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Plan
I We’ll go over the different concepts we saw in class

I And outline some questions to practise

I You will have to provide the answers

I I know the names of many of you; if you don’t want to be
called out, volunteer an answer :)
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Compiler overview



What is a compiler?

An automated program that translates programs written in a
source language into equivalent programs in a target language.
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Phases of the compilers
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Scanner



Scanner generalities
I What is the input of a scanner?

Characters

I What is the output of a scanner? Tokens

I What formalism did we use to specify scanners? Regular
expressions
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Regular expressions
What are the 5 building blocks of regular expressions?

I C

I E

I C

I A

I R
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Regular expressions
What are the 5 building blocks of regular expressions?

I Character ’c’

I Empty string ε

I Concatenation AB

I Alternation A|B

I Repetition A*
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Regular expressions
More regular expressions

I Optional

A? = A|ε

I One-or-more A+ = A(A*)
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Scanner
How does flex match tokens?
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Scanner
How does flex handle multiple matches?

I Longest match rule (e.g. var vs variance)

I First match rule (e.g. keywords vs identifiers)
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Scanner
How does flex make regular expressions executable?

Regular expression→ NFA→ DFA
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Regular Languages
What relationship exists between regular expressions, NFAs
and DFAs?

They are all equally powerful, and all recognize regular
languages
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DFAs
What are the 4 building blocks of DFAs?

I S

I T

I 1

I n
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What are the 4 building blocks of DFAs?

I States

I Transitions (A k−→ B)

I 1 start state

I n accept states
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Regular languages
Given a language, what is one sign that it is not a regular
language?

Arbitrary nesting (e.g. parentheses, control structures)
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Practice questions
I Is the language {anbm | n > m} regular?

I Is the language {anbm | n,m both even} regular?

I Draw the DFA for the regular language {an | n odd}
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Parser



Parser generalities
I What is the input of a parser?

Tokens

I What is the output of a parser? Syntax tree (abstract or
concrete)

I What formalism did we use to specify parsers?
Context-free grammars
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Context-free grammars
What are the 4 building blocks of context-free grammars?

I T

I N

I P

I S
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Context-free grammars
What are the 4 building blocks of context-free grammars?

I Terminals (tokens)

I Non-terminals (e.g. stmt or expr)

I Productions (e.g. stmt→ PRINT ’(’ expr ’)’)
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Context-free grammars
When is a grammar ambiguous?

When there is at least one sentence that has more than one
derivation/parse tree.

44 / 109



Context-free grammars
When is a grammar ambiguous?

When there is at least one sentence that has more than one
derivation/parse tree.

44 / 109



Ambiguous grammar
Grammar: E → id | E ‘+’ E

Program: id + id + id

What are the two parse trees for this sentence? (Note, parse
trees are not derivations)

E

E E

E Eid

id id

+

+

E

EE

EE id

idid

+

+
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Ambiguous grammar
What are the two ways to fix this ambiguity?

Factoring the grammar using terms and factors:
E = E ‘+’ T | T;

T = id;

Precedence+associativity directives:
%left ‘+’

E = id | E ‘+’ E;
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Parsers
What do LL(1) and LR(1) mean?

I LL(1)

I LR(1)
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Parsers
What do LL(1) and LR(1) mean?

I LL(1): left-to-right processing, left-most derivation, one
token of lookahead

I LR(1)
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Parsers
What is a left-most derivation? A right-most derivation?

E = E ‘+’ T
E = T
T = ID

a + b + c

// left -most derivation
E
E ‘+’ T
E ‘+’ T ‘+’ T

// right -most derivation
E
E ‘+’ T
E ‘+’ ID
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Parsers
What are the two types of parser we saw in class?

I T

I B
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I Top-down

I B
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Parsers
What is the difference between top-down and bottom-up?

I Top-down:

start symbol ↓ leaves

I Bottom-up: leaves ↑ start symbol
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Parsers
What kinds of grammars do top-down and bottom-up parsers
tools use?

I Top-down:

LL

I Bottom-up: LR
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Top-down parsers
Is the following grammar LL(1)?

// Grammar
stmt = IF ’(’ expr ’)’ stmt

| IF ’(’ expr ’)’ stmt ELSE stmt
| ...

No
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Top-down parsers
How can we make the grammar LL(1)?

// Grammar
stmt = IF ’(’ expr ’)’ stmt END

| IF ’(’ expr ’)’ stmt ELSE stmt
| ...

Grammar factoring
// Grammar
stmt = IF ’(’ expr ’)’ stmt endif

| ...

endif = END
| ELSE stmt

57 / 109



Top-down parsers
How can we make the grammar LL(1)?

// Grammar
stmt = IF ’(’ expr ’)’ stmt END

| IF ’(’ expr ’)’ stmt ELSE stmt
| ...

Grammar factoring
// Grammar
stmt = IF ’(’ expr ’)’ stmt endif

| ...

endif = END
| ELSE stmt

57 / 109



Top-down parsers
How do we implement a top-down parser by hand?

Recursive descent
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Recursive descent parser
// Grammar
stmt = ID ’=’ expr ’;’

| PRINT expr ’;’
| ...

// Python code
def stmt():

next_tok = peek()
if next_tok == TOK_ID:

id = consume(TOK_ID)
consume(TOK_EQ)
e = expr()
consume(TOK_SEMI)
return astnode(AST_ASSIGN , lhs=id, rhs=e)

elif next_tok == TOK_PRINT:
consume(TOK_PRINT)
e = expr()
consume(TOK_SEMI)
return astnode(AST_PRINT , expr=e)

elif ...

59 / 109



Recursive descent parser
// Grammar
stmt = ID ’=’ expr ’;’

| PRINT expr ’;’
| ...

// Python code
def stmt():

next_tok = peek()
if next_tok == TOK_ID:

id = consume(TOK_ID)
consume(TOK_EQ)
e = expr()
consume(TOK_SEMI)
return astnode(AST_ASSIGN , lhs=id, rhs=e)

elif next_tok == TOK_PRINT:
consume(TOK_PRINT)
e = expr()
consume(TOK_SEMI)
return astnode(AST_PRINT , expr=e)

elif ...

59 / 109



Bottom-up parsers
What technique do we use in bottom-up parsing (LR) tools?

Shift/reduce
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Bottom-up parsers
What are the three actions of a bottom-up parser?

I S

I R

I A
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I Shift (move a token from input to stack)

I Reduce (replace elements on the top of the stack with a
non-terminal)

I A
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Bottom-up parsers
What are the three actions of a bottom-up parser?

I Shift (move a token from input to stack)

I Reduce (replace elements on the top of the stack with a
non-terminal)

I Accept
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Bottom-up parsers
Given the simple context-free grammar

// Grammar
S = a S b

| c

Show the shift-reduce progression for the sentence acb
stack input action

acb$

shift
a cb$ shift
ac b$ reduce S->c
aS b$ shift
aSb $ reduce S->aSb
S $ accept
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Bottom-up parsers
What type of conflict is exhibited in this grammar?

%{
%}

%token ID
%start start

%%
start: rule1 | rule2
rule1: ID
rule2: ID
%%

Reduce/reduce
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Bottom-up parsers
How do precedence directives resolve grammar ambiguities?

They instruct the parser to either shift or reduce when both
options are valid
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Bottom-up parsers
Given the grammar for expressions and the necessary
precedence directives to resolve the ambiguities

%left ‘+’
%left ‘*’

%%

E : E ‘+’ E
| E ‘*’ E
| id

Which action is preferred for the following parser states?
stack input action

E + E * id$

shift

E + E + id$ reduce E->E+E

69 / 109



Bottom-up parsers
Given the grammar for expressions and the necessary
precedence directives to resolve the ambiguities

%left ‘+’
%left ‘*’

%%

E : E ‘+’ E
| E ‘*’ E
| id

Which action is preferred for the following parser states?
stack input action

E + E * id$ shift

E + E + id$ reduce E->E+E

69 / 109



Bottom-up parsers
Given the grammar for expressions and the necessary
precedence directives to resolve the ambiguities

%left ‘+’
%left ‘*’

%%

E : E ‘+’ E
| E ‘*’ E
| id

Which action is preferred for the following parser states?
stack input action

E + E * id$ shift

E + E + id$

reduce E->E+E

69 / 109



Bottom-up parsers
Given the grammar for expressions and the necessary
precedence directives to resolve the ambiguities

%left ‘+’
%left ‘*’

%%

E : E ‘+’ E
| E ‘*’ E
| id

Which action is preferred for the following parser states?
stack input action

E + E * id$ shift

E + E + id$ reduce E->E+E

69 / 109



AST
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Concrete syntax tree
I What is a CST?

The tree that traces a parser derivation

I What are the inner nodes of a CST? The non-terminals

I What are the leaves of a CST? The terminals
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Abstract syntax tree
I What is a AST?

A tree representation of the program
without the extraneous stuff (e.g. punctuation, extra
non-terminals)

I What are the inner nodes of an AST? Statements and
expressions

I What are the leaves of an AST? Literals and identifiers
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AST vs CST
I Can you use a CST for type checking?

Yes

I Can you use a CST for code gen? Yes

I Then why do we prefer ASTs? Simpler and shorter
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260 Chapter 7. Syntax-Directed Translation
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Weeder
What is the role of the weeder?

Reject invalid programs that the parser cannot.
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Weeder
What are some examples that a parser cannot easily reject and
must be done in a weeder?

I Reject break and continue outside of loops

I Reject switch statements with multiple default branches

I Reject non-void functions without return statements
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Weeder
Can we write a parser to reject break outside loops?

Probably, but the parser would be larger, more complicated
and uglier.
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Weeder
If a check can be done in the parser and in the weeder, where
should we do it?

I Where it makes our job easier

I Where it gives the better error message
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Symbol tables
What is stored in a symbol table?

Identifiers and their related information.
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Symbol tables
What information can be associated with a symbol?

I Type

I Offset in stack frame

I Resources for methods (e.g. number of locals, stack limit)

I Original name

I Etc.
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Symbol tables
What data structure is typically used for a symbol table
(assuming a single scope)?

Hash tables
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Symbol tables
How do we handle multiple scopes where variables can be
redeclared?

Stack of hash tables (cactus stack)

When do we modify this stack?

Push when opening a new scope, pop when closing a scope
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Symbol tables
How do we insert a symbol?

Put into the top table

How do we lookup a symbol?

Search hash tables in the stack from top to bottom
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Type checking
What is the role of type checking?

Reject programs that are syntactically correct, but semantically
wrong.
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Type checking
I What is the input of the type checker?

AST

I What is the output of the type checker? Annotated AST
(AST+types)
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Type checking
I Do declarations have a type?

No

I Do statements have a type? No

I Do expressions have a type? Yes
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I Do declarations have a type? No

I Do statements have a type? No
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I Do declarations have a type? No

I Do statements have a type? No

I Do expressions have a type? Yes
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Type checking
Where do we store the type of expressions?

I In the AST

I In an auxiliary table (SableCC)
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Type checking
Exercise, state the typechecking steps of the following

var x int = expr

I Type check expr

I Make sure int := typeof(expr)

I Try to add x -> int to the symbol table

I Report an error if x is already defined in the current scope

I Type check the rest of the program with the updated
symbol table
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Type checking
Exercise, state the typechecking steps of the following

if expr {
then_stmts

} else {
else_stmts

}

I Type check expr, then_stmts, and else_stmts

I Make sure typeof(expr) = bool
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Inference rules
What does this mean in English?

P
C

“If P then C”
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Inference rules
What about this?

P1 P2
C

“If P1 and P2 then C”
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Inference rules
What does this mean in English?

Γ ` e : T

“Under the context Γ, it is provable (`) that e has type (:) T”

(Context = symbol table)
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Inference rules
What does this action do?

Γ[x→ T]

Γ ` T x

Adds the mapping from x to T in the symbol table

We can also use the updated context to type check the rest of
the program

Γ[x→ T] ` rest
Γ ` T x; rest
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Inference rules
What does this mean in English?

Γ(x) = T
Γ ` x : T

“If in the context Γ x is mapped to type T, then under the context Γ

it is provable that x has type T.”
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Inference rules
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

“If under the context Γ it is provable that e1 has type int and under
the context Γ it is provable that e2 has type int, then under the
context Γ it is provable that e1 + e2 has type int.”
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Inference rules
Γ ` e : bool Γ ` s1 Γ ` s2

Γ ` if e {s1} else {s2}

“If under the context Γ it is provable that e has type bool and under
the context Γ it is provable that s1 typechecks, and under the context
Γ it is provable that s2 typechecks, then under the context Γ it is
provable that if e {s1} else {s2} typechecks.”
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Inference rules
This is not going to be on the exam (probably)

L,C,M,V ` Ei : σi

∃~τ : constructor(L, C, ~τ) ∧
~τ := ~σ ∧
(∀~γ : constructor(L, C, ~γ) ∧ ~γ := ~σ

⇓
~γ := ~τ

)

L,C,M,V ` new C(E1, . . . ,En) : C
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Code generation
Code generation has many sub-phases:

I Computing resources

I Generating an IR of the code

I Optimizing the code

I Emitting the code
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Computing resources
In JOOS, what resources did we need to compute?

I L

I S

I L

I O
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Computing resources
In JOOS, what resources did we need to compute?

I Locals (how many?)

I Stack height (maximum)

I Labels (for control structures and some operators)

I Offsets (locals and formals)
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JVM bytecodes
What does the body of this method look like in Jasmin?

public static void f(int x) {
x = x + 3;

}

.method public static f(I)V

.limit locals

.limit stack
// [ TOP , BOT ]
// [ , ]

iload_0 // [ x , ]
ldc_int 3 // [ 3 , x ]
iadd // [ x+3 , ]
istore_0 // [ , ]

.end method

I How many locals? 1

I Stack height? 2
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JVM bytecodes
What invariant must be respected by statement code templates?

Stack height is unchanged

What invariant must be respected by expression code
templates?

Stack height increased by one
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