
Web Evolution and
WebAssembly

David Herrera

Contents
● Limitations of JavaScript
● Evolution of Web performance via asm.js
● WebAssembly

○ Design
○ Pipeline

■ Decoding
■ Validation
■ Execution

○ Examples

● Dynamic, high-level language
● 10 days!, Famously designed and prototyped in ten days by Brendan Eich
● Little Performance Design: Language was not designed with performance in

mind.
● Web Language: Has been the main programming language for the web since

1999

JavaScript - What is JavaScript?

Limitations of JavaScript
● Tough Target: Dynamically typed nature makes it a “tough target” of static

languages such as C and C++, as well as a relatively slow language.
● Lacks Parallelism: No real parallelism supported natively. (At least not

widely supported by all browsers, or general with full control)
● Number type: Numbers are restricted to doubles, float64. This means that for

instance, an i64 number cannot be represented natively in JavaScript.

Let’s look at speed

JavaScript as a target language for C/C++?
● Is it Doable? Yes, since JavaScript is turing complete, it should be able to

represent any sort of weird semantics.
● Is it efficient? Let’s look at Emscripten

What is Emscripten and asm.js?

● Emscripten is a static compiler from LLVM to JavaScript created in 2011
● Asm.js is a“typed” subset of JavaScript which serves as a target for

Emscripten
● Initial goal was to support a large enough subset of C and C++ constructs that

could be run on the web.
● Any language that has front-end to LLVM can compile to asm.js

Let’s look at some of the problems faced
by asm.js

Main memory representation
How do we represent C main memory in JavaScript?

Main memory representation
How do we represent C main memory in JavaScript?

How about just a simple array?

● This HEAP will serve as both C’s stack and heap

● Every element represents a byte, and the addresses are integer indices to the
array.

Ok, let’s do something simple
What does this code do?

● Recall: An integer normally has 4 bytes in c, while a char is made up of 1
byte.

Ok, let’s do something simple
What does this code do?

● Recall: An integer normally has 4 bytes in c, while a char is made up of 1
byte.

● This sort of program is said to not respect the Load-Store Consistency
(LSC) property

Ok, let’s do something simple
What does this code do?

● Recall: An integer normally has 4 bytes in c, while a char is made up of 1
byte.

● This sort of program is said to not respect the Load-Store Consistency
(LSC) property

How do we represent it in JavaScript?

Char from Int in JavaScript

Here is the JavaScript Implementation:

Char from Int in JavaScript

Here is the JavaScript Implementation:

● What is the problem?

Char from Int in JavaScript

Here is the JavaScript Implementation:

● What is the problem?
○ 8 operations and 4 accesses to simply set an integer value!

What was asm.js solution to this problem?
● Only support programs that respect Load-Store Consistency.
● How do we make sure that a program respects it? Is it efficient?

What was asm.js solution to this problem?
● Only support programs that respect Load-Store Consistency.
● How do we make sure that a program respects it? Is it efficient?

Solution: Don’t check for it!

● Assume property holds and offer a compiler flag to check
● Now we can simply represent an integer with one element in the array.
● Further optimize with variable nativization

Continuing with asm.js...

Source: https://blogs.unity3d.com/2014/10/14/first-unity-game-in-webgl-owlchemy-labs-conversion-of-aaaaa-to-asm-js/

Continuing with asm.js...
● Novel ideas from asm.js

○ Supporting a large subset of C and C++ efficiently.
■ The C/C++ programs supported must be cut down in order to perform operations

efficiently
○ Make a typed subset of JavaScript which can be highly optimized by a specialized section of

the JavaScript JIT compilers.

Continuing with asm.js...
● Novel ideas from asm.js

○ Supporting a large subset of C and C++ efficiently.
■ The C/C++ programs supported must be cut down in order to perform operations

efficiently
○ Make a typed subset of JavaScript which can be highly optimized by a specialized section of

the JavaScript JIT compilers.

● asm.js has since grown to be supported by most browser vendors.
● In 2013, typed arrays became the standard, all due to asm.js

○ Int8Array, Int16Array, Int32Array, Float64Array, Float32Array etc.
○ All of this have an ArrayBuffer as their underlying representation. This array buffer is a byte

array.

Limitations of asm.js
● Parallelism, JavaScript still does not support parallelism

○ No data parallelism, e.g. no SIMD instructions
○ No task parallelism, e.g. shared memory or other parallel primitives.

Limitations of asm.js
● Parallelism, JavaScript still does not support parallelism

○ No data parallelism, e.g. no SIMD instructions
○ No task parallelism, e.g. shared memory or other parallel primitives.

● No garbage collection, asm.js has no garbage collection, the HEAP array is
never “cleaned up”

Limitations of asm.js
● Parallelism, JavaScript still does not support parallelism

○ No data parallelism, e.g. no SIMD instructions
○ No task parallelism, e.g. shared memory or other parallel primitives.

● No garbage collection, asm.js has no garbage collection, the HEAP array is
never “cleaned up”

● Slow, Compilation and initialization of an asm.js module is slow.
○ Still has to parse normal JavaScript
○ JavaScript does not come in a “compressed” format i.e. a binary syntax

Limitations of asm.js
● Parallelism, JavaScript still does not support parallelism

○ No data parallelism, e.g. no SIMD instructions
○ No task parallelism, e.g. shared memory or other parallel primitives.

● No garbage collection, asm.js has no garbage collection, the HEAP array is
never “cleaned up”

● Slow, Compilation and initialization of an asm.js module is slow.
○ Still has to parse normal JavaScript
○ JavaScript does not come in a “compressed” format i.e. a binary syntax

● Hard to scale, in order to grow asm.js to support more constructs from typed
languages, JavaScript must also grow

Enter WebAssembly…
● WebAssembly, or "wasm", is a general-purpose virtual ISA designed to be a

compilation target for a wide variety of programming languages.
● Similar to JVM, the IR is stack based
● Currently supported AND in active development by all the major browser

vendors
● Promises to bridge the gap in performance through different mechanisms

WebAssembly enhancing performance
How?

● Support for various integer, and floating types natively
● Support for data parallelism via SIMD instruction set
● Support for task parallelism via threads.
● Increase in loading speed via a fast binary decoding, and streaming

compilation.
● A garbage collector for the “main” memory

WebAssembly - Contents
● Design goals
● Performance
● Representation
● Pipeline

○ Encoding/Decoding
○ Validation
○ Execution

● Examples

Design Goals
● Fast: Execute with near native speed

Design Goals
● Fast: Execute with near native speed
● Safe: Code is validated and executes in a memory safe environment

Design Goals
● Fast: Execute with near native speed
● Safe: Code is validated and executes in a memory safe environment
● Well-Defined: Fully and precisely defines valid programs in a way that can be

verified formally and informally

Design Goals
● Fast: Execute with near native speed
● Safe: Code is validated and executes in a memory safe environment
● Well-Defined: Fully and precisely defines valid programs in a way that can be

verified formally and informally
● Hardware-Independent: Works as an abstraction over most popular

hardware architectures for fast compilation. No operation that is specific to a
hardware architecture is likely to be supported.

Design Goals
● Fast: Execute with near native speed
● Safe: Code is validated and executes in a memory safe environment
● Well-Defined: Fully and precisely defines valid programs in a way that can be

verified formally and informally
● Hardware-Independent: Works as an abstraction over most popular

hardware architectures for fast compilation. No operation that is specific to a
hardware architecture is likely to be supported.

● Language-Independent: Does not favor any particular language, Object
Model, or programming model, in terms of its semantics.

Design Goals
● Fast: Execute with near native speed
● Safe: Code is validated and executes in a memory safe environment
● Well-Defined: Fully and precisely defines valid programs in a way that can be

verified formally and informally
● Hardware-Independent: Works as an abstraction over most popular

hardware architectures for fast compilation. No operation that is specific to a
hardware architecture is likely to be supported.

● Language-Independent: Does not favor any particular language, Object
Model, or programming model, in terms of its semantics.

● Platform-Independent: Does not depend on the Web, it can run as an
independent VM in any environment,.

Does it deliver on the “close-to-native”
performance?

Let’s first see versus JavaScript

What about versus C?

Representation Design
● Compact, binary representation
● Modular, can be split up into smaller parts that can be transmitted, cached

and consumed separately
● Efficient, can be decoded, validated and compiled in a fast single pass, with

a JIT or AOT compilation
● Streamable, allows decoding, validation and compilation and fast as possible
● Parallelizable, allows validation, compilation and splitting into many parallel

tasks.

How good is this binary representation?

 Source: https://dl.acm.org/citation.cfm?id=3062363

Representations
● Textual, Human-readable, debuggable.
● Binary, actual representation used by the computer. Easy to decode, and

smaller to transmit.

Representations - Textual - .wat
● Human readable, textual representation

● Compile to wasm: $wat2wasm say_hello.wat -o say_hello.wasm

Representations - binary - .wasm
● Binary representation

WebAssembly Types
● There are four basic types:

○ i32, i64, f32, f64

● There is no distinction between signed and unsigned integer types, instead
operations are specialized to be signed or unsigned.

● There is a full-matrix of operations for conversions between the types
● i32 integers serve as booleans, addresses, and values.

WebAssembly Pipeline

Decoding/Encoding

● This follows a simple Grammar! Or Binary Grammar, just like the ones you
have been doing for your assignments!

● Procedure: Decode from binary to hex, then use the grammar!

Let’s go see some rules of this grammar
● Bytes encode themselves

● Types:

Source:https://webassembly.github.io/spec/core/binary/types.html

Validation
● Usually done along with decoding, in one pass
● All declarations, imports and function types defined on top of the file

Validation
● Usually done along with decoding in one pass
● All declarations, imports and function types defined on top of the file

What to validate?

Validation
● Usually done along with decoding in one pass
● All declarations, imports and function types defined on top of the file

What to validate?

● Decoded values for a given type are valid for that type and within appropriate
limits, i.e. an i32 constant in the encoding does not overflow

Validation
● Usually done along with decoding in one pass
● All declarations, imports and function types defined on top of the file

What to validate?

● Decoded values for a given type are valid for that type and within appropriate
limits, i.e. an i32 literal does not overflow

● Stack, what about the stack?

Stack Validation
● Similar to JVM stack height must remain consistent after each instructions
● Stack contents must have the right type after each operation
● Examples:

○ At the end of a function, we have the right type and height for returning.
○ When we set a local of certain type, the stack height is of at least 1 and

has the same type as the local.
○ When adding two i32 numbers, the stack height decreases by 1 and the

type on top of the stack is i32.

Stack Validation
● Similar to JVM stack height must remain consistent after each instructions
● Stack contents must have the right type after each operation
● Examples:

○ At the end of a function, we have the right type and height for returning.
○ When we set a local of certain type, the stack height is of at least 1 and

has the same type as the local.
○ When adding two i32 numbers, the stack height decreases by 1 and the

type on top of the stack is i32.
● Type rules, validation has been formally defined in terms of type rules

Validation - Set/Get Local
○ Usage:

○ Validation Typerules:

Source:https://webassembly.github.io/spec/core/valid/instructions.html#control-instructions

Validation - Let’s see a few examples
● Binops: ᱓᱖᱖ | ᱥᱧ᱔ | ᱟᱧᱞ | ᱖ᱛᱨ_sx | ᱤ᱗ᱟ_sx | ᱓ᱠ᱖ | ᱡᱤ | ᱪᱡᱤ | ᱥᱚᱞ | ᱥᱚᱤ_sx | ᱤᱡᱦᱞ | ᱤᱡᱦᱤ

○ Usage:

○ Validation Typerule:

Source: https://webassembly.github.io/spec/core/valid/instructions.html#control-instructions

Execution
● Finally after a module is verified, it goes through two phases:

○ Instantiation: Dynamic representation of a module, the module imports are loaded, global
tables, and memory segments are intialized, and its own execution stack and state are set.
Finally its start function is ran.

○ Invocation: Once instantiated, a module instance is ready to be used by its host/embedding
environment via the exported functions defined in the module.

○ The task of Instantiation and invocation is the responsibility of the host environment.

Stack
● We talked about validation of the stack, similar to static typing.
● During execution we care about the actual values
● Again, this was formally defined using, reduction rules.

Stack
● We talked about validation of the stack, similar to static typing.
● During execution we care about the actual values
● Again, this was formally defined using formal, reduction rules.
● There are three types of stack contents

○ Values, i32, i64, f32, f64 constants.
○ Labels, branching labels/targets
○ Frames, a function’s run-time representation

● Other implementations may choose to have three separate stacks but the
interleaving of the three stack values makes the implementation simpler.

Let’s take a step back - control flow instructions
● WebAssembly, unlike other low-level languages is based on structured

control flow
● if/else:

loop/block/br statements
C while loop WebAssembly Stack Contents

loop/block/br statements
WebAssembly Stack Contents

Falling through end of block

func end_block(stack,L)
// Let m be the number of values on
// top of the stack

● Pop m values from stack
● Assert: Due to validation, L should

be the label on top of the sack
● Pop L
● Push the m values back in the stack
● Jump to instruction immediately

after block
end

● As mentioned, WebAssembly has been formally defined in terms of
small-steps rules

Examples

Example - Factorial

Example - Factorial

Textual Representation - S-Expressions

● Finally the textual presentation, can be compressed a little bit by the use of
s-expressions

● Parenthesis indicate the start of a new child
● The order of evaluation is child then parent
● For a binary operation, left child, right child, parent.
● Example:

Example - Factorial

The End

Thank you!

