
COMP-520 – Review lecture

Vincent Foley-Bourgon

Sable Lab
McGill University

Winter 2020

Plan
I We’ll go over the different concepts we saw in class

I And outline some questions to practise

I You will have to provide the answers

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)

2 / 109

Plan
I We’ll go over the different concepts we saw in class

I And outline some questions to practise

I You will have to provide the answers

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)

2 / 109

Plan
I We’ll go over the different concepts we saw in class

I And outline some questions to practise

I You will have to provide the answers

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)

2 / 109

Plan
I We’ll go over the different concepts we saw in class

I And outline some questions to practise

I You will have to provide the answers

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)

2 / 109

Compiler overview

What is a compiler?

An automated program that translates programs written in a
source language into equivalent programs in a target language.

4 / 109

What is a compiler?
An automated program that translates programs written in a
source language into equivalent programs in a target language.

4 / 109

Phases of the compilers

5 / 109

Phases of the compilers

6 / 109

Phases of the compilers

7 / 109

Phases of the compilers

8 / 109

Phases of the compilers

9 / 109

Phases of the compilers

10 / 109

Phases of the compilers

11 / 109

Phases of the compilers

12 / 109

Phases of the compilers

13 / 109

Phases of the compilers

14 / 109

Phases of the compilers

15 / 109

Phases of the compilers

16 / 109

Scanner

Scanner generalities
I What is the input of a scanner?

Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 109

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 109

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner?

Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 109

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 109

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners?

Regular
expressions

18 / 109

Scanner generalities
I What is the input of a scanner? Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions

18 / 109

Regular expressions
What are the 5 building blocks of regular expressions?

I C

I E

I C

I A

I R

19 / 109

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I E

I C

I A

I R

20 / 109

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I C

I A

I R

21 / 109

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I A

I R

22 / 109

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I Alternation A|B

I R

23 / 109

Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I Alternation A|B

I Repetition A*

24 / 109

Regular expressions
More regular expressions

I Optional

A? = A|ε

I One-or-more A+ = A(A*)

25 / 109

Regular expressions
More regular expressions

I Optional A? = A|ε

I One-or-more A+ = A(A*)

25 / 109

Regular expressions
More regular expressions

I Optional A? = A|ε

I One-or-more

A+ = A(A*)

25 / 109

Regular expressions
More regular expressions

I Optional A? = A|ε

I One-or-more A+ = A(A*)

25 / 109

Scanner
How does flex match tokens?

26 / 109

Scanner
How does flex match tokens?

26 / 109

Scanner
How does flex handle multiple matches?

I Longest match rule (e.g. var vs variance)

I First match rule (e.g. keywords vs identifiers)

27 / 109

Scanner
How does flex handle multiple matches?

I Longest match rule (e.g. var vs variance)

I First match rule (e.g. keywords vs identifiers)

27 / 109

Scanner
How does flex handle multiple matches?

I Longest match rule (e.g. var vs variance)

I First match rule (e.g. keywords vs identifiers)

27 / 109

Scanner
How does flex make regular expressions executable?

Regular expression→ NFA→ DFA

28 / 109

Scanner
How does flex make regular expressions executable?

Regular expression→ NFA→ DFA

28 / 109

Regular Languages
What relationship exists between regular expressions, NFAs
and DFAs?

They are all equally powerful, and all recognize regular
languages

29 / 109

Regular Languages
What relationship exists between regular expressions, NFAs
and DFAs?

They are all equally powerful, and all recognize regular
languages

29 / 109

DFAs
What are the 4 building blocks of DFAs?

I S

I T

I 1

I n

30 / 109

DFAs
What are the 4 building blocks of DFAs?

I States

I T

I 1

I n

31 / 109

DFAs
What are the 4 building blocks of DFAs?

I States

I Transitions (A k−→ B)

I 1

I n

32 / 109

DFAs
What are the 4 building blocks of DFAs?

I States

I Transitions (A k−→ B)

I 1 start state

I n

33 / 109

DFAs
What are the 4 building blocks of DFAs?

I States

I Transitions (A k−→ B)

I 1 start state

I n accept states

34 / 109

Regular languages
Given a language, what is one sign that it is not a regular
language?

Arbitrary nesting (e.g. parentheses, control structures)

35 / 109

Regular languages
Given a language, what is one sign that it is not a regular
language?

Arbitrary nesting (e.g. parentheses, control structures)

35 / 109

Practice questions
I Is the language {anbm | n > m} regular?

I Is the language {anbm | n,m both even} regular?

I Draw the DFA for the regular language {an | n odd}

36 / 109

Parser

Parser generalities
I What is the input of a parser?

Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 109

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 109

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser?

Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 109

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 109

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?

Context-free grammars

38 / 109

Parser generalities
I What is the input of a parser? Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars

38 / 109

Context-free grammars
What are the 4 building blocks of context-free grammars?

I T

I N

I P

I S

39 / 109

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I N

I P

I S

40 / 109

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I P

I S

41 / 109

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I Productions (e.g. stmt→ PRINT ’(’ expr ’)’)

I S

42 / 109

Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I Productions (e.g. stmt→ PRINT ’(’ expr ’)’)

I Start symbol

43 / 109

Context-free grammars
When is a grammar ambiguous?

When there is at least one sentence that has more than one
derivation/parse tree.

44 / 109

Context-free grammars
When is a grammar ambiguous?

When there is at least one sentence that has more than one
derivation/parse tree.

44 / 109

Ambiguous grammar
Grammar: E → id | E ‘+’ E

Program: id + id + id

What are the two parse trees for this sentence? (Note, parse
trees are not derivations)

E

E E

E Eid

id id

+

+

E

EE

EE id

idid

+

+

45 / 109

Ambiguous grammar
Grammar: E → id | E ‘+’ E

Program: id + id + id

What are the two parse trees for this sentence? (Note, parse
trees are not derivations)

E

E E

E Eid

id id

+

+

E

EE

EE id

idid

+

+

45 / 109

Ambiguous grammar
What are the two ways to fix this ambiguity?

Factoring the grammar using terms and factors:
E = E ‘+’ T | T;

T = id;

Precedence+associativity directives:
%left ‘+’

E = id | E ‘+’ E;

46 / 109

Ambiguous grammar
What are the two ways to fix this ambiguity?

Factoring the grammar using terms and factors:
E = E ‘+’ T | T;

T = id;

Precedence+associativity directives:
%left ‘+’

E = id | E ‘+’ E;

46 / 109

Ambiguous grammar
What are the two ways to fix this ambiguity?

Factoring the grammar using terms and factors:
E = E ‘+’ T | T;

T = id;

Precedence+associativity directives:
%left ‘+’

E = id | E ‘+’ E;

46 / 109

Parsers
What do LL(1) and LR(1) mean?

I LL(1)

I LR(1)

47 / 109

Parsers
What do LL(1) and LR(1) mean?

I LL(1): left-to-right processing, left-most derivation, one
token of lookahead

I LR(1)

48 / 109

Parsers
What do LL(1) and LR(1) mean?

I LL(1): left-to-right processing, left-most derivation, one
token of lookahead

I LR(1): left-to-right processing, right-most derivation, one
token of lookahead

49 / 109

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
E = T
T = ID

a + b + c

// left -most derivation
E
E ‘+’ T
E ‘+’ T ‘+’ T

// right -most derivation
E
E ‘+’ T
E ‘+’ ID

50 / 109

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
E = T
T = ID

a + b + c

// left -most derivation
E

E ‘+’ T
E ‘+’ T ‘+’ T

// right -most derivation
E
E ‘+’ T
E ‘+’ ID

50 / 109

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
E = T
T = ID

a + b + c

// left -most derivation
E
E ‘+’ T

E ‘+’ T ‘+’ T

// right -most derivation
E
E ‘+’ T
E ‘+’ ID

50 / 109

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
E = T
T = ID

a + b + c

// left -most derivation
E
E ‘+’ T
E ‘+’ T ‘+’ T

// right -most derivation
E
E ‘+’ T
E ‘+’ ID

50 / 109

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
E = T
T = ID

a + b + c

// left -most derivation
E
E ‘+’ T
E ‘+’ T ‘+’ T

// right -most derivation
E

E ‘+’ T
E ‘+’ ID

50 / 109

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
E = T
T = ID

a + b + c

// left -most derivation
E
E ‘+’ T
E ‘+’ T ‘+’ T

// right -most derivation
E
E ‘+’ T

E ‘+’ ID

50 / 109

Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
E = T
T = ID

a + b + c

// left -most derivation
E
E ‘+’ T
E ‘+’ T ‘+’ T

// right -most derivation
E
E ‘+’ T
E ‘+’ ID

50 / 109

Parsers
What are the two types of parser we saw in class?

I T

I B

51 / 109

Parsers
What are the two types of parser we saw in class?

I Top-down

I B

52 / 109

Parsers
What are the two types of parser we saw in class?

I Top-down

I Bottom-up

53 / 109

Parsers
What is the difference between top-down and bottom-up?

I Top-down:

start symbol ↓ leaves

I Bottom-up: leaves ↑ start symbol

54 / 109

Parsers
What is the difference between top-down and bottom-up?

I Top-down: start symbol ↓ leaves

I Bottom-up:

leaves ↑ start symbol

54 / 109

Parsers
What is the difference between top-down and bottom-up?

I Top-down: start symbol ↓ leaves

I Bottom-up: leaves ↑ start symbol

54 / 109

Parsers
What kinds of grammars do top-down and bottom-up parsers
tools use?

I Top-down:

LL

I Bottom-up: LR

55 / 109

Parsers
What kinds of grammars do top-down and bottom-up parsers
tools use?

I Top-down: LL

I Bottom-up:

LR

55 / 109

Parsers
What kinds of grammars do top-down and bottom-up parsers
tools use?

I Top-down: LL

I Bottom-up: LR

55 / 109

Top-down parsers
Is the following grammar LL(1)?

// Grammar
stmt = IF ’(’ expr ’)’ stmt

| IF ’(’ expr ’)’ stmt ELSE stmt
| ...

No

56 / 109

Top-down parsers
Is the following grammar LL(1)?

// Grammar
stmt = IF ’(’ expr ’)’ stmt

| IF ’(’ expr ’)’ stmt ELSE stmt
| ...

No

56 / 109

Top-down parsers
How can we make the grammar LL(1)?

// Grammar
stmt = IF ’(’ expr ’)’ stmt END

| IF ’(’ expr ’)’ stmt ELSE stmt
| ...

Grammar factoring
// Grammar
stmt = IF ’(’ expr ’)’ stmt endif

| ...

endif = END
| ELSE stmt

57 / 109

Top-down parsers
How can we make the grammar LL(1)?

// Grammar
stmt = IF ’(’ expr ’)’ stmt END

| IF ’(’ expr ’)’ stmt ELSE stmt
| ...

Grammar factoring
// Grammar
stmt = IF ’(’ expr ’)’ stmt endif

| ...

endif = END
| ELSE stmt

57 / 109

Top-down parsers
How do we implement a top-down parser by hand?

Recursive descent

58 / 109

Top-down parsers
How do we implement a top-down parser by hand?

Recursive descent

58 / 109

Recursive descent parser
// Grammar
stmt = ID ’=’ expr ’;’

| PRINT expr ’;’
| ...

// Python code
def stmt():

next_tok = peek()
if next_tok == TOK_ID:

id = consume(TOK_ID)
consume(TOK_EQ)
e = expr()
consume(TOK_SEMI)
return astnode(AST_ASSIGN , lhs=id, rhs=e)

elif next_tok == TOK_PRINT:
consume(TOK_PRINT)
e = expr()
consume(TOK_SEMI)
return astnode(AST_PRINT , expr=e)

elif ...

59 / 109

Recursive descent parser
// Grammar
stmt = ID ’=’ expr ’;’

| PRINT expr ’;’
| ...

// Python code
def stmt():

next_tok = peek()
if next_tok == TOK_ID:

id = consume(TOK_ID)
consume(TOK_EQ)
e = expr()
consume(TOK_SEMI)
return astnode(AST_ASSIGN , lhs=id, rhs=e)

elif next_tok == TOK_PRINT:
consume(TOK_PRINT)
e = expr()
consume(TOK_SEMI)
return astnode(AST_PRINT , expr=e)

elif ...

59 / 109

Bottom-up parsers
What technique do we use in bottom-up parsing (LR) tools?

Shift/reduce

60 / 109

Bottom-up parsers
What technique do we use in bottom-up parsing (LR) tools?

Shift/reduce

60 / 109

Bottom-up parsers
What are the three actions of a bottom-up parser?

I S

I R

I A

61 / 109

Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I R

I A

62 / 109

Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I Reduce (replace elements on the top of the stack with a
non-terminal)

I A

63 / 109

Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I Reduce (replace elements on the top of the stack with a
non-terminal)

I Accept

64 / 109

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$

shift
a cb$ shift
ac b$ reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $ accept

65 / 109

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$

shift
ac b$ reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $ accept

65 / 109

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$

reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $ accept

65 / 109

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$ reduce S->c
aS b$

shift
aSb $ reduce S->aSb
S $ accept

65 / 109

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$ reduce S->c
aS b$ shift
aSb $

reduce S->aSb
S $ accept

65 / 109

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$ reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $

accept

65 / 109

Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$ shift
a cb$ shift
ac b$ reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $ accept

65 / 109

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: rule1 | rule2
rule1: ID
rule2: ID
%%

Reduce/reduce

66 / 109

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: rule1 | rule2
rule1: ID
rule2: ID
%%

Reduce/reduce

66 / 109

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: ID ID | rule1 ID
rule1: ID
%%

Shift/reduce

67 / 109

Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: ID ID | rule1 ID
rule1: ID
%%

Shift/reduce

67 / 109

Bottom-up parsers
How do precedence directives resolve grammar ambiguities?

They instruct the parser to either shift or reduce when both
options are valid

68 / 109

Bottom-up parsers
How do precedence directives resolve grammar ambiguities?

They instruct the parser to either shift or reduce when both
options are valid

68 / 109

Bottom-up parsers
Given the grammar for expressions and the necessary
precedence directives to resolve the ambiguities

%left ‘+’
%left ‘*’

%%

E : E ‘+’ E
| E ‘*’ E
| id

Which action is preferred for the following parser states?
stack input action

E + E * id$

shift

E + E + id$ reduce E->E+E

69 / 109

Bottom-up parsers
Given the grammar for expressions and the necessary
precedence directives to resolve the ambiguities

%left ‘+’
%left ‘*’

%%

E : E ‘+’ E
| E ‘*’ E
| id

Which action is preferred for the following parser states?
stack input action

E + E * id$ shift

E + E + id$ reduce E->E+E

69 / 109

Bottom-up parsers
Given the grammar for expressions and the necessary
precedence directives to resolve the ambiguities

%left ‘+’
%left ‘*’

%%

E : E ‘+’ E
| E ‘*’ E
| id

Which action is preferred for the following parser states?
stack input action

E + E * id$ shift

E + E + id$

reduce E->E+E

69 / 109

Bottom-up parsers
Given the grammar for expressions and the necessary
precedence directives to resolve the ambiguities

%left ‘+’
%left ‘*’

%%

E : E ‘+’ E
| E ‘*’ E
| id

Which action is preferred for the following parser states?
stack input action

E + E * id$ shift

E + E + id$ reduce E->E+E

69 / 109

AST

70 / 109

Concrete syntax tree
I What is a CST?

The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals

71 / 109

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals

71 / 109

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST?

The non-terminals

I What are the leaves of a CST? The terminals

71 / 109

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals

71 / 109

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST?

The terminals

71 / 109

Concrete syntax tree
I What is a CST? The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals

71 / 109

Abstract syntax tree
I What is a AST?

A tree representation of the program
without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

72 / 109

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

72 / 109

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST?

Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

72 / 109

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

72 / 109

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST?

Literals and identifiers

72 / 109

Abstract syntax tree
I What is a AST? A tree representation of the program

without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers

72 / 109

AST vs CST
I Can you use a CST for type checking?

Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter

73 / 109

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter

73 / 109

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen?

Yes

I Then why do we prefer ASTs? Simpler and shorter

73 / 109

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter

73 / 109

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs?

Simpler and shorter

73 / 109

AST vs CST
I Can you use a CST for type checking? Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter

73 / 109

260 Chapter 7. Syntax-Directed Translation

T

E

T

E

T

E

T

E

T

E

T

E

Stmt

T

E

Stmt

x +if (y) { while (z) z = z + 1 od ; x = 8 } else z = 7 fi
id plus num rparenbegin while lparenif lparen id rparen id assign id plus num od semi id assign num end else id assign num fi

Stmt

Stmt

Stmts

Stmts

Stmt

$

$

Stmt

Start

Figure 7.18: Concrete syntax tree.

if

id
x

plus

id
y

assign

7
intconstid

z

block

while

id
z

id
z

id
z

plus

1
intconst

assign

8
intconst

assign

id
x

Figure 7.19: AST for the parse tree in Figure 7.18.

Weeder

75 / 109

Weeder
What is the role of the weeder?

Reject invalid programs that the parser cannot.

76 / 109

Weeder
What is the role of the weeder?

Reject invalid programs that the parser cannot.

76 / 109

Weeder
What are some examples that a parser cannot easily reject and
must be done in a weeder?

I Reject break and continue outside of loops

I Reject switch statements with multiple default branches

I Reject non-void functions without return statements

77 / 109

Weeder
What are some examples that a parser cannot easily reject and
must be done in a weeder?

I Reject break and continue outside of loops

I Reject switch statements with multiple default branches

I Reject non-void functions without return statements

77 / 109

Weeder
Can we write a parser to reject break outside loops?

Probably, but the parser would be larger, more complicated
and uglier.

78 / 109

Weeder
Can we write a parser to reject break outside loops?

Probably, but the parser would be larger, more complicated
and uglier.

78 / 109

Weeder
If a check can be done in the parser and in the weeder, where
should we do it?

I Where it makes our job easier

I Where it gives the better error message

79 / 109

Weeder
If a check can be done in the parser and in the weeder, where
should we do it?

I Where it makes our job easier

I Where it gives the better error message

79 / 109

Symbol tables

Symbol tables
What is stored in a symbol table?

Identifiers and their related information.

81 / 109

Symbol tables
What is stored in a symbol table?

Identifiers and their related information.

81 / 109

Symbol tables
What information can be associated with a symbol?

I Type

I Offset in stack frame

I Resources for methods (e.g. number of locals, stack limit)

I Original name

I Etc.

82 / 109

Symbol tables
What information can be associated with a symbol?

I Type

I Offset in stack frame

I Resources for methods (e.g. number of locals, stack limit)

I Original name

I Etc.

82 / 109

Symbol tables
What data structure is typically used for a symbol table
(assuming a single scope)?

Hash tables

83 / 109

Symbol tables
What data structure is typically used for a symbol table
(assuming a single scope)?

Hash tables

83 / 109

Symbol tables
How do we handle multiple scopes where variables can be
redeclared?

Stack of hash tables (cactus stack)

When do we modify this stack?

Push when opening a new scope, pop when closing a scope

84 / 109

Symbol tables
How do we handle multiple scopes where variables can be
redeclared?

Stack of hash tables (cactus stack)

When do we modify this stack?

Push when opening a new scope, pop when closing a scope

84 / 109

Symbol tables
How do we handle multiple scopes where variables can be
redeclared?

Stack of hash tables (cactus stack)

When do we modify this stack?

Push when opening a new scope, pop when closing a scope

84 / 109

Symbol tables
How do we handle multiple scopes where variables can be
redeclared?

Stack of hash tables (cactus stack)

When do we modify this stack?

Push when opening a new scope, pop when closing a scope

84 / 109

Symbol tables
How do we insert a symbol?

Put into the top table

How do we lookup a symbol?

Search hash tables in the stack from top to bottom

85 / 109

Symbol tables
How do we insert a symbol?

Put into the top table

How do we lookup a symbol?

Search hash tables in the stack from top to bottom

85 / 109

Symbol tables
How do we insert a symbol?

Put into the top table

How do we lookup a symbol?

Search hash tables in the stack from top to bottom

85 / 109

Symbol tables
How do we insert a symbol?

Put into the top table

How do we lookup a symbol?

Search hash tables in the stack from top to bottom

85 / 109

Type checking

Type checking
What is the role of type checking?

Reject programs that are syntactically correct, but semantically
wrong.

87 / 109

Type checking
What is the role of type checking?

Reject programs that are syntactically correct, but semantically
wrong.

87 / 109

Type checking
I What is the input of the type checker?

AST

I What is the output of the type checker? Annotated AST
(AST+types)

88 / 109

Type checking
I What is the input of the type checker? AST

I What is the output of the type checker? Annotated AST
(AST+types)

88 / 109

Type checking
I What is the input of the type checker? AST

I What is the output of the type checker?

Annotated AST
(AST+types)

88 / 109

Type checking
I What is the input of the type checker? AST

I What is the output of the type checker? Annotated AST
(AST+types)

88 / 109

Type checking
I Do declarations have a type?

No

I Do statements have a type? No

I Do expressions have a type? Yes

89 / 109

Type checking
I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type? Yes

89 / 109

Type checking
I Do declarations have a type? No

I Do statements have a type?

No

I Do expressions have a type? Yes

89 / 109

Type checking
I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type? Yes

89 / 109

Type checking
I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type?

Yes

89 / 109

Type checking
I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type? Yes

89 / 109

Type checking
Where do we store the type of expressions?

I In the AST

I In an auxiliary table (SableCC)

90 / 109

Type checking
Where do we store the type of expressions?

I In the AST

I In an auxiliary table (SableCC)

90 / 109

Type checking
Exercise, state the typechecking steps of the following

var x int = expr

I Type check expr

I Make sure int := typeof(expr)

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

I Type check the rest of the program with the updated
symbol table

91 / 109

Type checking
Exercise, state the typechecking steps of the following

var x int = expr

I Type check expr

I Make sure int := typeof(expr)

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

I Type check the rest of the program with the updated
symbol table

91 / 109

Type checking
Exercise, state the typechecking steps of the following

var x int = expr

I Type check expr

I Make sure int := typeof(expr)

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

I Type check the rest of the program with the updated
symbol table

91 / 109

Type checking
Exercise, state the typechecking steps of the following

var x int = expr

I Type check expr

I Make sure int := typeof(expr)

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

I Type check the rest of the program with the updated
symbol table

91 / 109

Type checking
Exercise, state the typechecking steps of the following

var x int = expr

I Type check expr

I Make sure int := typeof(expr)

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

I Type check the rest of the program with the updated
symbol table

91 / 109

Type checking
Exercise, state the typechecking steps of the following

var x int = expr

I Type check expr

I Make sure int := typeof(expr)

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

I Type check the rest of the program with the updated
symbol table

91 / 109

Type checking
Exercise, state the typechecking steps of the following

if expr {
then_stmts

} else {
else_stmts

}

I Type check expr, then_stmts, and else_stmts

I Make sure typeof(expr) = bool

92 / 109

Type checking
Exercise, state the typechecking steps of the following

if expr {
then_stmts

} else {
else_stmts

}

I Type check expr, then_stmts, and else_stmts

I Make sure typeof(expr) = bool

92 / 109

Type checking
Exercise, state the typechecking steps of the following

if expr {
then_stmts

} else {
else_stmts

}

I Type check expr, then_stmts, and else_stmts

I Make sure typeof(expr) = bool

92 / 109

Inference rules
What does this mean in English?

P
C

“If P then C”

93 / 109

Inference rules
What does this mean in English?

P
C

“If P then C”

93 / 109

Inference rules
What about this?

P1 P2
C

“If P1 and P2 then C”

94 / 109

Inference rules
What about this?

P1 P2
C

“If P1 and P2 then C”

94 / 109

Inference rules
What does this mean in English?

Γ ` e : T

“Under the context Γ, it is provable (`) that e has type (:) T”

(Context = symbol table)

95 / 109

Inference rules
What does this mean in English?

Γ ` e : T

“Under the context Γ, it is provable (`) that e has type (:) T”

(Context = symbol table)

95 / 109

Inference rules
What does this action do?

Γ[x→ T]

Γ ` T x

Adds the mapping from x to T in the symbol table

We can also use the updated context to type check the rest of
the program

Γ[x→ T] ` rest
Γ ` T x; rest

96 / 109

Inference rules
What does this action do?

Γ[x→ T]

Γ ` T x

Adds the mapping from x to T in the symbol table

We can also use the updated context to type check the rest of
the program

Γ[x→ T] ` rest
Γ ` T x; rest

96 / 109

Inference rules
What does this action do?

Γ[x→ T]

Γ ` T x

Adds the mapping from x to T in the symbol table

We can also use the updated context to type check the rest of
the program

Γ[x→ T] ` rest
Γ ` T x; rest

96 / 109

Inference rules
What does this mean in English?

Γ(x) = T
Γ ` x : T

“If in the context Γ x is mapped to type T, then under the context Γ

it is provable that x has type T.”

97 / 109

Inference rules
What does this mean in English?

Γ(x) = T
Γ ` x : T

“If in the context Γ x is mapped to type T, then under the context Γ

it is provable that x has type T.”

97 / 109

Inference rules
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

“If under the context Γ it is provable that e1 has type int and under
the context Γ it is provable that e2 has type int, then under the
context Γ it is provable that e1 + e2 has type int.”

98 / 109

Inference rules
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

“If under the context Γ it is provable that e1 has type int and under
the context Γ it is provable that e2 has type int, then under the
context Γ it is provable that e1 + e2 has type int.”

98 / 109

Inference rules
Γ ` e : bool Γ ` s1 Γ ` s2

Γ ` if e {s1} else {s2}

“If under the context Γ it is provable that e has type bool and under
the context Γ it is provable that s1 typechecks, and under the context
Γ it is provable that s2 typechecks, then under the context Γ it is
provable that if e {s1} else {s2} typechecks.”

99 / 109

Inference rules
Γ ` e : bool Γ ` s1 Γ ` s2

Γ ` if e {s1} else {s2}

“If under the context Γ it is provable that e has type bool and under
the context Γ it is provable that s1 typechecks, and under the context
Γ it is provable that s2 typechecks, then under the context Γ it is
provable that if e {s1} else {s2} typechecks.”

99 / 109

Inference rules
This is not going to be on the exam (probably)

L,C,M,V ` Ei : σi

∃~τ : constructor(L, C, ~τ) ∧
~τ := ~σ ∧
(∀~γ : constructor(L, C, ~γ) ∧ ~γ := ~σ

⇓
~γ := ~τ

)

L,C,M,V ` new C(E1, . . . ,En) : C

100 / 109

Code generation

Code generation
Code generation has many sub-phases:

I Computing resources

I Generating an IR of the code

I Optimizing the code

I Emitting the code

102 / 109

Computing resources
In JOOS, what resources did we need to compute?

I L

I S

I L

I O

103 / 109

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I S

I L

I O

104 / 109

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I L

I O

105 / 109

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I Labels (for control structures and some operators)

I O

106 / 109

Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I Labels (for control structures and some operators)

I Offsets (locals and formals)

107 / 109

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

.method public static f(I)V

.limit locals

.limit stack
// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

.end method

I How many locals? 1

I Stack height? 2

108 / 109

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

.method public static f(I)V

.limit locals

.limit stack
// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

.end method

I How many locals? 1

I Stack height? 2

108 / 109

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

.method public static f(I)V

.limit locals

.limit stack
// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

.end method

I How many locals?

1

I Stack height? 2

108 / 109

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

.method public static f(I)V

.limit locals

.limit stack
// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

.end method

I How many locals? 1

I Stack height? 2

108 / 109

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

.method public static f(I)V

.limit locals

.limit stack
// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

.end method

I How many locals? 1

I Stack height?

2

108 / 109

JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

.method public static f(I)V

.limit locals

.limit stack
// [TOP , BOT]
// [,]

iload_0 // [x ,]
ldc_int 3 // [3 , x]
iadd // [x+3 ,]
istore_0 // [,]

.end method

I How many locals? 1

I Stack height? 2
108 / 109

JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one

109 / 109

JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one

109 / 109

JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one

109 / 109

JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one

109 / 109

