 Winter 2020 Parsing (8)

Example Context-Free Grammar
A context-free grammar specifies rules of the form A→ γ where A is a variable, and γ contains a
sequence of terminals/non-terminals.

Simple CFG Alternatively

A→ a B A→ a B | ε

A→ ε B→ b B | c

B→ b B

B→ c

In both cases we specify S = A

Language

This CFG generates either (a) the empty string; or (b) strings that

• Start with exactly 1 “a”; followed by zero or more “b”s; and end with 1 “c”.

• i.e. ε, ac, abc, abbc, abbbc, ...

Can you write this grammar as a regular expression?

COMP 520 Winter 2020 Parsing (9)

Context-Free Grammars
In the language hierarchy, context-free grammars

• Are stronger than regular expressions;

• Generate context-free languages; and

• Are able to express some recursively-defined constructs not possible in regular expressions.

Example: Returning to the previous language for which we defined a PDA
{(n)n | n ≥ 1} = (), (()), ((())), . . .

The solution using a CFG is simple
E→ (E) | ()

COMP 520 Winter 2020 Parsing (10)

Chomsky Hierarchy

https://en.wikipedia.org/wiki/Chomsky_hierarchy#/media/File:Chomsky-hierarchy.svg

COMP 520 Winter 2020 Parsing (11)

Notes on Context-Free Languages
• It is undecidable if the language described by a context-free grammar is regular (Greibach’s

theorem);

• There exists languages that cannot be expressed by context-free grammars:
{anbncn | n ≥ 1}

• In parser construction we use a proper subset of context-free languages, namely deterministic
context-free languages; and

• Such languages can be described by a deterministic pushdown automaton (same idea as DFA
vs NFA, only one transition possible from a given state for an input/stack pair).

– DPDAs cannot recognize all context-free languages!

– Example: Even length palindrome E→ a E a | b E b | ε. How do we know that matching
should start?

COMP 520 Winter 2020 Parsing (12)

Derivations
Given a context-free grammar, we can derive strings by repeatedly replacing variables with the RHS
of a rule until only terminals remain (i.e. for a rewrite rule A→ γ, we replace A by γ). We begin with
the start symbol.

Example

Derive the string “abc” using the following grammar and start symbol A

A→ A A | B | a

B→ b B | c

A

A A

A B

a B

a b B

a b c

A string is in the CFL if there exists a derivation using the CFG.

COMP 520 Winter 2020 Parsing (13)

Derivations
Rightmost derivations and leftmost derivations expand the rightmost and leftmost non-terminals
respectively until only terminals remain.

Example

Derive the string “abc” using the following grammar and start symbol A

A→ A A | B | a

B→ b B | c

Rightmost Leftmost

A A

A A A A

A B a A

A b B a B

A b c a b B

a b c a b c

COMP 520 Winter 2020 Parsing (14)

Example Programming Language
CFG rules

Prog→ Dcls Stmts

Dcls→ Dcl Dcls | ε

Dcl→ "int" ident | "float" ident

Stmts→ Stmt Stmts | ε

Stmt→ ident "=" Val

Val→ num | ident

Corresponding Program

int a

float b

b = a

Leftmost derivation

Prog

Dcls Stmts

Dcl Dcls Stmts

"int" ident Dcls Stmts

"int" ident Dcl Dcls Stmts

"int" ident "float" ident Dcls Stmts

"int" ident "float" ident Stmts

"int" ident "float" ident Stmt Stmts

"int" ident "float" ident ident "=" V al Stmts

"int" ident "float" ident ident "=" ident Stmts

"int" ident "float" ident ident "=" ident

("int" a "float" b b "=" a)

COMP 520 Winter 2020 Parsing (15)

Announcements (Wednesday, January 15th)
Milestones

• Continue picking your group (3 recommended). Who doesn’t have a group?

• Learn flex/bison or SableCC

Assignment 1

• Any questions?

– Modulo, else-if, dangling else, ...

• Due: Friday, January 24th 11:59 PM

Office Hours (MC 226/234)

• Monday/Wednesday: Alex - 11:30-12:30

• Tuesday/Thursday: Jason - 14:45-15:45

• Friday: Adrian (MC 235) - 12:00-13:00

• If this does not work for you then please do send a message via email, Facebook group, etc.

COMP 520 Winter 2020 Parsing (16)

Reference Compiler (MiniLang)
Accessing

• ssh <socs_username>@teaching.cs.mcgill.ca

• ~cs520/minic {keyword} < {file}

• If you find errors in the reference compiler, up to 5 bonus points on the assignment

Keywords for the first assignment

• scan: run scanner only, OK/Error

• tokens: produce the list of tokens for the program

• parse: run scanner+parser, OK/Error

COMP 520 Winter 2020 Parsing (17)

Parse Tree
Given an input program P , the execution of a parser generates a parse tree (also called a concrete
syntax tree) that

• Represents the syntax structure of a string; and

• Is built exactly from the rules given the context-free grammar.

Nodes in the tree

• Internal (parent) nodes represent the LHS of a rewrite rule;

• Child nodes represent the RHS of a rewrite rule.

The fringe (or leaves) or the tree form the sentence you derived.

Relationship with derivations

As the sentence is derived, the tree is formed

• Both rightmost and leftmost derivations give the same set of possible parse trees; but

• The order of forming nodes in the tree differs.

COMP 520 Winter 2020 Parsing (18)

Example
Grammar

S→ S ; S E→ id

S→ id := E E→ num

E→ E + E

E→ (S , E)

Derive the following program using the above grammar

a := 7;

b := c + (d := 5 + 6, d)

Rightmost derivation

S

S; S

S; id := E

S; id := E + E

S; id := E + (S, E)

S; id := E + (S, id)

S; id := E + (id := E, id)

S; id := E + (id := E + E, id)

S; id := E + (id := E + num, id)

S; id := E + (id := num + num, id)

S; id := id + (id := num + num, id)

id := E; id := id + (id := num + num, id)

id := num; id := id + (id := num + num, id)

COMP 520 Winter 2020 Parsing (19)

Example
Rightmost derivation

S

S; S

S; id := E

S; id := E + E

S; id := E + (S, E)

S; id := E + (S, id)

S; id := E + (id := E, id)

S; id := E + (id := E + E, id)

S; id := E + (id := E + num, id)

S; id := E + (id := num + num, id)

S; id := id + (id := num + num, id)

id := E; id := id + (id := num + num, id)

id := num; id := id + (id := num + num, id)

����

HHHH

�
�
@
@

�
�
@
@

@
@

�
�

�
���

@
@

H
HHH

�
�
@
@

�
�
@
@

��
��

S

S

E E

S

E E

S E

E

E E

id

num

id

id

id id

num

;

:= :=

+

,()

:=

+

num

COMP 520 Winter 2020 Parsing (20)

Ambiguous Grammars
A grammar is ambiguous if a sentence has more than one parse tree (or more than one
rightmost/leftmost derivation)

id := id + id + id

�
��
Q
QQ

�
��
Q
QQ

Q
QQ

�
��

�
��QQQ

�
��

Q
QQ

�
��
Q
QQ

S

id := E

E + E

E + E id

id id

S

id := E

E + E

id E + E

id id

The above is harmless, but consider operations whose order matters

id := id - id - id

id := id + id * id

Clearly, we need to consider associativity and precedence when designing grammars.

COMP 520 Winter 2020 Parsing (21)

Ambiguous Grammars
Ambiguous grammars can have severe consequences parsing for programming languages

• Not all context-free languages have an unambiguous grammar (COMP 330);

• Deterministic pushdown automata that are used by parsers require an unambiguous grammar.

We must therefore carefully design our languages and grammar to avoid ambiguity.

How can we make grammars unambiguous?

Assuming our language has rules to handle ambiguities we can

• Manually rewrite the grammar to be unambiguous; or

• Use precedence rules to resolve ambiguities.

For this class you should understand how to identify and resolve ambiguities using both approaches.

COMP 520 Winter 2020 Parsing (22)

Rewriting an Ambiguous Grammar
Given the following expression grammar, what ambiguities exist?

E→ E + E E→ E ∗ E E→ id

E→ E − E E→ E / E E→ num

E→ (E)

Ambiguities

Ambiguities exist when there is more than one way of parsing a given expression (there exists more
than one unique parse tree)

• Grouping of operands between operations of different precedence (BEDMAS); or

• Grouping of operands between operations of the same precedence.

COMP 520 Winter 2020 Parsing (23)

Rewriting an Ambiguous Grammar
Given an ambiguous grammar for expressions (refer to the previous slides for details)

E→ E + E E→ E ∗ E E→ id

E→ E − E E→ E / E E→ num

E→ (E)

We can rewrite (factor) the grammar using terms
and factors to become unambiguous

E→ E + T T → T ∗ F F → id

E→ E − T T → T / F F → num

E→ T T → F F → (E)

Why does this work?

�
��
Q
QQ

�
��

Q
QQ

E

E + T

T

F

id

T

F

id

* F

id

COMP 520 Winter 2020 Parsing (24)

Rewriting an Ambiguous Grammar
Expression grammars must have 2 mathematical attributes for operations

• Precedence: Order of operations (* and / have precendence over + and -)

• Associativity: Grouping of operations with the same precedence

Rewriting

These attributes are imposed through “constraints” that we build into the grammar

• Operands (LHS/RHS) of one operation must not expand to other operations of lower
precedence;

• If an operation is left-associative, then only its LHS may expand to an operation of equal or
higher precedence; and

• If an operation is right-associative, then only its RHS may expand to an operation of equal or
higher precedence.

COMP 520 Winter 2020 Parsing (25)

The Dangling Else Problem
The dangling else problem is another well known parsing challenge with nested if-statements. Given
the grammar, where IfStmt is a valid statement

IfStmt→ tIF Expr tTHEN Stmt tELSE Stmt

| tIF Expr tTHEN Stmt

Consider the following program (left) and token stream (right)

if {expr} then

if {expr} then

<stmt>

else

<stmt>

tIF

Expr

tTHEN

tIF

Expr

tTHEN

Stmt

tELSE

Stmt

To which if-statement does the else (and corresponding statement) belong?

The issue arises because the if-statement does not have a termination (endif), and braces are not
required for the branches.

COMP 520 Winter 2020 Parsing (26)

Parsing
Context-Free Languages

Other Representations

Bison

SableCC (Optional)

Top-Down (LL) Parsers

Bottom-Up (LR) Parsers

Summary

COMP 520 Winter 2020 Parsing (27)

Backus-Naur Form (BNF)
stmt ::= stmt_expr ";" |

while_stmt |

block |

if_stmt

while_stmt ::= WHILE "(" expr ")" stmt

block ::= "{" stmt_list "}"

if_stmt ::= IF "(" expr ")" stmt |

IF "(" expr ")" stmt ELSE stmt

We have four options for stmt_list:

1. stmt_list ::= stmt_list stmt | ε (0 or more, left-recursive)

2. stmt_list ::= stmt stmt_list | ε (0 or more, right-recursive)

3. stmt_list ::= stmt_list stmt | stmt (1 or more, left-recursive)

4. stmt_list ::= stmt stmt_list | stmt (1 or more, right-recursive)

COMP 520 Winter 2020 Parsing (28)

Extended BNF (EBNF)
Extended BNF provides ‘{’ and ‘}’ which act like Kleene *’s in regular expressions. Compare the
following language definitions in BNF and EBNF

BNF derivations EBNF

A → A a | b b A a A → b { a }

(left-recursive) A a a

b a a

A → a A | b b a A A → { a } b

(right-recursive) a a A

a a b

COMP 520 Winter 2020 Parsing (29)

EBNF Statement Lists
Using EBNF repetition, our four choices for stmt_list

1. stmt_list ::= stmt_list stmt | ε (0 or more, left-recursive)

2. stmt_list ::= stmt stmt_list | ε (0 or more, right-recursive)

3. stmt_list ::= stmt_list stmt | stmt (1 or more, left-recursive)

4. stmt_list ::= stmt stmt_list | stmt (1 or more, right-recursive)

can be reduced substantially since EBNF’s {} does not specify a derivation order

1. stmt_list ::= { stmt }

2. stmt_list ::= { stmt }

3. stmt_list ::= { stmt } stmt

4. stmt_list ::= stmt { stmt }

COMP 520 Winter 2020 Parsing (30)

ENBF Optional Construct
EBNF provides an optional construct using ‘[’ and ‘]’ which act like ‘?’ in regular expressions.

A non-empty statement list (at least one element) in BNF

stmt_list ::= stmt stmt_list | stmt

can be re-written using the optional brackets as

stmt_list ::= stmt [stmt_list]

Similarly, an optional else block

if_stmt ::= IF "(" expr ")" stmt |

IF "(" expr ")" stmt ELSE stmt

can be simplified and re-written as

if_stmt ::= IF "(" expr ")" stmt [ELSE stmt]

COMP 520 Winter 2020 Parsing (31)

Railroad Diagrams (thanks rail.sty!)
stmt

- stmt_expr- ;
���
�

�- while_stmt

�- block

�- if_stmt

�

-

while_stmt

- while
�� �
- (

���
- expr-)
���
- stmt -

block

- {
���
- stmt_list- }

���
-

COMP 520 Winter 2020 Parsing (32)

stmt_list (0 or more)

�
�stmt �

�

-

stmt_list (1 or more)

- stmt�
�

�

-

COMP 520 Winter 2020 Parsing (33)

if_stmt

- if
���
- (

���
- expr-)
���
�

�
�- stmt �

�- else
�� �
- stmt

�

-

COMP 520 Winter 2020 Parsing (34)

Parsing
Context-Free Languages

Other Representations

Bison

SableCC (Optional)

Top-Down (LL) Parsers

Bottom-Up (LR) Parsers

Summary

COMP 520 Winter 2020 Parsing (35)

Parsers
• Take a string of tokens generated by the scanner as input; and

• Build a parse tree according to some grammar.

• In a theoretical sense, parsing checks that a string is contained in a language

Types of parsers

1. Top-down, predictive or recursive descent parsers. Used in all languages designed by Wirth,
e.g. Pascal, Modula, and Oberon; and

2. Bottom-up parsers.

Automated Parser Generators

Writing the parser for a large context-free language is lengthy! Automated parser generators exist
which

• Use (deterministic) context-free grammars as input; and

• Generate parsers using the machinery of a deterministic pushdown automaton.

COMP 520 Winter 2020 Parsing (36)

(LALR) Parser Tools

COMP 520 Winter 2020 Parsing (37)

bison (previously yacc)
bison is a parser generator that

• Takes a grammar as input;

• Computes an LALR(1) parser table;

• Reports conflicts (if any);

• Potentially resolves conflicts using defaults (!!); and

• Creates a parser written in C.

Warning!

Be sure to resolve conflicts, otherwise you may end up with difficult to find parsing errors

COMP 520 Winter 2020 Parsing (38)

Example bison File
The expression grammar given below is expressed in bison as follows

E→ E + E E→ E ∗ E E→ id E→ (E)

E→ E − E E→ E / E E→ num

%{ /* C declarations */ %}

/* Bison declarations; tokens come from lexer (scanner) */

%token tIDENTIFIER tINTVAL

/* Grammar rules after the first %% */

%start exp

%%

exp : tIDENTIFIER

| tINTVAL

| exp ’*’ exp

| exp ’/’ exp

| exp ’+’ exp

| exp ’-’ exp

| ’(’ exp ’)’

;

%% /* User C code after the second %% */

COMP 520 Winter 2020 Parsing (39)

bison Conflicts
As we previously discussed, the basic expression grammar is ambiguous.

bison reports cases where more than one parse tree is possible as shift/reduce or
reduce/reduce conflicts – we will see more about this later!

$ bison --verbose tiny.y # --verbose produces tiny.output

tiny.y contains 16 shift/reduce conflicts.

Using the --verbose option we can output a full diagnostics log

$ cat tiny.output

State 11 contains 4 shift/reduce conflicts.

State 12 contains 4 shift/reduce conflicts.

State 13 contains 4 shift/reduce conflicts.

State 14 contains 4 shift/reduce conflicts.

[...]

COMP 520 Winter 2020 Parsing (40)

bison Resolving Conflicts (Rewriting)
The first option in bison involves rewriting the grammar to resolve ambiguities (terms/factors)

E→ E + T T → T ∗ F F → id

E→ E - T T → T / F F → num

E→ T T → F F → (E)

%token tIDENTIFIER tINTVAL

%start exp

%%

exp : exp ’+’ term

| exp ’-’ term

| term

;

term : term ’*’ factor

| term ’/’ factor

| factor

;

factor : tIDENTIFIER

| tINTVAL

| ’(’ exp ’)’

;

COMP 520 Winter 2020 Parsing (41)

bison Resolving Conflicts (Directives)
bison also provides precedence directives which automatically resolve conflicts

%token tIDENTIFIER tINTVAL

%left ’+’ ’-’ /* left-associative, lower precedence */

%left ’*’ ’/’ /* left-associative, higher precedence */

%start exp

%%

exp : tIDENTIFIER

| tINTVAL

| exp ’*’ exp

| exp ’/’ exp

| exp ’+’ exp

| exp ’-’ exp

| ’(’ exp ’)’

;

COMP 520 Winter 2020 Parsing (42)

bison Resolving Conflicts (Directives)
The conflicts are automatically resolved using either shifts or reduces depending on the directive.

• %left (left-associative)

• %right (right-associative)

• %nonassoc (non-associative)

Precedences are ordered from lowest to highest on a linewise basis.

Note: Although we only cover their use for expression grammars, precedence directives can be
used for other ambiguities

COMP 520 Winter 2020 Parsing (43)

Example bison File
%{

#include <stdio.h>

void yyerror(const char *s) { fprintf(stderr, "Error: %s\n", s); }

%}

%error-verbose

%union {

int intval;

char *identifier;

}

%token <intval> tINTVAL

%token <identifier> tIDENTIFIER

%left ’+’ ’-’

%left ’*’ ’/’

%start exp

%%

exp : tIDENTIFIER { printf("Load %s\n", $1); }

| tINTVAL { printf("Push %i\n", $1); }

| exp ’*’ exp { printf("Mult\n"); }

| exp ’/’ exp { printf("Div\n"); }

| exp ’+’ exp { printf("Plus\n"); }

| exp ’-’ exp { printf("Minus\n"); }

| ’(’ exp ’)’ {}

;

%%

COMP 520 Winter 2020 Parsing (44)

Example flex File
%{

#include "y.tab.h" /* Token types */

#include <stdlib.h> /* atoi */

%}

DIGIT [0-9]

%option yylineno

%%

[\t\n\r]+

"*" return ’*’;

"/" return ’/’;

"+" return ’+’;

"-" return ’-’;

"(" return ’(’;

")" return ’)’;

0|([1-9]{DIGIT}*) {

yylval.intval = atoi(yytext);

return tINTVAL;

}

[a-zA-Z_][a-zA-Z0-9_]* {

yylval.identifier = strdup(yytext);

return tIDENTIFIER;

}

. { fprintf(stderr, "Error: (line %d) unexpected char ’%s’\n", yylineno, yytext);

exit(1);

}

%%

COMP 520 Winter 2020 Parsing (45)

Running a bison+flex Scanner and Parser
After the scanner file is complete, using flex/bison to create the parser is really simple

$ flex tiny.l # generates lex.yy.c

$ bison --yacc tiny.y # generates y.tab.h/c

$ gcc lex.yy.c y.tab.c y.tab.h main.c -o tiny -lfl

Note that we provide a main file which calls the parser (yyparse())

void yyparse();

int main(void)

{

yyparse();

return 0;

}

COMP 520 Winter 2020 Parsing (46)

Example
Running the example scanner on input a*(b-17) + 5/c yields

$ echo "a*(b-17) + 5/c" | ./tiny

Load a

Load b

Push 17

Minus

Mult

Push 5

Load c

Div

Plus

Which is the correct order of operations. You should confirm this for yourself!

COMP 520 Winter 2020 Parsing (47)

Error Recovery
If the input contains syntax errors, then the bison-generated parser calls yyerror and stops.

We may ask it to recover from the error by having a production with error

exp : tIDENTIFIER { printf ("Load %s\n", $1); }

...

| ’(’ exp ’)’

| error { yyerror(); }

;

and on input a@(b-17) ++ 5/c we get the output

Load a

Syntax error before (

Syntax error before (

Syntax error before (

Syntax error before b

Push 17

Minus

Syntax error before)

Syntax error before)

Syntax error before +

Plus

Push 5

Load c

Div

Plus

COMP 520 Winter 2020 Parsing (48)

Unary Minus
A unary minus has highest precedence - we expect the expression -5 * 3 to be parsed as (-5)

* 3 rather than -(5 * 3)

To encourage bison to behave as expected, we use precedence directives with a special unused
token

COMP 520 Winter 2020 Parsing (49)

Parsing
Context-Free Languages

Other Representations

Bison

SableCC (Optional)

Top-Down (LL) Parsers

Bottom-Up (LR) Parsers

Summary

COMP 520 Winter 2020 Parsing (50)

SableCC
SableCC (by Etienne Gagnon, McGill alumnus) is a compiler compiler: it takes a grammatical
description of the source language as input, and generates a lexer (scanner) and parser.

�
�

�
�

�
�

�
�

�
�

�
�

?

?
- -

?

?

joos.sablecc

SableCC

joos/*.java javac scanner&
parser

foo.joos

CST/AST

COMP 520 Winter 2020 Parsing (51)

SableCC 2 Example
Scanner definition

Package tiny;
Helpers
tab = 9;
cr = 13;
lf = 10;
digit = [’0’..’9’];
lowercase = [’a’..’z’];
uppercase = [’A’..’Z’];
letter = lowercase | uppercase;
idletter = letter | ’_’;
idchar = letter | ’_’ | digit;

Tokens
eol = cr | lf | cr lf;
blank = ’ ’ | tab;
star = ’*’;
slash = ’/’;
plus = ’+’;
minus = ’-’;
l_par = ’(’;
r_par = ’)’;
number = ’0’| [digit-’0’] digit*;
id = idletter idchar*;

Ignored Tokens
blank, eol;

COMP 520 Winter 2020 Parsing (52)

SableCC 2 Example
Parser definition

Productions

exp =

{plus} exp plus factor |

{minus} exp minus factor |

{factor} factor;

factor =

{mult} factor star term |

{divd} factor slash term |

{term} term;

term =

{paren} l_par exp r_par |

{id} id |

{number} number;

Sable CC version 2 produces parse trees, a.k.a. concrete syntax trees (CSTs).

COMP 520 Winter 2020 Parsing (53)

SableCC 3 Grammar
Productions

cst_exp {-> exp} =

{cst_plus} cst_exp plus factor

{-> New exp.plus(cst_exp.exp,factor.exp)} |

{cst_minus} cst_exp minus factor

{-> New exp.minus(cst_exp.exp,factor.exp)} |

{factor} factor {-> factor.exp};

factor {-> exp} =

{cst_mult} factor star term

{-> New exp.mult(factor.exp,term.exp)} |

{cst_divd} factor slash term

{-> New exp.divd(factor.exp,term.exp)} |

{term} term {-> term.exp};

term {-> exp} =

{paren} l_par cst_exp r_par {-> cst_exp.exp} |

{cst_id} id {-> New exp.id(id)} |

{cst_number} number {-> New exp.number(number)};

SableCC version 3 allows the compiler writer to generate abstract syntax trees (ASTs).

COMP 520 Winter 2020 Parsing (54)

SableCC 3 AST Definition
Abstract Syntax Tree

exp =

{plus} [l]:exp [r]:exp |

{minus} [l]:exp [r]:exp |

{mult} [l]:exp [r]:exp |

{divd} [l]:exp [r]:exp |

{id} id |

{number} number;

COMP 520 Winter 2020 Parsing (55)

Announcements (Friday, January 17th)
Milestones

• Continue picking your group (3 recommended). Who doesn’t have a group?

• Learn flex/bison or SableCC

Assignment 1

• Any questions?

• Due: Friday, January 24th 11:59 PM

COMP 520 Winter 2020 Parsing (56)

Reference compiler (MiniLang)
Accessing

• ssh <socs_username>@teaching.cs.mcgill.ca

• ~cs520/minic {keyword} < {file}

• If you find errors in the reference compiler, up to 5 bonus points on the assignment

Keywords for the first assignment

• scan: run scanner only, OK/Error

• tokens: produce the list of tokens for the program

• parse: run scanner+parser, OK/Error

COMP 520 Winter 2020 Parsing (57)

Parsing
Context-Free Languages

Other Representations

Bison

SableCC (Optional)

Top-Down (LL) Parsers

Bottom-Up (LR) Parsers

Summary

COMP 520 Winter 2020 Parsing (58)

Top-Down Parsers
• Can (easily) be written by hand; or

• Generated from an LL(k) grammar:

– Left-to-right parse;

– Leftmost-derivation; and

– k symbol lookahead.

• Algorithm idea: an LL(k) parser takes the leftmost non-terminal A, looks at k tokens of
lookahead, and determines which rule A→ γ should be used to replace A

– Begin with the start symbol (root);

– Grows the parse tree using the defined grammar; by

– Predicting: the parser must determine (given some input) which rule to apply next.

COMP 520 Winter 2020 Parsing (59)

Example of LL(1) Parsing
Grammar

Prog→ Dcls Stmts

Dcls→ Dcl Dcls | ε

Dcl→ "int" ident | "float" ident

Stmts→ Stmt Stmts | ε

Stmt→ ident "=" Val

Val→ num | ident

Parse the program

int a

float b

b = a

Scanner token string

tINT

tIDENTIFIER(a)

tFLOAT

tIDENTIFIER(b)

tIDENTIFIER(b)

tASSIGN

tIDENTIFIER(a)

COMP 520 Winter 2020 Parsing (60)

Example of LL(1) Parsing

Derivation Next Token Options

Prog tINT Dcls Stmts

Dcls Stmts tINT Dcl Dcls | ε

Dcl Dcls Stmts tINT “int” ident | “float” ident

“int” ident Dcls Stmts tFLOAT Dcl Dcls | ε

“int” ident Dcl Dcls Stmts tFLOAT “int” ident | “float” ident

“int” ident “float” ident Dcls Stmts tIDENTIFIER Dcl Dcls | ε

“int” ident “float” ident Stmts tIDENTIFIER Stmt Stmts | ε

“int” ident “float” ident Stmt Stmts tIDENTIFIER ident “=” Val

“int” ident “float” ident ident “=” Val Stmts tIDENTIFIER num | ident

“int” ident “float” ident ident “=” ident Stmts EOF Stmt Stmts | ε

“int” ident “float” ident ident “=” ident

COMP 520 Winter 2020 Parsing (61)

Notes on LL(1) Parsing
In the previous example, each step of the parser

• Determined the next rule looking at exactly 1 token of the input stream; and

• Only has one possible rule to apply given the token.

The grammar is therefore LL(1) and can be used by LL(1) parsing tools.

Limitations

However, not all grammars are LL(1), namely if there are

• Multiple rewrites possible given only a single token of lookahead.

In fact, not all grammars are LL(k) for any fixed k

• LL(k) grammars have a fixed lookahead; but

• Deciding between some rules might require unbounded lookahead.

COMP 520 Winter 2020 Parsing (62)

Recursive Descent Parsers
LL(k) parsers can easily be written by hand using recursive descent . Recursive descent parsers use
a set of mutually recursive functions (1 per non-terminal) for parsing.

Idea: Repeatedly expand the leftmost non-terminal by predicting which rule to use.

• Each rule for a non-terminal has a predict set that indicates if the rule can be applied given the k
lookahead tokens; and

• If the next tokens are in

– Exactly one of the predict sets: the corresponding rule is applied;

– More than one of the predict sets: there is a conflict; or

– None of the predict sets: there is a syntax error.

• Applying the rules/productions

– Consume/match terminals; and

– Recursively call functions for other non-terminals.

COMP 520 Winter 2020 Parsing (63)

Recursive Descent Example
Given a subset of the previous context-free grammar

Prog→ Dcls Stmts

Dcls→ Dcl Dcls | ε

Dcl→ "int" ident | "float" ident

We can define predict sets for all rules, giving us the following recursive descent parser functions

function Prog()

call Dcls()

call Stmts()

end

function Dcls()

switch nextToken()

case tINT|tFLOAT:

call Dcl()

call Dcls()

case tIDENT|EOF:

/* no more declarations, parsing

continues in the Prog method */

return

end

end

function Dcl()

switch nextToken()

case tINT:

match(tINT)

match(tIDENTIFIER)

case tFLOAT:

match(tFLOAT)

match(tIDENTIFIER)

end

end

COMP 520 Winter 2020 Parsing (64)

Common Prefixes
While this approach to parsing is simple and intuitive, it has its limitations. Consider the following
productions, defining an If-Else-End construct

IfStmt→ tIF Exp tTHEN Stmts tEND

| tIF Exp tTHEN Stmts tELSE Stmts tEND

With bounded lookahead (say an LL(1) parser), we are unable to predict which rule to follow as both
rules have {tIF} as their predict set.

Solution

To resolve this issue, we factor the grammar

IfStmt→ tIF Exp tTHEN Stmts IfEnd

IfEnd→ tEND | tELSE Stmts tEND

There is now only a single IfStmt rule and thus no ambiguity. Additionally, productions for the IfEnd
variable have non-intersecting predict sets

1. {tEND}

2. {tELSE}

COMP 520 Winter 2020 Parsing (65)

The Dangling Else Problem - LL
To resolve this ambiguity we wish to associate the else with the nearest unmatched if-statement.

if {expr} then

if {expr} then

<stmt>

else

<stmt>

[if {expr} then

[if {expr} then

<stmt>

else

<stmt>]]

Note that any grammar we come up with is still not LL(k). Why not?

Recursive Descent Parsing

Even though we cannot write an LL(k) grammar, it is easy to write a recursive descent parser using
a greedy-ish approach to matching.

function Stmt()

switch nextToken():

case tIF:

call IfStmt()

[...]

end

function IfStmt()

match(tIF)

call Expr()

match(tTHEN)

call Stmt()

if nextToken() == tELSE:

match(tELSE)

call Stmt()

end

COMP 520 Winter 2020 Parsing (66)

Recursive Lists
In context-free grammars, we define lists recursively. The following rules specify lists of 0 or more
and 1 or more elements respectively

A→ A β | ε

B→ B β | β

β→ tTOKEN

They are also left-recursive, as the recursion occurs on the left hand side. We can similarly define
right-recursive grammars by swapping the order of the elements

A→ β A | ε

B→ β B | β

Using the above grammars, deriving the sentence tTOKEN is simple.

COMP 520 Winter 2020 Parsing (67)

Left Recursion
Left recursion also causes difficulties with LL(k) parsers. Consider the following productions

A→ A β | ε

β→ tTOKEN

Assume we can come up with a predict set for A consisting of tTOKEN, then applying this rule gives

Expansion Next Token

A tTOKEN

A β tTOKEN

A β β tTOKEN

A β β β tTOKEN

A β β β β tTOKEN

A β β β β β tTOKEN

. . .

This continues on forever. Note there are other ways to think of this as shown in the textbook

COMP 520 Winter 2020 Parsing (68)

Expression Grammars
The factored expression grammar is also left recursive, and thus incompatible with LL tools.

E→ E + T T → T ∗ F F → id

E→ E − T T → T / F F → num

E→ T T → F F → (E)

To resolve the issue, we use a trick, noting that E is a list of T , and T is a list of F , each with their
respective separators.

E→ T E1 T → F T1 F → id

E1→ + T E1 T1→ / F T1 F → num

E1→− T E1 T1→ ∗ F T1 F → (E)

E1→ ε T1→ ε

COMP 520 Winter 2020 Parsing (69)

(Optional) A Simple LL(1) Parser
An LL(1) parser tool (e.g. ANTLR)

• Takes an LL(1) grammar as input; and

• Generates a deterministic pushdown automaton, represented as a parsing table.

Parsing tables

LL(1) tools build a parsing table from the grammar using FIRST and FOLLOW sets. Each cell
represents the prediction given the non-terminal, and next input token.

Example

1. A→ a

2. A→ b B

3. B→ c

a b c $

A 1 2

B 3

Note the extra symbol $ which indicates the end of stream. It will be appended onto the end of input.

COMP 520 Winter 2020 Parsing (70)

(Optional) A Simple LL(1) Parser
When executing, the parser maintains: (1) a stack; and (2) the input tokens string.

Idea

• The stack acts as an “in progress” workspace representing the derivation so far; and

• At each step, the parser peeks at the top of the stack and performs an action.

Actions

• Terminal (token): Pop & match to the input

• Non-terminal: Pop, predict the rule & push the RHS

Note: This is very similar to the idea of recursive descent.

COMP 520 Winter 2020 Parsing (71)

(Optional) A Simple LL(1) Parser
Example

1. A→ a

2. A→ b B

3. B→ c

a b c $

A 1 2

B 3

Parse the sentence b c $ using the above parsing table and start symbol A.

Stack (top→) Next Token Action

$ A b Predict rule 2 (pop A, push RHS)

$ B b b Match

$ B c Predict rule 3 (pop B, push RHS)

$ c c Match

$ $ Accept

What do we notice about the order of derivation?

COMP 520 Winter 2020 Parsing (72)

Announcements (Monday, January 20th)
Milestones

• Continue picking your group (3 recommended). Who doesn’t have a group?

• Group signup sheet will be distributed soon

• Add-drop: Tomorrow!

Assignment 1

• Any questions?

– How is it progressing?

– What toolchains are you using?

• Due: Friday, January 24th 11:59 PM

COMP 520 Winter 2020 Parsing (73)

Parsing
Context-Free Languages

Other Representations

Bison

SableCC (Optional)

Top-Down (LL) Parsers

Bottom-Up (LR) Parsers

Summary

COMP 520 Winter 2020 Parsing (74)

Bottom-Up Parsers
• Can be written by hand (tricky); or

• Generated from an LR(k) grammar (easy):

– Left-to-right parse;

– Rightmost-derivation; and

– k symbol lookahead.

• Algorithm idea: form the parse tree by repeatedly grouping terminals and non-terminals into
non-terminals until they form the root (start symbol).

– Build parse trees from the leaves to the root;

– Perform a rightmost derivation in reverse; and

– Use productions to replace the RHS of a rule with the LHS.

• Opposite to a top-down parser.

Note: The techniques used by bottom-up parsers are more complex to understand, but can use a
larger set of grammars to top-down parsers.

COMP 520 Winter 2020 Parsing (75)

Shift-Reduce Bottom-Up Parsing
Grammar

A shift-reduce parser starts with an extended grammar

• Introduce a new start symbol S′ and an end-of-file token $; and

• Form a new rule S′→ S $.

Practically, this ensures that the parser knows the end of input and no tokens may be ignored.

S′→S$ S→ S ; S E→ id L→ E

S→ id := E E→ num L→ L , E

S→ print (L) E→ E + E

E→ (S , E)

COMP 520 Winter 2020 Parsing (76)

Shift-Reduce Bottom-Up Parsing
Stack and Input

A shift-reduce parser maintains 2 collections of tokens

1. The input stream from the scanner

2. A work-in-progress stack represents subtrees formed over the currently parsed elements
(terminals and non-terminals)

Actions

We then define the following actions

• Shift: move the first token from the input stream to top of the stack

• Reduce: replace α (a sequence of terminals/non-terminals) on the top of stack by X using rule
X→ α

• Accept: when S′ is on the stack

COMP 520 Winter 2020 Parsing (77)

Shift-Reduce Example

id
id :=
id := num
id := E
S
S;
S; id
S; id :=
S; id := id
S; id := E
S; id := E +
S; id := E + (
S; id := E + (id
S; id := E + (id :=
S; id := E + (id := num
S; id := E + (id := E
S; id := E + (id := E +
S; id := E + (id := E + num
S; id := E + (id := E + E

a:=7; b:=c+(d:=5+6,d)$
:=7; b:=c+(d:=5+6,d)$

7; b:=c+(d:=5+6,d)$
; b:=c+(d:=5+6,d)$
; b:=c+(d:=5+6,d)$
; b:=c+(d:=5+6,d)$
b:=c+(d:=5+6,d)$
:=c+(d:=5+6,d)$
c+(d:=5+6,d)$
+(d:=5+6,d)$
+(d:=5+6,d)$
(d:=5+6,d)$
d:=5+6,d)$
:=5+6,d)$
5+6,d)$
+6,d)$
+6,d)$
6,d)$
,d)$
,d)$

shift
shift
shift
E→num
S→id:=E
shift
shift
shift
shift
E→id
shift
shift
shift
shift
shift
E→num
shift
shift
E→num
E→E+E

COMP 520 Winter 2020 Parsing (78)

Shift-Reduce Example (Continued)
S; id := E + (id := E + E
S; id := E + (id := E
S; id := E + (S
S; id := E + (S,
S; id := E + (S, id
S; id := E + (S, E
S; id := E + (S, E)
S; id := E + E
S; id := E
S; S
S
S$
S′

, d)$
,d)$
,d)$
d)$
)$
)$
$
$
$
$
$

E→E+E
S→id:=E
shift
shift
E→id
shift
E→(S;E)
E→E+E
S→id:=E
S→S;S
shift
S′→S$
accept

COMP 520 Winter 2020 Parsing (79)

Shift-Reduce Rules (Example)
Recall the previous rightmost derivation of the string

a := 7;

b := c + (d := 5 + 6, d)

Rightmost derivation:

S

S; S
S; id := E
S; id := E + E
S; id := E + (S, E)
S; id := E + (S, id)
S; id := E + (id := E, id)

S; id := E + (id := E + E, id)
S; id := E + (id := E + num, id)
S; id := E + (id := num + num, id)
S; id := id + (id := num + num, id)
id := E; id := id + (id := num + num, id)
id := num; id := id + (id := num + num, id)

Note that the rules applied in LR parsing are the same as those above, in reverse.

COMP 520 Winter 2020 Parsing (80)

Shift-Reduce Rules (Intuition)
If we think about shift-reduce in terms of parse trees

• Stack contains multiple subtrees (i.e. a forest); and

• Reduce actions take subtrees in γ and form new trees rooted at A given rules A→ γ

E +

id id

- E + E

id id

-
�

��
Q
QQ

E

E + E

id id

A shift-reduce parser therefore works

1. Bottom-up, grouping subtrees when reducing; and

2. Subtrees of a rule are formed from left-to-right - think about this!

This is equivalent to a rightmost derivation, in reverse.

COMP 520 Winter 2020 Parsing (81)

Shift-Reduce Magic
The magic of shift-reduce parsers is the decision to either shift or reduce. How do we decide?

Shift

Shifting takes a token from the input stream and places it on the stack.

• More symbols are needed before we can apply a rule; and

• The top of the stack is “fully reduced” (i.e. no more rules should be applied).

Reduce

Reducing replaces (multiple) symbols on the stack with a single symbol according to the grammar.

• Enough symbols on the stack to apply some rule; and

• The next token is not part of a larger rule.

Conflicts

Shift-reduce (and reduce-reduce) conflicts occur when there is more than one possible option. We
will revisit this soon!

COMP 520 Winter 2020 Parsing (82)

Shift-Reduce Internals
• Implemented as a stack of states (not symbols);

• A state represents the top contents of the stack, without having to scan the contents;

• Shift/reduce according to the current (top) state, and the next k unprocessed tokens.

• Note: this resembles a DFA with a stack!

Standard Parser Driver

while not accepted do

action = LookupAction(currentState, nextTokens)

if action == shift<nextState>

push(nextState)

else if action == reduce<A->gamma>

pop(|gamma|) // Each symbol in gamma pushed a state

push(NextState(currentState, A))

done

Both actions change the state of the stack

• Shift: read the next input token, push a single state on a stack

• Reduce: replace all states pushed as part of γ with a new state for A on the stack

COMP 520 Winter 2020 Parsing (83)

Example
Consider the previous grammar for a simple language with statements and expressions. Each
grammar rule is given a number

0 S′→S$ 3 S→ print (L) 6 E→ E + E 9 L→ L , E

1 S→ S ; S 4 E→ id 7 E→ (S , E)

2 S→ id := E 5 E→ num 8 L→ E

Parsing internals

• The possible states of the parser (states on the stack) are represented in a DFA;

• Start with the initial state (s1) on the stack;

• Choose the next action using the state transitions;

• The actions are summarized in a table, indexed with (currentState, nextTokens):

– Shift(n): skip next input symbol and push state n

– Reduce(k): rule k is A→γ; pop |γ| times; lookup(stack top, A) in table

– Goto(n): push state n

– Accept: report success

COMP 520 Winter 2020 Parsing (84)

Example - Table

DFA terminals non-terminals

state id num print ; , + := () $ S E L

1 s4 s7 g2

2 s3 a

3 s4 s7 g5

4 s6

5 r1 r1 r1

6 s20 s10 s8 g11

7 s9

8 s4 s7 g12

9 g15 g14

10 r5 r5 r5 r5 r5

DFA terminals non-terminals

state id num print ; , + := () $ S E L

11 r2 r2 s16 r2

12 s3 s18

13 r3 r3 r3

14 s19 s13

15 r8 r8

16 s20 s10 s8 g17

17 r6 r6 s16 r6 r6

18 s20 s10 s8 g21

19 s20 s10 s8 g23

20 r4 r4 r4 r4 r4

21 s22

22 r7 r7 r7 r7 r7

23 r9 s16 r9

Error transitions are omitted in tables.

COMP 520 Winter 2020 Parsing (85)

Example
s1 a := 7$

shift(4)

s1 s4 := 7$

shift(6)

s1 s4 s6 7$

shift(10)

s1 s4 s6 s10 $

reduce(5): E → num

s1 s4 s6 s10////// $

lookup(s6,E) = goto(11)

s1 s4 s6 s11 $

reduce(2): S → id := E

s1 s4//// s6//// s11////// $

lookup(s1 ,S) = goto(2)

s1 s2 $

accept

COMP 520 Winter 2020 Parsing (86)

LR(1) Parser
LR(1) is an algorithm that attempts to construct a parsing table from a grammar using

• Left-to-right parse;

• Rightmost-derivation; and

• 1 symbol lookahead.

If no conflicts arise (shift/reduce, reduce/reduce), then we are happy; otherwise, fix the grammar!

Overall idea

1. Construct an NFA for the grammar;

• Represent possible parse states for all grammar rules (i.e. the stack contents);

• Use transitions between states as actions are applied;

2. Convert the NFA to a DFA using a powerset construction; and

3. Represent the DFA using a table.

COMP 520 Winter 2020 Parsing (87)

LR(1) Items

An LR(1) item A→α . β x consists of

1. A grammar production, A→ αβ;

2. The RHS position, represented by ’.’; and

3. A lookahead symbol, x.

Intuition

An LR(1) item intuitively represents

• How much of a rule we have recognized so far (the ’.’ position); and

• When to apply – if the head of the input is derivable from βx.

The lookahead symbol is the terminal required to end (apply) the rule once β has been processed.

DFA/NFA States

An LR(1) state is a set of LR(1) items.

COMP 520 Winter 2020 Parsing (88)

LR(1) NFA
The LR(1) NFA is constructed in stages, beginning with an item representing the start state

S′→ . S$?

This LR item indicates a state where

• We are at the beginning of the rule;

• The next sequence of symbols will be derived from non-terminal S; and

• The lookahead symbol is empty - we can apply at the end of input.

From here, we add successors recursively until termination (no more expansion possible).

Let FIRST(A) be the set of terminals that can begin an expansion of non-terminal A.

Let FOLLOW(A) be the set of terminals that can follow an expansion of non-terminal A.

COMP 520 Winter 2020 Parsing (89)

LR(1) NFA - Non-Terminals
Given the LR item below, we add two types of successors (states connected through transitions)

A→α . B β x

ε successors

For each production of B, add ε successor (transition with ε)

B→ . γ y

for each y ∈ FIRST(βx). Note the inclusion of x, which handles the case where β is nullable.

B-successor

We also add B-successor to be followed when a sequence of symbols is reduced to B.

A→α B . β x

COMP 520 Winter 2020 Parsing (90)

LR(1) NFA - Terminals
For the case where the symbol after the ’.’ is a terminal

A→α . y β x

there is a single y-successor of the form

A→α y . β x

which corresponds to the input of the next part of the rule (y).

COMP 520 Winter 2020 Parsing (91)

LR(1) Table Construction
The LR(1) table construction is based on the LR(1) DFA, “inlining” ε-transitions. If you follow other
resources online this DFA is sometimes constructed directly using the closure of item sets.

For each LR(1) item in state k, we add the following entries to the parser table depending on the
contents of β and the state s of the successor.

A→α . β x

1. Goto(s): β is a non-terminal

2. Shift(s): β is a terminal

3. Reduce(r): β is empty (where r is the number of the rule)

4. Accept: we have A→ B . $

The next slide shows the construction of a simple expression grammar

0 S→ E$ 2 E→ T

1 E→ T + E 3 T → x

COMP 520 Winter 2020 Parsing (92)

Constructing the LR(1) DFA and Parser Table
Standard power-set construction, “inlining” ε-transitions.

S→.E$?
E→.T+E $
E→.T $
T→.x +
T→.x $

E→T .+E $
E→T . $

S→E.$?

E→T+.E $
E→.T+E $
E→.T $
T→.x $
T→.x +

T→x. +
T→x. $

E→T+E. $

-

-

?

6

?

�

�

1 2

3

45

6

E

T

x + T

x

E

x + $ E T

1 s5 g2 g3

2 a

3 s4 r2

4 s5 g6 g3

5 r3 r3

6 r1

COMP 520 Winter 2020 Parsing (93)

Parsing Conflicts
Parsing conflicts occur when there is more than one possible action for the parser to take which still
results in a valid parse tree.

A→.x y
A→C. x shift/reduce conflict

A→B. x
A→C. x reduce/reduce conflict

What about shift/shift conflicts?

A→.x y
A→.x z

- si

- sj

x

x

⇒ By construction of the DFA we have si = sj

COMP 520 Winter 2020 Parsing (94)

LALR Parsers
In practice, LR(1) tables may become very large for some programming languages. Parser
generators use LALR(1), which merges states that are identical (same LR items) except for
lookaheads. This may introduce reduce/reduce conflicts.

Given the following example we begin by forming LR states

S→ a E c E→ e

S→ a F d F → e

S→ b F c

S→ b E d

E→e. c
F→e. d

E→e. d
F→e. c

Since the states are identical other than lookahead, they are merged, introducing a reduce/reduce
conflict.

E→e. c,d
F→e. c,d

COMP 520 Winter 2020 Parsing (95)

bison Example
The grammar given below is expressed in bison as follows

1 E→ id 3 E→ E ∗ E 5 E→ E + E 7 E→ (E)

2 E→ num 4 E→ E / E 6 E→ E − E
%{

/* C declarations */

%}

/* Bison declarations; tokens come from lexer (scanner) */

%token tIDENTIFIER tINTVAL

/* Grammar rules after the first %% */

%start exp

%%

exp : tIDENTIFIER

| tINTVAL

| exp ’*’ exp

| exp ’/’ exp

| exp ’+’ exp

| exp ’-’ exp

| ’(’ exp ’)’

;

%% /* User C code after the second %% */

COMP 520 Winter 2020 Parsing (96)

bison Example
For states which have no ambiguity, bison follows the idea we just presented. Using the
--verbose option allows us to inspect the generated states and associated actions.

State 9

5 exp: exp ’+’ . exp

tIDENTIFIER shift, and go to state 1

tINTVAL shift, and go to state 2

’(’ shift, and go to state 3

exp go to state 14

[...]

State 1

1 exp: tIDENTIFIER .

$default reduce using rule 1 (exp)

State 2

2 exp: tINTVAL .

$default reduce using rule 2 (exp)

COMP 520 Winter 2020 Parsing (97)

bison Conflicts
As we previously discussed, the basic expression grammar is ambiguous.

bison reports cases where more than one parse tree is possible as shift/reduce or
reduce/reduce conflicts.

$ bison --verbose tiny.y # --verbose produces tiny.output

tiny.y contains 16 shift/reduce conflicts.

Using the --verbose option we can output a full diagnostics log

$ cat tiny.output

State 12 contains 4 shift/reduce conflicts.

State 13 contains 4 shift/reduce conflicts.

State 14 contains 4 shift/reduce conflicts.

State 15 contains 4 shift/reduce conflicts.

[...]

COMP 520 Winter 2020 Parsing (98)

bison Conflicts
Examining State 14, we see that the parser may reduce using rule (E→ E + E) or shift. This
corresponds to grammar ambiguity, where the parser must choose between 2 different parse trees.

3 exp: exp . ’*’ exp

4 | exp . ’/’ exp

5 | exp . ’+’ exp

5 | exp ’+’ exp . <-- problem is here

6 | exp . ’-’ exp

’*’ shift, and go to state 7

’/’ shift, and go to state 8

’+’ shift, and go to state 9

’-’ shift, and go to state 10

’*’ [reduce using rule 5 (exp)]

’/’ [reduce using rule 5 (exp)]

’+’ [reduce using rule 5 (exp)]

’-’ [reduce using rule 5 (exp)]

$default reduce using rule 5 (exp)

COMP 520 Winter 2020 Parsing (99)

bison Resolving Conflicts (Rewriting)
The first option in bison involves rewriting the grammar to resolve ambiguities (terms/factors)

E→ E + T T → T ∗ F F → id

E→ E - T T → T / F F → num

E→ T T → F F → (E)

%token tIDENTIFIER tINTVAL

%start exp

%%

exp : exp ’+’ term

| exp ’-’ term

| term

;

term : term ’*’ factor

| term ’/’ factor

| factor

;

factor : tIDENTIFIER

| tINTVAL

| ’(’ exp ’)’

;

COMP 520 Winter 2020 Parsing (100)

bison Resolving Conflicts (Directives)
bison also provides precedence directives which automatically resolve conflicts

%token tIDENTIFIER tINTVAL

%left ’+’ ’-’ /* left-associative, lower precedence */

%left ’*’ ’/’ /* left-associative, higher precedence */

%start exp

%%

exp : tIDENTIFIER

| tINTVAL

| exp ’*’ exp

| exp ’/’ exp

| exp ’+’ exp

| exp ’-’ exp

| ’(’ exp ’)’

;

COMP 520 Winter 2020 Parsing (101)

bison Resolving Conflicts (Directives)
The conflicts are automatically resolved using either shifts or reduces depending on the directive.

Conflict in state 11 between rule 5 and token ’+’

resolved as reduce. <-- Reduce exp + exp . +

Conflict in state 11 between rule 5 and token ’-’

resolved as reduce. <-- Reduce exp + exp . -

Conflict in state 11 between rule 5 and token ’*’

resolved as shift. <-- Shift exp + exp . *

Conflict in state 11 between rule 5 and token ’/’

resolved as shift. <-- Shift exp + exp . /

Note that this is not the same state 11 as before

Observations

• For operations with the same precedence and left associativity, we prefer reducing

• When the reduction contains an operation of lower precedence than the lookahead token, we
prefer shifting

COMP 520 Winter 2020 Parsing (102)

bison Resolving Conflicts (Directives)
• %left (left-associative)

• %right (right-associative)

• %nonassoc (non-associative)

Precedences are ordered from lowest to highest on a linewise basis.

Table construction

Conflicts are resolved using the precedence levels of the lookahead token, and the last (rightmost)
token in the production. The action with higher precedence token is chosen.

• Lookahead > rule: favors shifting

• Lookahead < rule: favors reduce

If precedences are equal, then

• %left: favors reducing

• %right: favors shifting

• %nonassoc: yields an error

This usually ends up working. Note: This is much more general than expressions.

COMP 520 Winter 2020 Parsing (103)

The Dangling Else Problem - LR
Given the standard grammar for if-else statements, bison produces a shift/reduce conflict.

14 stmt: tIF ’(’ expr ’)’ body .

15 | tIF ’(’ expr ’)’ body . tELSE body

tELSE shift, and go to state 82

tELSE [reduce using rule 14 (stmt)]

$default reduce using rule 14 (stmt)

Either we reduce (form an if statement), or shift form an if-else statement).

Solution

Solving the dangling else problem in LR parsers can thus be done using precedence directives or
rewriting the grammar.

COMP 520 Winter 2020 Parsing (104)

The Dangling Else Problem - LR
Note, to force the tELSE token to match the closest unmatched if, we prefer shifting over reducing.

We therefore give the rule tIF ’(’ expr ’)’ body lower precedence than the token tELSE.

%nonassoc ’)’

%nonassoc tELSE

%%

statements : statements statement

| %empty

;

statement : tIF ’(’ expr ’)’ body

| tIF ’(’ expr ’)’ body tELSE body

;

body : statement

| ’{’ statements ’}’

;

COMP 520 Winter 2020 Parsing (105)

The Dangling Else Problem - LR
The following 2 slides have been adapted from "Modern Compiler Implementation in Java", by Appel
and Palsberg.

P → L S→ "while" ident "do" S

L→ S S→ "if" ident "then" S

L→ L; S S→ "if" ident "then" S "else" S

S→ ident := ident

S→ "{" L "}"

Rewrite the grammar, matching the else token to the closest unmatched if.

COMP 520 Winter 2020 Parsing (106)

The Dangling Else Problem - LR
Solving the dangling else ambiguity in LR parsers requires differentiating between contexts that
allow matched and unmatched if statements.

S→ "while" ident "do" S Smatched→ "while" ident "do" Smatched

S→ "if" ident "then" S

S→ "if" ident "then" Smatched Smatched→ "if" ident "then" Smatched

"else" S "else" Smatched

S→ ident := ident Smatched→ ident := ident

S→ "{" L "}" Smatched→ "{" L "}"

Since we match to the nearest unmatched if-statement, a matched if-statement cannot have any
unmatched statements nested (or this breaks the condition)

COMP 520 Winter 2020 Parsing (107)

Parsing
Context-Free Languages

Other Representations

Bison

SableCC (Optional)

Top-Down (LL) Parsers

Bottom-Up (LR) Parsers

Summary

COMP 520 Winter 2020 Parsing (108)

Comparison of Languages Accepted by Parser Generators

LL(0)

SLR

LALR(1)

LR(1)

LR(k)LL(k)

LL(1)

LR(0)

COMP 520 Winter 2020 Parsing (109)

Takeaways
What you should know

• What it means to shift and reduce;

• Shift/reduce conflicts that can occur in LR parsers and how to resolve them; and

• The general idea of the LR states at a high-level;

What you do not need to know

• Building a parser DFA/NFA/Table (you should understand how to use them though);

• Detailed understanding of LL/LR internals (e.g. FIRST and FOLLOW sets); and

• LALR parsers;

For this class you should focus on intuition and practice rather than memorizing exact definitions
and algorithms.

