
COMP 520 Compiler Design
Individual Assignment #2

Language Specifications

Overview:

Given the lexical and syntactic choices from the first assignment, your second assignment is to
implement the relevant semantics for each language construct. Note that as you implement your
compiler, some decisions may be more difficult to implement than you first thought - or we might
have missed out a key detail you need. In these cases, bring them up in class and we can discuss
possible changes. By the end of this assignment you will have produced your first full compiler!

Specifications

A program in MiniLang consists of a list of variable declarations followed by a list of statements.

Declarations

Variable declarations must follow the following 2 rules or a compile time error “Error: <description>”
with explanation must be thrown.

• Variable identifiers must be defined before being used

var a : int = 0;

b = 5; // Error: (line 2) "b" is not declared

• Variable identifiers must not be redeclared (regardless of type)

var a : int = 0;

var a : int = 1; // Error: (line 2) "a" is already declared

For this assignment, we will be using the following types from C

• Integers: int

• Float: float

• Strings: char*

• Booleans: bool (look into stdbool.h)

Variable Initialization

Variable initialization (i.e. the initial value specified in a declaration) must follow the assignment
compatibility rules described in the section below.

1

Statements

• Read into a variable according to C scanf semantics. Use %d for integers and booleans, %f
for floats, and %s for strings (buffer size of 1024).

read x;

• Print an expression according to C printf semantics for integers, floats, and strings. For
booleans use %d.

print x * x;

• Assignment into a variable. Assignment compatibility is as follows:

int := int

float := float, int

string := string

boolean := boolean

Note that floats may not be assigned to ints.

• If statement, with optional else branch. The condition <expression> must be an integer
or a boolean

if <expression> {

<stmts>

} [else {

<stmts>

}]

• While loop. The condition <expression> must be an integer or a boolean

while <expression> {

<stmts>

}

Expressions

Literals

Literals in MiniLang have their corresponding types. i.e. an integer literal is of type int, etc.

Binary Operations

Given a binary expression <expr1> <op> <expr2> where <op> is one of +, -, *, /:

• int <op> int is OK and results in type int

• float <op> float is OK and results in type float

• int <op> float (and vice-versa) is OK and results in type float

2

• string + string is OK and results in type string. The semantics of this operation are string
concatenation.

• string * int (and vice-versa) is OK and results in type string. The semantics of this
operation are string repetition.

"derp" * 3 -> "derpderpderp"

Note that a runtime check to ensure the integer is ≥ 0 will be required. A value of 0 results
in the empty string. A negative value produces a runtime exception.

Given a binary expression <expr1> <op> <expr2> where <op> is one of &&, ||:

• <expr1> and <expr2> can either be of type int or bool

• The resulting expression has type bool

Given a binary expression <expr1> <op> <expr2> where <op> is one of ==, !=:

• <expr1> and <expr2> can be of any type (they must be the same type)

• The resulting expression has type bool

Unary Operations

Given a unary minus expression - <expression>

• <expression> must be either of type int or of type float

• The resulting expression has the same type as <expression>

Given a unary not expression ! <expression>

• <expression> must be of type bool

• The resulting expression has type bool

3

Bonus (3 points)

• Read values into a boolean variable. Booleans are read as strings and must be either “TRUE”
or “FALSE” (case-sensitive) and converted to the appropriate TRUE or FALSE value. You must
produce a runtime error (i.e. an error produced by your generated code) if the string does
not conform to the specification

• Print a boolean expression: “TRUE” and “FALSE” for TRUE and FALSE respectively.

• Assignment into a variable. Support the additional assignment compatibility for string/boolean
conversion

string := boolean

boolean := string

Use the following relations for converting between booleans and strings

– true: “TRUE”

– false: “FALSE”

If the conversion from string to boolean fails (i.e. an invalid string), then a runtime error
should be produced.

4

