Web Evolution and
WebAssembly

David Herrera

Contents

e Limitations of JavaScript
e Evolution of Web performance via asm.js
e \WebAssembly

o Design

o Pipeline
m Decoding
m Validation
m Execution

o Examples

JavaScript - What is JavaScript?

e Dynamic, high-level language

e 10 days!, Famously designed and prototyped in ten days by Brendan Eich

e Little Performance Design: Language was not designed with performance in
mind.

e Web Language: Has been the main programming language for the web since
1999

>

ES2015

Limitations of JavaScript

e Tough Target: Dynamically typed nature makes it a “tough target” of static
languages such as C and C++, as well as a relatively slow language.

e Lacks Parallelism: No real parallelism supported natively. (At least not
widely supported by all browsers, or general with full control)

e Number type: Numbers are restricted to doubles, float64. This means that for
instance, an i64 number cannot be represented natively in JavaScript.

Let's

ook at speed

Speedup (relative to C)

2.00

175

1.50 1

=

N

U1
\

L
o
o

o
~
w

0.50 1

0.25 1

0.00 -

B Chromium38-js
B Firefox39-js
I Chrome63-js
B Firefox57-js

C

backprop bfs crc fft hmm lavamd lud nqueens nw pagerank spmv srad geomean

JavaScript as a target language for C/C++7?

e Is it Doable? Yes, since JavaScript is turing complete, it should be able to
represent any sort of weird semantics.
o Is it efficient? Let’s look at Emscripten

What is Emscripten and asm.js?

e Emscripten is a static compiler from LLVM to JavaScript created in 2011

e Asm.js is a“typed” subset of JavaScript which serves as a target for
Emscripten

e Initial goal was to support a large enough subset of C and C++ constructs that
could be run on the web.

e Any language that has front-end to LLVM can compile to asm.js

Let's look at some of the problems faced
by asm.|s

Main memory representation

How do we represent C main memory in JavaScript?

Main memory representation

How do we represent C main memory in JavaScript?

How about just a simple array?

var HEAP = new Array(size);

e This HEAP will serve as both C's stack and heap

e Every element represents a byte, and the addresses are integer indices to the
array.

Ok, let's do something simple

What does this code do?

int x = 12345;
printf(“"The first byte: %d\n", *((char *)&x));

e Recall: An integer normally has 4 bytes in ¢, while a char is made up of 1
byte.

Ok, let's do something simple

What does this code do?

int x = 12345;
printf(“"The first byte: %d\n", *((char *)&x));

e Recall: An integer normally has 4 bytes in ¢, while a char is made up of 1

byte.
e This sort of program is said to not respect the Load-Store Consistency

(LSC) property

Ok, let's do something simple

What does this code do?

int x = 12345;
printf("The first byte: %d\n", *((char x)&x));

e Recall: An integer normally has 4 bytes in ¢, while a char is made up of 1

byte.
e This sort of program is said to not respect the Load-Store Consistency

(LSC) property

How do we represent it in JavaScript?

Char from Int in JavaScript

Here is the JavaScript Implementation:

var x_value = 12345;

var x_addr = stackAlloc(4);

HEAP[x_addr] = (x_value >> 0) & 255;

HEAP[x_addr+1] = (x_value >> 8) & 255;

HEAP[x_addr+2] = (x_value >> 16) & 255;

HEAP[x_addr+3] = (x_value >> 24) & 255;

printf("first byte: %d\n",HEAP[x_addrl); //Implemented in JavaScript

Char from Int in JavaScript

Here is the JavaScript Implementation:

var x_value = 12345;

var x_addr = stackAlloc(4);

HEAP[x_addr] = (x_value >> 0) & 255;

HEAP[x_addr+1] = (x_value >> 8) & 255;

HEAP[x_addr+2] = (x_value >> 16) & 255;

HEAP[x_addr+3] = (x_value >> 24) & 255;

printf("first byte: %d\n",HEAP[x_addrl); //Implemented in JavaScript

e \What is the problem?

Char from Int in JavaScript

Here is the JavaScript Implementation:

var x_value = 12345;

var x_addr = stackAlloc(4);

HEAP[x_addr] = (x_value >> 0) & 255;

HEAP[x_addr+1] = (x_value >> 8) & 255;

HEAP[x_addr+2] = (x_value >> 16) & 255;

HEAP[x_addr+3] = (x_value >> 24) & 255;

printf("first byte: %d\n",HEAP[x_addrl); //Implemented in JavaScript

e \What is the problem?
o 8 operations and 4 accesses to simply set an integer value!

What was asm.js solution to this problem?

e Only support programs that respect Load-Store Consistency.
e How do we make sure that a program respects it? Is it efficient?

What was asm.js solution to this problem?

e Only support programs that respect Load-Store Consistency.
e How do we make sure that a program respects it? Is it efficient?

Solution: Don’t check for it!

e Assume property holds and offer a compiler flag to check
e Now we can simply represent an integer with one element in the array.
e Further optimize with variable nativization

HEAP[x_addr] = 12345; 1 var x_value = 12345;

Continuing with asm.js...

Subscribe to RSS N

First Unity game in WebGL: Owlchemy
Labs’ conversion of Aaaaa! to asm.js
Kristyna Hougaard, October 14, 2014

Source: https://blogs.unity3d.com/2014/10/14/first-unity-game-in-webgl-owlchemy-labs-conversion-of-aaaaa-to-asm-js/

Continuing with asm.js...

e Novel ideas from asm.js
o Supporting a large subset of C and C++ efficiently.
m The C/C++ programs supported must be cut down in order to perform operations
efficiently
o Make a typed subset of JavaScript which can be highly optimized by a specialized section of
the JavaScript JIT compilers.

Continuing with asm.js...

e Novel ideas from asm.js
o Supporting a large subset of C and C++ efficiently.
m The C/C++ programs supported must be cut down in order to perform operations
efficiently
o Make a typed subset of JavaScript which can be highly optimized by a specialized section of
the JavaScript JIT compilers.

e asm.js has since grown to be supported by most browser vendors.

e In 2013, typed arrays became the standard, all due to asm.js

o Int8Array, Int16Array, Int32Array, Float64Array, Float32Array etc.
o All of this have an ArrayBuffer as their underlying representation. This array buffer is a byte
array.

Limitations of asm.js

e Parallelism, JavaScript still does not support parallelism
o No data parallelism, e.g. no SIMD instructions
o No task parallelism, e.g. shared memory or other parallel primitives.

Limitations of asm.js

e Parallelism, JavaScript still does not support parallelism
o No data parallelism, e.g. no SIMD instructions
o No task parallelism, e.g. shared memory or other parallel primitives.

e No garbage collection, asm.js has no garbage collection, the HEAP array is
never “cleaned up”

Limitations of asm.js

e Parallelism, JavaScript still does not support parallelism
o No data parallelism, e.g. no SIMD instructions
o No task parallelism, e.g. shared memory or other parallel primitives.

e No garbage collection, asm.js has no garbage collection, the HEAP array is
never “cleaned up”
e Slow, Compilation and initialization of an asm.js module is slow.
o Still has to parse normal JavaScript
o JavaScript does not come in a “compressed” format i.e. a binary syntax

Limitations of asm.js

e Parallelism, JavaScript still does not support parallelism
o No data parallelism, e.g. no SIMD instructions
o No task parallelism, e.g. shared memory or other parallel primitives.

e No garbage collection, asm.js has no garbage collection, the HEAP array is
never “cleaned up”
e Slow, Compilation and initialization of an asm.js module is slow.
o Still has to parse normal JavaScript
o JavaScript does not come in a “compressed” format i.e. a binary syntax
e Hard to scale, in order to grow asm.js to support more constructs from typed
languages, JavaScript must also grow

Enter WebAssembly...

e \WebAssembly, or "wasm", is a general-purpose virtual ISA designed to be a
compilation target for a wide variety of programming languages.
e Similar to JVM, the IR is stack based

e Currently supported AND in active development by all the major browser
vendors

e Promises to bridge the gap in performance through different mechanisms

WebAssembly enhancing performance

How?

Support for various integer, and floating types natively

Support for data parallelism via SIMD instruction set

Support for task parallelism via threads.

Increase in loading speed via a fast binary decoding, and streaming
compilation.

e A garbage collector for the “main” memory

WebAssembly - Contents

Design goals
Performance
Representation
Pipeline

o Encoding/Decoding

o Validation
o Execution

e Examples

Design Goals

e Fast: Execute with near native speed

Design Goals

e Fast: Execute with near native speed
e Safe: Code is validated and executes in a memory safe environment

Design Goals

e Fast: Execute with near native speed
e Safe: Code is validated and executes in a memory safe environment
e Well-Defined: Fully and precisely defines valid programs in a way that can be

verified formally and informally

Design Goals

e Fast: Execute with near native speed

e Safe: Code is validated and executes in a memory safe environment

e Well-Defined: Fully and precisely defines valid programs in a way that can be
verified formally and informally

e Hardware-Independent: Works as an abstraction over most popular
hardware architectures for fast compilation. No operation that is specific to a
hardware architecture is likely to be supported.

Design Goals

e Fast: Execute with near native speed

e Safe: Code is validated and executes in a memory safe environment

e Well-Defined: Fully and precisely defines valid programs in a way that can be
verified formally and informally

e Hardware-Independent: Works as an abstraction over most popular
hardware architectures for fast compilation. No operation that is specific to a
hardware architecture is likely to be supported.

e Language-Independent: Does not favor any particular language, Object
Model, or programming model, in terms of its semantics.

Design Goals

e Fast: Execute with near native speed

e Safe: Code is validated and executes in a memory safe environment

e Well-Defined: Fully and precisely defines valid programs in a way that can be
verified formally and informally

e Hardware-Independent: Works as an abstraction over most popular
hardware architectures for fast compilation. No operation that is specific to a
hardware architecture is likely to be supported.

e Language-Independent: Does not favor any particular language, Object
Model, or programming model, in terms of its semantics.

e Platform-Independent: Does not depend on the Web, it can run as an
independent VM in any environment,.

Does it deliver on the “close-to-native”
performance?

Let’s first see versus JavaScript

3.0
Bl Chrome63-wasm-c
B Firefox57-wasm-c
I Safarill-wasm-c
2.5

BN Microsoft-Edge-wasm-c
- JS

2.0 A1

1.5

w

1.0 1

Speedup (relative to JavaScript)

0.5 1

w

0.

o

iphonel0 samsung-s8 pixel2 ~ samsung-tab-s3 ipad-pro mbp2013 ubuntu-deer windows-bison

What about versus C?

2.00
Il Chrome63-wasm-c
Hl Firefox57-wasm-c
1754 B Safarill-wasm-c
Il Microsoft-Edge-wasm-c
1.50 o C

1.254

0.75 A

Speedup (relative to C)

0.50 A

0.25 A

0.00 -

mbp2013 windows-bison ubuntu-deer

Representation Design

e Compact, binary representation

e Modular, can be split up into smaller parts that can be transmitted, cached
and consumed separately

e Efficient, can be decoded, validated and compiled in a fast single pass, with
a JIT or AOT compilation

e Streamable, allows decoding, validation and compilation and fast as possible

e Parallelizable, allows validation, compilation and splitting into many parallel
tasks.

How good is this binary representation?

1 1 T T
] I | I I
2000 - 80:} ” ” =}
60; 2 x
8 v I
2 1500 20T il | y ¥
= 0 i i 1 | -
o :0 20 40 60 80 . %
€ 1000 | "
5 ox
2 2 S
g - * HE %
8 : B %
500 : Sl - % X
; *
* 3
) + 7 p WebAssembly/asm.js
—?; e . . WebAssembly/native X
0 ;
0 500 1000 1500 2000
asm.js or native size in bytes

Source: https://dl.acm.org/citation.cfim?id=3062363

Representations

e Textual, Human-readable, debuggable.
e Binary, actual representation used by the computer. Easy to decode, and
smaller to transmit.

Representations - Textual - .wat

e Human readable, textual representation

(module $main
(import "console" "mem" (func $print (param i32 i32) (result i32)))
(import "mem" "main" (memory 1))
(global $MEM_TOP i32 (i32.const 16))
(table @ anyfunc)
(data (i32.const 16) "Hello World\n\0o0")
(export "sayHello" (func $hello))
(func $hello (; 1 ;) (result i32)
get_global $MEM_TOP
i32.const 12
call $print
)
)

e Compile to wasm: $wat2wasm say hello.wat -o say hello.wasm

Representations - binary - .wasm

e Binary representation

» src git:(master) x hexdump -C print_string.wasm

00000000 ©00 61 73 6d 01 00 00 00 01 @b 02 60 02 7f 7f @1 |.aSMuu.esnsn |
00000010 7f 60 00 01 7f 02 1b 02 @7 63 6f 6 73 6T 6C 65 |. svuussn console|
00000020 03 6d 65 6d 00 00 03 6d 65 6d 04 6d 61 69 6e 02 |.mem...mem.main. |
00000030 00 01 03 02 01 01 04 04 01 70 00 00 06 06 01 7T |.uuwuuuuns Piiacin |
00000040 00 41 10 Ob 07 0c 01 @8 73 61 79 48 65 6C 6C 6T |.Avuunnn sayHello|
00000050 00 01 0a Ga 01 08 00 23 00 41 Oc 10 00 b @b 13 |...uu.s #oAi e |
00000060 01 00 41 10 Ob @d 48 65 6¢c 6Cc 6T 20 57 6f 72 6 |..A...Hello Worl|
00000070 64 0Ga 00 |d.. |

00000073

WebAssembly Types

e There are four basic types:
o i32,i64, 32, f64
e There is no distinction between signed and unsigned integer types, instead
operations are specialized to be signed or unsigned.
e There is a full-matrix of operations for conversions between the types
e {32 integers serve as booleans, addresses, and values.

WebAssembly Pipeline

Ol
10

Binary Wasm
File

Decoding/Encoding

e This follows a simple Grammar! Or Binary Grammar, just like the ones you
have been doing for your assignments!
e Procedure: Decode from binary to hex, then use the grammar!

Let's go see some rules of this grammar

e Bytes encode themselves

byte := 0x00 = 0x00

|
| OxFF = OxFF

e Types:

valtype := Ox7F = 32
| Ox7E = 64
| Ox7D = 32
| 0x7C = f64

Source:https://webassembly.github.io/spec/core/binary/types.html

Validation

e Usually done along with decoding, in one pass
e All declarations, imports and function types defined on top of the file

Validation

e Usually done along with decoding in one pass
e All declarations, imports and function types defined on top of the file

What to validate?

Validation

e Usually done along with decoding in one pass
e All declarations, imports and function types defined on top of the file

What to validate?

e Decoded values for a given type are valid for that type and within appropriate
limits, i.e. an i32 constant in the encoding does not overflow

Validation

e Usually done along with decoding in one pass
e All declarations, imports and function types defined on top of the file

What to validate?

e Decoded values for a given type are valid for that type and within appropriate
limits, i.e. an i32 literal does not overflow
e Stack, what about the stack?

Stack Validation

e Similar to JVM stack height must remain consistent after each instructions
e Stack contents must have the right type after each operation
e Examples:
o At the end of a function, we have the right type and height for returning.
o When we set a local of certain type, the stack height is of at least 1 and
has the same type as the local.
o When adding two i32 numbers, the stack height decreases by 1 and the
type on top of the stack is i32.

Stack Validation

e Similar to JVM stack height must remain consistent after each instructions
e Stack contents must have the right type after each operation
e Examples:
o At the end of a function, we have the right type and height for returning.
o When we set a local of certain type, the stack height is of at least 1 and
has the same type as the local.
o When adding two i32 numbers, the stack height decreases by 1 and the
type on top of the stack is i32.
e Type rules, validation has been formally defined in terms of type rules

Validation - Set/Get Local

o Usage:
(local $argl i32) (local $argl i32)
132.const 32
set_local $argl get_local $argl

o Validation Typerules:

C.locals[x] = ¢ C. locals[x] = ¢
C I set_local x : [¢] — [] C |- get_local x : [] = [1]

Source:https://webassembly.github.io/spec/core/valid/instructions.html#control-instructions

Validation - Let's see a few examples

e Binops: add | sub | mul | div_sx | rem_sx | and | or | xor | shl | shr_sx | rotl | rotr

o Usage:

(param $argl f64) (param $argl 132)

get_local $argl get_local $argl
f64.const 5.0 i32.const 5.0

f64.add i32.add

o alidation Typerule:

C \ t.binop : [tt] — [1]

Source: https://webassembly.github.io/spec/core/valid/instructions.html#control-instructions

Execution

e Finally after a module is verified, it goes through two phases:

(@)

Instantiation: Dynamic representation of a module, the module imports are loaded, global
tables, and memory segments are intialized, and its own execution stack and state are set.
Finally its start function is ran.

Invocation: Once instantiated, a module instance is ready to be used by its host/embedding
environment via the exported functions defined in the module.

The task of Instantiation and invocation is the responsibility of the host environment.

Stack

e \We talked about validation of the stack, similar to static typing.
e During execution we care about the actual values
e Again, this was formally defined using, reduction rules.

Stack

We talked about validation of the stack, similar to static typing.
During execution we care about the actual values
Again, this was formally defined using formal, reduction rules.

There are three types of stack contents
o Values, i32, i64, f32, f64 constants.
o Labels, branching labels/targets
o Frames, a function’s run-time representation

e Other implementations may choose to have three separate stacks but the
interleaving of the three stack values makes the implementation simpler.

Let’s take a step back - control flow instructions

e \WebAssembly, unlike other low-level languages is based on structured
control flow
o iflelse:

i32.const 1
if (result i32) ;;

else

end

loop/block/br statements

C while loop

WebAssembly

int is
i=0:
while(i<5)

{

it++;

i32.const 0
set_local $i
loop $11
block $10
get_local $i\
i32.const 5
i32.ge_s
br_if $10 |
i32.const 1 |
get_local $i
i32.add

} Initialization

>Condition

;» instructions

Increase
counter

set_local $i |
br $11

end

end

Stack Contents

loop/block/br statements

WebAssembly Stack Contents

i32.const 0
set_local $i
loop $11
block $10
| get_local $i
i32.const 5
i32.ge_s
br_if $10

} Initialization

> Condition

»» instructions
i32.const 1
get_local $i| increase
i32 add ~ counter
set_local $i)
br $11

‘ end
end

Falling through end of block

e As mentioned, WebAssembly has been formally defined in terms of
small-steps rules

func end_block(stack,L)
/I Let m be the number of values on
/l top of the stack
e Pop m values from stack
e Assert: Due to validation, L should

be the label on top of the sack
e PoplL

label,, {instr*} val" end < val™
e Push the m values back in the stack

e Jump to instruction immediately
after block

end

Examples

Example - Factorial

int factorial(int n) { (func $factorial (param $n i32) (result i32)
- : (local $i i32)(;int i;) (local $sum i32)(;int n;)
int 1, sum; e eyt
sum = 1; i32.const 1 ;; ;push i32 1 onto stack—> [1]
: set_local $sum ;; sum = 1; pop top from stack set $sum
1= 2; 77 =2
while (l <= n) { i32.const 2;; ;push i32 2 onto stack—> [1]
set_local $i ;; i=2; pop top from stack set $i
sum = sum * 1; s awhile e
i=1+1;

}

return sum;

;> while(i<=n)

Example - Factorial oop $10 ;61

block $11; ;@9

int factorial(int n) { Frvatuate condition

get_local $i ;; load i

int i' sum; get_local $n ;; load n
i32.gt's ;; i > n

sum = 1; br_if $11 ;; if i > n go to end of block

5 j; sum = sum % 1i;

1l = 2; get_local $sum ;; ;push value of $sum onto stack

- . get_local $i ;; ;push value of $i onto stack
Whlle (l = n) { i32.mul ;; sum * i; pop top two values, push i32 result

set_local $sum ;; sum = sum * i;
2 1 = 1+1;

sum = sum * 1i;

i - 1 o 1; get_local $i ;; load i onto stack
132.const 1 ;; load 1 onto stack
} i32.add ;; pop $i and 1, add and push i32 result
set_local $i ;; pop result and set i
return sum; br $10 ;; Break to beginning of loop
end $11;;@0
} end $10; ;@1

;5 return sum;
get_Tlocal $sum ;; push local $sum to stack
return

Textual Representation - S-Expressions

Finally the textual presentation, can be compressed a little bit by the use of

s-expressions

Parenthesis indicate the start of a new child
The order of evaluation is child then parent
For a binary operation, left child, right child, parent.

Example:

i32.const 42
132.const 121
i32.add

(1i32.add (132.const 42) (i32.const 121))

Example - Factorial

. = . (func $factorial (param $n i32) (result i32)
int faCtorlal(int n) { (local $i i32)(;int i;) (local $sum i32)(;int n;)

int 1 sum: (set_local $sum (i32.const 1)) ;; sum=1;
. y (set_local $i (i32.const 2)) ;; i=2;
sum = 1; loop $10 ;;@1 ;; while(i<=n)
block $11; ;@92
1 = 2; ;;Evaluate condition
" . _ (i32.gt_s (get_local $i) (get_local $n));; i > n
Whlle (l e n) { br_if $11 ;; if i > n go to end of block
7 Chi 2y Sum = sum % 1i;
Sum = sum > l' (i32.mul (get_local $sum) (get_local $i))
i=i+ 1; ji 1= 141;
(set_local $i (i32.add (get_local $i)(i32.const 1)))
} br $10 ;; Break to beginning of loop
end $11;;@9
return sum; end $10; ;@1

} (return (get_local $sum)) ;; return sum;

The End
Thank you!

