

# Special Topic: GPUs

COMP 520: Compiler Design

Alexander Krolik

alexander.krolik@mail.mcgill.ca



#### What is a GPU?

- "Graphics Processing Unit"
- A specialized processor originally designed for graphics operations

#### What kind of code can they execute?

- Historically: only graphics code (OpenGL)
- Currently: GPGPUs (General-Purpose GPUs) execute generalized parallel code (OpenCL/CUDA)

A modern GPU architecture is geared towards high degrees of parallelism

#### Execution

- Highly parallel, with thousands (and thousands of threads)
- Hierarchically parallel, with threads grouped at multiple levels

#### Memory

- High bandwidth, allowing fast concurrent accesses between multiple threads
- Hierarchical design, with multiple levels corresponding to thread groupings









#### **Host System**

- Multi-core out-of-order execution unit (CPU)
- Large host memory



Large host memory

### GPU Architecture







#### **Host System**

- Multi-core out-of-order execution unit (CPU)
- Large host memory





- Single-instruction multiple-data (SIMD) processor
- Hierarchical memory









Slower clock speed than the CPU, but there are thousands!





- Grouping of processing elements
- All PE within the same multi-processor execute in lock-step
- There is no guarantee on execution order between multi-processors





#### **Registers Page**

- Private memory for each processing element (no sharing permitted)
- Lowest latency (fastest) memory on the GPU





#### **Local Memory**

- Shared memory between processing elements in the same multi-processor
- Larger size but higher latency than registers





Persistent between GPU programs (kernels) – other memory is not

### **GPU** Execution

GPUs are **highly** parallel devices, perfect for embarrassingly parallel code

#### **Executing Code**

A full GPU program consists of two code sections

- Host code that runs on the CPU
  - · Compiles the program;
  - Transfers the data:
  - · Specifies the thread geometry (number and organization of threads).
- Kernel (GPU code) executes the parallel section



# GPU Thread Geometry

# The host code specifies the thread geometry

- · Number of threads; and
- Grouping of threads per multi-processor.

#### **Thread Groups**

Threads from the same group

- Execute on the same multiprocessor; and
- Share the same local memory.





#### **Local Memory**

- Shared by all threads in a group; but
- Is not synchronized automatically!!

#### **Synchronization**

Synchronization ensures that all threads in a group are at the same point in the kernel

- Within a group: memory barrier
- Between groups: impossible!





#### **Device Memory**

- Shared by all threads on the GPU; but
- Is not synchronized automatically!!

#### **Synchronization**

Synchronization ensures that all threads in a group are at the same point in the kernel

- Within a group: memory barrier
- Between groups: impossible!





# GPU Memory: Coalescing

Optimizing GPU memory bandwidth is important for performance

#### **Memory Coalescing**

- Concurrent accesses to consecutive memory locations are merged into a single fetch
- Pattern: access consecutive memory locations from consecutive threads



Uncoalesced Access Pattern



Coalesced Access Pattern



Idea: Group the values of multiple rows into a single value (fold)

| _ | _ |   | _ | _ | _ |   | _ |
|---|---|---|---|---|---|---|---|
| 0 | 2 | 4 | 2 | 3 | 2 | 3 | 0 |
|   |   |   |   |   |   |   |   |

#### **Common Aggregate Functions:**

| COUNT | SUM | AVG | MAX | MIN |
|-------|-----|-----|-----|-----|
| 8     | 16  | 2   | 4   | 1   |



2 thread groups, 2 threads/group = 4 threads

device





2 thread groups, 2 threads/group = 4 threads

device

2

4

2

3

2

3

0

local



1 location per thread



2 thread groups, 2 threads/group = 4 threads

device

C

2

4

2

3

2

3

0

group 1, thread 1

local



1 location per thread





































2 thread groups, 2 threads/group = 4 threads

 device
 0
 2
 4
 2
 3
 2
 3
 0

 local
 3
 4
 7
 2
 1 location per thread

 group 1
 group 2



2 thread groups, 2 threads/group = 4 threads

 device
 0
 2
 4
 2
 3
 2
 3
 0

 local
 3
 4
 7
 2
 1 location per thread

local synchronization (CLK\_LOCAL\_MEM\_FENCE) ------





2 thread groups, 2 threads/group = 4 threads

 device
 0
 2
 4
 2
 3
 2
 3
 0

 local
 3
 4
 7
 2
 1 location per thread

local synchronization (CLK\_LOCAL\_MEM\_FENCE)

local

3 4 9 2 group 1 group 2

Same local memory



2 thread groups, 2 threads/group = 4 threads

 device
 0
 2
 4
 2
 3
 2
 3
 0

 local
 3
 4
 7
 2
 1 location per thread

local synchronization (CLK\_LOCAL\_MEM\_FENCE)

local 3 4

group 1 group 2

group 1, thread 1

Same local memory





























### 2 thread groups, 2 threads/group = 4 threads

 device
 0
 2
 4
 2
 3
 2
 3
 0

 local
 3
 4
 7
 2
 1 location per thread

 local synchronization (CLK\_LOCAL\_MEM\_FENCE)
 Same local memory

device

1 location per group



### 2 thread groups, 2 threads/group = 4 threads

 device
 0
 2
 4
 2
 3
 2
 3
 0

 local
 3
 4
 7
 2
 1 location per thread

 local synchronization (CLK\_LOCAL\_MEM\_FENCE)
 Same local memory

 group 1, thread 1

 device
 1 location per group















### 2 thread groups, 2 threads/group = 4 threads

 device
 0
 2
 4
 2
 3
 2
 3
 0

 local
 3
 4
 7
 2
 1 location per thread

 local
 5
 4
 9
 2
 Same local memory

 group 2, thread 1

 device
 7
 1 location per group











### 2 thread groups, 2 threads/group = 4 threads

device 3 0 local 1 location per thread local synchronization (CLK LOCAL MEM FENCE) local Same local memory device 1 location per group 9



| device                                   | 0 | 2 | 4 | 2          | 3                     | 2         | 3        | 0   |          |
|------------------------------------------|---|---|---|------------|-----------------------|-----------|----------|-----|----------|
| local                                    | 3 | 4 | 7 | 2          | 1 location per thread |           |          |     |          |
| local                                    | 7 | 4 | 9 | (CLK_LOCAL |                       | Same loc  | al mem   | ory | <b>⊗</b> |
| device                                   | 7 | 9 |   |            | 1                     | . locatio | n per gr | oup |          |
| device synchronization (kernel boundary) |   |   |   |            |                       |           |          |     |          |



### 2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0

local 3 4 7 2 1 location per thread

local synchronization (CLK\_LOCAL\_MEM\_FENCE)

local 7 4 9 2 Same local memory

device 7 9 1 location per group

device synchronization (kernel boundary)

device

'

Same device memory



### 2 thread groups, 2 threads/group = 4 threads

device 0 2 4 2 3 2 3 0

local 3 4 7 2 1 location per thread

local synchronization (CLK\_LOCAL\_MEM\_FENCE)

local 7 4 9 2 Same local memory

device 7 9 1 location per group

device synchronization (kernel boundary)

group 1, thread 1

device 7 9

Same device memory











