
COMP 520 Compiler Design
Group Milestone #1

Scanner, Parser and Pretty Printer for GoLite

Due: Friday, February 21, 11:59 PM

The first milestone of the GoLite project covers the lexical, syntactic, and intermediate represen-
tation of your compiler. Just like your assignments, you may use any toolchain you wish (in class
we showed both flex/bison in C and SableCC in Java) provided that it runs on the SOCS Trottier
machines. You may also hand-code a scanner and/or parser if you feel ambitious!

The language specification was defined by Vincent Foley and is available at www.cs.mcgill.ca/

~cs520/2020/project/Milestone1_Specifications.pdf.

Question 1: Example Programs (10 points)

Design a test suite for your compiler, writing the following programs with extension .go

1. Syntactically-Correct Example Programs (5 points)

2 syntactically correct GoLite programs per team member that perform an interesting com-
putation. Use a variety of language features!

2. Syntactically-Incorrect Example Programs (5 points)

10 incorrect GoLite programs per team member that exhibit a different scanning or parsing
error. Each program should be minimally sufficient to trigger the error, so think carefully.
Include a comment at the start of each file describing the intended issue.

Note: Although we only require a small set of example programs for this question, you should
prepare a more substantial test bank for debugging your project! As part of evaluating your work,
we will execute our own comprehensive test suite that covers all language features.

Question 2: Scanner, Parser and Pretty Printer (30 points)

Implement the scanner, parser, AST, and pretty printer for GoLite using your chosen toolchain.
As noted in the document, some weeding passes are also required as part of this milestone.

For the first milestone, your compiler must support 4 modes supplied as a command-line argument:

• scan: Outputs OK if the input is lexically correct, or an appropriate error message

• tokens: Outputs the token kinds, one per line, until the end of file. Tokens with associated
data (literals, identifiers, etc) should be printed with their respective information

• parse: Outputs OK if the input is syntactically correct, or an appropriate error message

• pretty: Outputs the pretty printed code

COMP 520 Winter 2020 - Milestone 1 Page 1/ 2



Normal output (OK, tokens, pretty) must be sent to stdout and your compiler must exit with status
code 0. On error, the message must be sent to stderr and your compiler must exit immediately with
status code 1. Error messages should be descriptive (look into error reporting in your toolchain)
and formatted “Error: <description>”. Follow the output specifications exactly.

Scripts

Your project must follow the directory structure provided by the GitHub repository: https://

github.com/comp520/Assignment-Template. In your submission, provide the following 2 scripts:

• build.sh: Builds your compiler using Make or similar

• run.sh: Takes two arguments (mode and input file) and executes your compiler binary (i.e.
./run.sh <mode> <filename>)

Comments found in both files provide the exact requirements. A convenience test.sh script
executes all programs in the programs subdirectories and reports any issues found.

Question 3: Design Decisions and Team Work (10 points)

Write a (maximum 5) page report, discussing the design decisions you took in the design and
implementation of your scanner, parser, AST, and pretty-printer. If there are parsing issues that
you implemented as a weeding phase, document them here. Also include in this discussion:

• The rationale of the implementation tools and language that you chose;

• Summarize how your team is organized and what each team member contributed; and

• Resources consulted (other students, websites, repositories, etc.). If no resources were con-
sulted, please state “We worked alone”. All code/programs must represent your own efforts
– please check with us if in doubt, and consult the GoLite project slides.

Submission

Create a tag in your Github repository named milestone1 (http://git-scm.com/book/en/v2/
Git-Basics-Tagging). Your project must be kept in the following format:

/

README (Names, student IDs, any special directions for the TAs)

programs/

1-scan+parse/

valid/ (correct programs)

invalid/ (incorrect programs)

doc/ (Design documents)

milestone1.pdf

src/ (Source code and build files)

build.sh (Updated build script)

run.sh (Updated run script)

COMP 520 Winter 2020 - Milestone 1 Page 2/ 2


