
COMP 520 Winter 2020 Optimization (1)

Optimization
COMP 520: Compiler Design (4 credits)
Alexander Krolik
alexander.krolik@mail.mcgill.ca

MWF 10:30-11:30, TR 1100
http://www.cs.mcgill.ca/~cs520/2020/

Dot Gitignore

COMP 520 Winter 2020 Optimization (2)

Announcements (Wednesday, February 19th)
Milestone 1

• Any questions?

– Weeding cases, what are they?

– Semicolon insertion rule

• Due: Saturday, February 22nd 11:59 PM

Midterm

• Date: Tuesday, February 25th 6:00 - 7:30 PM in RPHYS 112

• Review: Monday, February 24th in class

• Sample midterm from 2019

COMP 520 Winter 2020 Optimization (3)

Optimization
Introduction

Peephole

Contest

Thought

COMP 520 Winter 2020 Optimization (4)

Optimization
We typically think of optimization in terms of speed, but an optimizer can focus on any of:

• Reducing the execution time; or

• Reducing the code size; or

• Reducing the power consumption (new).

Ideally

The best optimizations achieve all goals – but this is difficult to accomplish in general. These goals
often conflict, since a larger program may in fact be faster.

• Loop unrolling;

• Type/shape specialization;

• etc.

COMP 520 Winter 2020 Optimization (5)

Optimizations for Space
Optimizations for space reduce code size by replacing sequences of instructions with a smaller set.

Over time

• Historically very important, because memory was small and expensive;

• When memory became large and cheap, optimizing compilers traded space for speed; but

• Then Internet bandwidth was small and expensive, so Java compilers optimized for space; but

• Today Internet bandwidth is larger and cheaper, so we optimize for speed again.

⇒ Optimizations are driven by economy!

COMP 520 Winter 2020 Optimization (6)

Optimizations for Speed
Optimizations for speed improve the execution performance of the program.

Over time

• Historically very important to gain acceptance for high-level languages; and

• Are still important, since the software always strains the limits of the hardware.

These types of optimizations form the bulk of modern optimizing compilers.

Difficulty

Optimizations for speed are a battle, mapping the programming language to the hardware

• Challenged by ever higher abstractions in programming languages; and

• Must constantly adapt to changing microprocessor architectures.

COMP 520 Winter 2020 Optimization (7)

Optimizations for Speed
Regardless of the language and underlying hardware, several common optimization areas include
(from low-level to high-level)

• Cache performance;

• Parallel/vectorization;

• Loop invariants;

• Common-subexpression elimination (CSE)/dead code removal; and

• · · ·

COMP 520 Winter 2020 Optimization (8)

Optimization Passes
Optimizations may take place at various levels of program transformation/execution

• At the source code level (programmer);

• In an intermediate representation;

• At the binary machine code level; or

• At run-time (e.g. JIT compilers).

An aggressive optimization requires many small contributions from all levels.

COMP 520 Winter 2020 Optimization (9)

Optimization Strategy
Choosing an optimization strategy is a balance between the needs of the programmer/user

• Writing time (programmer);

• Compilation time (programmer or user);

• Execution time (user).

Compiler pipeline

We must decide the most effective phase to perform each optimization depending on

• Necessary information/representations;

– Machine characteristics (low-level);

– Programming language constructs (high-level);

• Runtime vs offline; and more

Note: The “best” strategy is still very much up for debate.

COMP 520 Winter 2020 Optimization (10)

Optimization Considerations
The following slides outline several considerations we commonly see in compiler design

1. Programmer vs. compiler;

2. Size vs. speed;

3. Abstraction vs. low-level.

Of course, there are many many more!

http://xkcd.com/303/

COMP 520 Winter 2020 Optimization (11)

Optimization from a Programmer’s Perspective
Should you program in “Optimized C”?

If you want a fast C program, should you use LOOP #1 or LOOP #2?

/* LOOP #1 */
for (i = 0; i < N; i++) {

a[i] = a[i] * 2000;
a[i] = a[i] / 10000;

}

/* LOOP #2 */
b = a;
for (i = 0; i < N; i++) {

*b = *b * 2000;
*b = *b / 10000;
b++;

}

What would the expert programmer do?

COMP 520 Winter 2020 Optimization (12)

Optimization from a Programmer’s Perspective
If you said LOOP #2 . . . you were (mostly) wrong!

LOOP opt. level SPARC MIPS Alpha

#1 (array) no opt 20.5 21.6 7.85

#1 (array) opt 8.8 12.3 3.26

#1 (array) super 7.9 11.2 2.96

#2 (ptr) no opt 19.5 17.6 7.55

#2 (ptr) opt 12.4 15.4 4.09

#2 (ptr) super 10.7 12.9 3.94

COMP 520 Winter 2020 Optimization (13)

Optimization from a Programmer’s Perspective
If you said LOOP #2 . . . you were (mostly) wrong!

LOOP opt. level SPARC MIPS Alpha

#1 (array) no opt 20.5 21.6 7.85

#1 (array) opt 8.8 12.3 3.26

#1 (array) super 7.9 11.2 2.96

#2 (ptr) no opt 19.5 17.6 7.55

#2 (ptr) opt 12.4 15.4 4.09

#2 (ptr) super 10.7 12.9 3.94

• Hand-optimization does improve performance with the optimizer off, but not with it on!

• Pointers confuse most C compilers! Keeping array structures is much easier to optimize.

• In general, write clear C code; it is easier for both the programmer and compiler to understand.

COMP 520 Winter 2020 Optimization (14)

Optimization: Smaller and Faster
Intuitively, reducing the number of instructions to execute can improve program performance

• Remove unnecessary operations;

• Simplify control structures; and

• Replace complex operations by simpler ones (strength reduction).

This is what the JOOS peephole optimizer does.

COMP 520 Winter 2020 Optimization (15)

Optimization: Smaller and Slower
On the other hand, reducing the code size (or keeping it small) might not improve the performance

• Function calls instead of inlining is costly;

• Not unrolling loops leads to more jumps;

• CSE (common-subexpression elimination) may increasing register pressure.

Conclusion

Even though the JOOS optimizer targets size for speed, it is important to not always equate
improvements in size with improvements in speed.

COMP 520 Winter 2020 Optimization (16)

Optimization: Larger and Faster (Tabulation)
In some instances, expanding the code size can improve performance. Tabulation is one such
approach which replaces function calls with an approximation

Sine function

sin(x) = x−
x3

3!
+

x5

5!
−

x7

7!
+

Optimization using a lookup table

sin(0.0) 0.000000

sin(0.1) 0.099833

sin(0.2) 0.198669

sin(0.3) 0.295520

sin(0.4) 0.389418

sin(0.5) 0.479426

sin(0.6) 0.564642

COMP 520 Winter 2020 Optimization (17)

Optimization: Larger and Faster (Loop Unrolling)
Loop unrolling reduces the overhead of jumping and condition testing by merging adjacent
iterations. Given a loop bound multiple of two

for (i = 0; i < 2 * N; i++) {
a[i] = a[i] + b[i];

}

We can rewrite the code by merging pairs of iterations (unroll factor 2)

for (i = 0; i < 2 * N; i = i+2) {
j = i + 1;
a[i] = a[i] + b[i];
a[j] = a[j] + b[j];

}

Loop unrolling can give a 10–20% speedup. What is a potential disadvantage? How does this work
for loop bounds that may not be a multiple of the unroll factor?

COMP 520 Winter 2020 Optimization (18)

Aside: Duff’s Device
Handles loop unrolling where the loop bound may not be a multiple of the unroll factor

do {
*to = *from++;

} while(--count > 0);

We can unroll with a factor of 8 to produce the following code, which assumes the loop bound is a
multiple of 8

register n = count / 8;
do {

*to = *from++;
*to = *from++;
*to = *from++;
*to = *from++;
*to = *from++;
*to = *from++;
*to = *from++;
*to = *from++;

} while (--n > 0);

COMP 520 Winter 2020 Optimization (19)

Aside: Duff’s Device
To handle the case where the loop bound is not a multiple of 8, we use the following quirky C code,
where we “jump” into the unrolled loop using a switch statement

register n = (count + 7) / 8;
switch (count % 8) {

case 0: do { *to = *from++;
case 7: *to = *from++;
case 6: *to = *from++;
case 5: *to = *from++;
case 4: *to = *from++;
case 3: *to = *from++;
case 2: *to = *from++;
case 1: *to = *from++;
} while (--n > 0);

}

For those interested: https://en.wikipedia.org/wiki/Duff%27s_device

COMP 520 Winter 2020 Optimization (20)

Optimizing High-Level Languages
High-level languages provide fancy language abstractions that are unrelated to the underlying
hardware. The optimizer must therefore undo these abstractions for execution

• Variables abstract away from registers, so the optimizer must find an efficient mapping;

• Control structures abstract away from gotos, so the optimizer must construct and simplify a goto
graph;

• Data structures abstract away from memory, so the optimizer must find an efficient layout;

...

• Method lookups abstract away from procedure calls, so the optimizer must efficiently determine
the intended implementations.

Difficult compromises

• A high abstraction level makes the development time cheaper, but can make the run-time more
expensive as they need to be mapped to hardware; however

• High-level abstractions are also easier to analyze, which gives optimization potential.

COMP 520 Winter 2020 Optimization (21)

Optimizing High-Level Languages
The OO language BETA unifies as patterns the concepts

• Abstract class;

• Concrete class;

• Method; and

• Function.

A (hypothetical) optimizing BETA compiler must attempt to classify the patterns to recover that
information.

COMP 520 Winter 2020 Optimization (22)

Other Optimizations
These are but a fraction of optimization avenues. Later, we will look at

• Parallelism through GPUs;

• JIT compilers (high level); and

• More powerful optimizations based on static analysis (COMP 621).

But there are many, many more.

Optimization considerations

• An optimizing compiler makes run-time more efficient, but compile-time less efficient; and

• Different applications may require different optimizations.

COMP 520 Winter 2020 Optimization (23)

Optimization Takeaways
As a programmer, you should have the following in mind whenever you write your programs.

1. Trust your compiler;

• Use high-level language features that can be easily optimized, and avoid low-level features
that may confuse compilers;

2. Speed and size are not necessarily related, and often conflict;

• Increasing/decreasing size can both improve/hurt speed;

3. High-level languages require extensive optimization effort;

• Abstraction is great for the programmer, hard for the compiler;

4. Optimization is a complex problem, and you are likely never done.

COMP 520 Winter 2020 Optimization (24)

Announcements (Friday, February 21st)
Milestone 1

• Any last minute questions?

• Due: Saturday, February 22nd 11:59 PM

Midterm

• Review: Monday, February 24th in class

• Date: Tuesday, February 25th 6:00 - 7:30 PM in RPHYS 112

• Class Wednesday, February 26th cancelled

• Sample midterm from 2019

Milestones

• Peephole out today! Due: Friday, April 10th 11:59 PM

COMP 520 Winter 2020 Optimization (25)

Optimization
Introduction

Peephole

Contest

Thought

COMP 520 Winter 2020 Optimization (26)

Peephole Optimizer
In this class we will focus on a simple type of optimization (more detailed optimizations are
discussed in COMP 621)

• Works at the bytecode level;

• Looks only at peepholes, which are sliding windows on the code sequence;

• Uses patterns to identify and replace inefficient constructions;

• Continues until a global fixed point is reached; and

• Optimizes both speed and space.

Example

Remove unnecessary dup/pop (generated from assignments)

dup

istore_{x}

pop

=⇒ istore_{x}

COMP 520 Winter 2020 Optimization (27)

JOOS Optimization

c = a * b + c;
if (c < a)

a = a + b * 113;
while (b > 0) {

a = a * c;
b = b - 1;

}

-

iload_1
iload_2
imul
iload_3
iadd
dup
istore_3
pop
iload_3
iload_1
if_icmplt true_1
iconst_0
goto stop_2

true_1:
iconst_1

stop_2:
ifeq stop_0
iload_1
iload_2
ldc 113
imul
iadd
dup
istore_1
pop

stop_0:
start_3:
iload_2
iconst_0
if_icmpgt true_5
iconst_0
goto stop_6

true_5:
iconst_1

stop_6:
ifeq stop_4
iload_1
iload_3
imul
dup
istore_1
pop...

-

iload_1
iload_2
imul
iload_3
iadd
istore_3
iload_3
iload_1
if_icmpge stop_0
iload_1
iload_2
ldc 113
imul
iadd
istore_1

stop_0:
start_3:
iload_2
ifle stop_4
iload_1
iload_3
imul
istore_1
iinc 2 -1
goto start_3

stop_4:

COMP 520 Winter 2020 Optimization (28)

Optimizer Goto Graph

To optimize, we can’t simply assume instructions
are given in the order they are executed.
Instead, the optimizer works on a structure called a
goto graph that represents the jumps in a program.

while (a > 0) {
if (b == c)

a = a - 1;
else

c = c + 1;
}

-

-

-

-

-

-

-

-start_0:
iload_1
iconst_0
if_icmpgt true_2
iconst_0
goto stop_3
true_2:
iconst_1
stop_3:
ifeq stop_1
iload_2
iload_3
if_icmpeq true_6
iconst_0
goto stop_7
true_6:
iconst_1
stop_7
ifeq else_4:
iload_1
iconst_1
isub
dup
istore_1
pop
goto stop_5
else_4
iload_3
iconst_1
iadd
dup
istore_3
pop
stop_5:
goto start_0
stop_1:

COMP 520 Winter 2020 Optimization (29)

Optimizer Goto Graph
To capture the goto graph, the labels for a given code sequence are represented as an array of
structures

typedef struct LABEL {
char *name;
int sources;
struct CODE *position;

} LABEL;

Defined as

• The array index is the label’s number;

• Field name is the textual part of the label;

• Field sources indicates the in-degree of the label; and

• Field position points to the location of the label in the code sequence.

COMP 520 Winter 2020 Optimization (30)

Operations on the Goto Graph
The optimizer acts on the goto graph and may

• Inspect a given bytecode (get the instruction kind);

• Find the next bytecode in the sequence;

• Find the destination of a label;

• Create a new reference to a label;

• Drop a reference to a label;

• Ask if a label is dead (in-degree 0);

• Ask if a label is unique (in-degree 1); and

• Replace a sequence of bytecodes by another.

COMP 520 Winter 2020 Optimization (31)

Optimizer - Instructions
A peephole optimizer replaces one sequence of instructions by another using patterns.

• Check each instruction is in the pattern (is_<inst>); and

• Traverse the bytecode sequence (next).

Inspect a given bytecode

int is_istore(CODE *c, int *arg) {
if (c == NULL) return 0;
if (c->kind == istoreCK) {

(*arg) = c->val.istoreC;
return 1;

} else {
return 0;

}
}

Note you can also return instruction arguments using the pointer arg.

Find the next bytecode in the sequence

CODE *next(CODE *c) {
if (c == NULL) return NULL;
return c->next;

}

COMP 520 Winter 2020 Optimization (32)

Optimizer - Labels
Optimizations may also traverse the goto graph and evaluate jump targets.

Find the destination of a label

CODE *destination(int label) {
return currentlabels[label].position;

}

Create a new reference to a label

int copylabel(int label) {
currentlabels[label].sources++;
return label;

}

Drop a reference to a label

void droplabel(int label) {
currentlabels[label].sources--;

}

The latter 2 operations are used when applying peephole transformations.

COMP 520 Winter 2020 Optimization (33)

Optimizer - Labels
Optimizations may check properties of labels (for instance to remove dead labels).

Ask if a label is dead (in-degree 0)

int deadlabel(int label) {
return currentlabels[label].sources == 0;

}

Ask if a label is unique (in-degree 1)

int uniquelabel(int label) {
return currentlabels[label].sources == 1;

}

COMP 520 Winter 2020 Optimization (34)

Optimization - Replace
A peephole pattern identifies a sequence of bytecode to optimize, and replace it by another.

int replace(CODE **c, int k, CODE *r) {
CODE *p = *c;
for (int i = 0; i < k; i++) p = p->next;
if (r == NULL) {

*c = p;
} else {

*c = r;
while (r->next != NULL) r = r->next;
r->next = p;

}
return 1;

}

1. Find the first instruction that is not replaced (i);

2. Insert the new sequence (if there is one); and

3. Attach the end of the new sequence to instruction i.

COMP 520 Winter 2020 Optimization (35)

Peephole Pattern - Positive Increment
An increment to a local variable may be simplified to an increment operation, if 0≤ k≤ 127

x = x + k

Peephole pattern

For this pattern, not only do we have a transformation, but also a restriction on the argument

iload_{x}

ldc_int {k}

iadd

istore_{x}

=⇒ iinc {x} {k} // 0 <= k <= 127

Corresponding JOOS peephole pattern

int positive_increment(CODE **c) {
int x, y, k;
if (is_iload(*c, &x) &&

is_ldc_int(next(*c), &k) &&
is_iadd(next(next(*c))) &&
is_istore(next(next(next(*c))), &y) &&
x == y && 0 <= k && k <= 127) {

return replace(c, 4, makeCODEiinc(x, k, NULL));
}
return 0;

}

COMP 520 Winter 2020 Optimization (36)

Peephole Pattern - Algebraic Rules
x * 0 = 0
x * 1 = x
x * 2 = x + x

Peephole pattern (# 1)

iload_{x}

lconst_0

imul

=⇒ iconst_0

Corresponding JOOS peephole pattern
int simplify_multiplication_right(CODE **c) {

int x, k;
if (is_iload(*c, &x) &&

is_ldc_int(next(*c), &k) &&
is_imul(next(next(*c)))) {

if (k == 0)
return replace(c, 3, makeCODEldc_int(0, NULL));

else if (k == 1)
return replace(c, 3, makeCODEiload(x, NULL));

else if (k == 2)
return replace(c, 3,

makeCODEiload(x, makeCODEdup(makeCODEiadd(NULL)))
);

}
return 0;

}

COMP 520 Winter 2020 Optimization (37)

Peephole Pattern - Goto Goto
A part of the goto graph may be simplified by short-circuiting the jump to L_1

-

-

goto L_1

L_1:
goto L_2

L_2:

Corresponding JOOS peephole pattern

int simplify_goto_goto(CODE **c) {
int l1, l2;
if (is_goto(*c, &l1) &&

is_goto(next(destination(l1)), &l2) && l1 > l2) {
droplabel(l1);
copylabel(l2);
return replace(c, 1, makeCODEgoto(l2, NULL));

}
return 0;

}

COMP 520 Winter 2020 Optimization (38)

Peephole Pattern - Goto Goto
Why the condition l1 > l2?

int simplify_goto_goto(CODE **c) {
int l1, l2;
if (is_goto(*c, &l1) &&

is_goto(next(destination(l1)), &l2) && l1 > l2) {
droplabel(l1);
copylabel(l2);
return replace(c, 1, makeCODEgoto(l2, NULL));

}
return 0;

}

Consider the following bytecode

l1: goto l1

What will happen without this condition?

COMP 520 Winter 2020 Optimization (39)

Peephole Pattern - Simplify astore
The following JOOS peephole pattern removes an unnecessary dup/pop pair of instructions

int simplify_astore(CODE **c) {
int x;
if (is_dup(*c) &&

is_astore(next(*c), &x) &&
is_pop(next(next(*c)))) {

return replace(c, 3, makeCODEastore(x, NULL));
}
return 0;

}

It is clearly sound, but will it ever be useful?

COMP 520 Winter 2020 Optimization (40)

Peephole Pattern - Simplfy astore
Yes! Consider the following expression statement:

a = b;

We generate the assignment expression without the surrounding statement context - and therefore
leave the value on the top of the stack.

aload_2
dup
astore_1
pop

Recall, the final pop instruction is generated at the statement level.

COMP 520 Winter 2020 Optimization (41)

Peephole Pattern - Simplify astore
The context agnostic generation for assignment expressions inserts the dup instruction by default

Corresponding JOOS source code

void codeEXP(EXP *e) {
case assignK:

codeEXP(e->val.assignE.right);
code_dup();
switch (e->val.assignE.leftsym->kind) {

[...]
case formalSym:

if (e->val.assignE.leftsym->val.formalS->type->kind == refK) {
code_astore(e->val.assignE.leftsym->val.formalS->offset);

} else {
code_istore(e->val.assignE.leftsym->val.formalS->offset);

}
break;

This handles chains of assignments a = b = c where the value is later needed.

COMP 520 Winter 2020 Optimization (42)

Peephole Pattern - Simplify astore
To avoid the dup in the assign template

• We must know if the assigned value is needed later (contextual information); and

• It must also flow the decision back to the enclosing code below.

void codeSTATEMENT(STATEMENT *s) {
case expK:

codeEXP(s->val.expS);
if (s->val.expS->type->kind != voidK) {

code_pop();
}
break;

A peephole pattern is simpler and more modular.

COMP 520 Winter 2020 Optimization (43)

Peephole Optimization
The peephole optimizer applies the collection of patterns in a fixed point process.

repeat

for each bytecode in succession do

for each peephole pattern in succession do

repeat

apply the peephole pattern to the bytecode
until the goto graph didn’t change

end

end

until the goto graph didn’t change

COMP 520 Winter 2020 Optimization (44)

Peephole Optimization Termination
Why does this process terminate?

• Each peephole pattern does not necessarily make the code smaller; so

• To demonstrate termination for our examples, we use the lexicographically ordered measure

< #bytecodes, #imul,
∑
L

|gotochain(L)| >

which can be seen to become strictly smaller after each application of a peephole pattern.

COMP 520 Winter 2020 Optimization (45)

Peephole Optimization Fixed Point
• The goto graph obtained as a fixed point is not unique; since

• It depends on the sequence in which the peephole patterns are applied.

That does not happen for the four examples given, but consider the two peephole patterns:

A
B

- -
A
B
C

P1 C
D

D
E

P2

These patterns do not commute

A
B
D
E

A
B
D
E

�
�
�
��3

-

Q
Q
Q
QQs -

A
B
C
D

A
B
D

A
B
D

P ∗1

P ∗2

P ∗2

P ∗1

COMP 520 Winter 2020 Optimization (46)

“Optimizer”
The word “optimizer” is somewhat misleading, since the code is not optimal but merely “better.”

Can we find the optimal?

Suppose OPM(G) is the shortest goto graph equivalent to G. The shortest diverging goto graph is

Dmin =
L:

goto L

We can then decide the Halting problem on an arbitrary goto graph G as

OPM(G) = Dmin

Hence, the program OPM cannot exist.

COMP 520 Winter 2020 Optimization (47)

Testing
The testing strategy for the optimizer has three phases:

1. A careful argumentation that each peephole pattern is sound;

• Local variables have the same values;

• Stack height changes by the same amount;

• All paths yield the same outcome;

2. A demonstration that each peephole pattern is realized correctly; and

3. A statistical analysis showing that the optimizer improves the generated programs.

COMP 520 Winter 2020 Optimization (48)

Optimization
Introduction

Peephole

Contest

Thought

COMP 520 Winter 2020 Optimization (49)

JOOS Peephole Optimizer (patterns.h)
/* patterns here */

int simplify_astore(CODE **c) {
int x;
if (is_dup(*c) &&

is_astore(next(*c), &x) &&
is_pop(next(next(*c)))) {
return replace(c, 3, makeCODEastore(x, NULL));

}
return 0;

}

[...]

int init_patterns() {
ADD_PATTERN(simplify_multiplication_right);
ADD_PATTERN(simplify_astore);
ADD_PATTERN(positive_increment);
ADD_PATTERN(simplify_goto_goto);
return 1;

}

COMP 520 Winter 2020 Optimization (50)

JOOS Peephole Optimizer (Fixed Point Driver)
int optiCHANGE;

void optiCODEtraverse(CODE **c) {
int change = 1;
if (*c != NULL) {

while (change) {
change = 0;
for (int i = 0; i < OPTS; i++) {

change = change | optimization[i](c);
}
optiCHANGE = optiCHANGE || change;

}
if (*c != NULL) optiCODEtraverse(&((*c)->next));

}
}

void optiCODE(CODE **c) {
optiCHANGE = 1;
while (optiCHANGE) {

optiCHANGE = 0;
optiCODEtraverse(c);

}
}

COMP 520 Winter 2020 Optimization (51)

JOOS A+ Peephole Optimizer (40 peephole patterns)

Program joosa+ joosa+ -O

AllComponents 907 861

AllEvents 1056 683

Animator 184 180

Animator2 568 456

ConsumeInteger 164 107

DemoFont 97 89

DemoFont2 213 147

DrawArcs 60 60

DrawPoly 94 90

Imagemap 470 361

MultiLineLabel 526 406

ProduceInteger 149 96

Rectangle2 58 58

ScrollableScribble 566 481

ShowColors 88 68

TicTacToe 1471 1211

YesNoDialog 315 248

COMP 520 Winter 2020 Optimization (52)

Peephole Competition
The peephole assignment is a yearly competition to see who can achieve the highest reduction in
the size of JVM bytecode.

• Start with the A- JOOS compiler (https://github.com/comp520/Peephole-Template);

• Add patterns that reduce the size of the code;

• Compete against your fellow classmates!

• Work in your GoLite project teams

Results from previous years

• A-: -1.4%

• A+: -21.9%

• 2017: -21.8%

• 2018: -31.9%

• 2019: -30.4%

COMP 520 Winter 2020 Optimization (53)

Peephole Competition
Requirements

For each pattern that you add to patterns.h you must:

1. Ensure that it is sound;

2. Check a fixed point will be reached; and

3. Put a comment which clearly describes the pattern.

Workflow

As you work on your submission, your workflow will likely be as follows:

1. Generate the bytecode for all benchmarks (count.sh script)

2. Analyze the generated bytecode (.j files) for inefficiencies

3. Design a pattern that improves the code size

4. Test for (a) soundness; and (b) code size improvement

The final evaluation is on a set of public and hidden benchmarks.

COMP 520 Winter 2020 Optimization (54)

Optimization
Introduction

Peephole

Contest

Thought

COMP 520 Winter 2020 Optimization (55)

There is a fine line between “optimization” and “not being stupid”
- R. Kent Dybvig

