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Announcements (Friday, January 6th)

Facebook group:

• Useful for discussions/announcements

• Link on myCourses or in email

Milestones:

• Continue picking your group (3 recommended)

• Create a GitHub account, learn git as needed

Midterm:

• Either 1st or 2nd week after break on the Friday

• 1.5 hour “in class” midterm, so either 30 minutes before/after class. Thoughts?

• Tentative date: Friday, March 10th. Or the week after? Thoughts?
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Readings

Textbook, Crafting a Compiler:

• Chapter 2: A Simple Compiler

• Chapter 3: Scanning–Theory and Practice

Modern Compiler Implementation in Java:

• Chapter 1: Introduction

• Chapter 2: Lexical Analysis

Flex tool:

• Manual - https://github.com/westes/flex

• Reference book, Flex & bison -

http://mcgill.worldcat.org/title/flex-bison/oclc/457179470
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Scanning:

• also called lexical analysis;

• is the first phase of a compiler;

• takes an arbitrary source file, and identifies meaningful character sequences.

• note: at this point we do not have any semantic or syntactic information

Overall:

• a scanner transforms a string of characters into a string of tokens.
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An example:

var a = 5

if (a == 5)

{

print "success"

}

tVAR

tIDENTIFIER: a

tASSIGN

tINTEGER: 5

tIF

tLPAREN

tIDENTIFIER: a

tEQUALS

tINTEGER: 5

tRPAREN

tLBRACE

tIDENTIFIER: print

tSTRING: success

tRBRACE
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Review of COMP 330:

• Σ is an alphabet, a (usually finite) set of symbols;

• a word is a finite sequence of symbols from an alphabet;

• Σ∗ is a set consisting of all possible words using symbols from Σ;

• a language is a subset of Σ∗.

An example:

• alphabet: Σ={0,1}

• words: {ε, 0, 1, 00, 01, 10, 11, . . . , 0001, 1000, . . . }

• language:

– {1, 10, 100, 1000, 10000, 100000, . . . }: “1” followed by any number of zeros

– {0, 1, 1000, 0011, 11111100, . . . }: ?!
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A regular expression:

• is a string that defines a language (set of strings);

• in fact, a regular language.

A regular language:

• is a language that can be accepted by a DFA;

• is a language for which a regular expression exists.
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In a scanner, tokens are defined by regular expressions:

• ∅ is a regular expression [the empty set: a language with no strings]

• ε is a regular expression [the empty string]

• a, where a ∈ Σ is a regular expression [Σ is our alphabet]

• ifM andN are regular expressions, thenM |N is a regular expression

[alternation: eitherM orN ]

• ifM andN are regular expressions, thenM ·N is a regular expression

[concatenation: M followed byN ]

• ifM is a regular expression, thenM∗ is a regular expression

[zero or more occurences ofM ]

What areM? andM+?
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Examples of regular expressions:

• Alphabet Σ={a,b}

• a* = {ε, a, aa, aaa, aaaa, . . . }

• (ab)* = {ε, ab, abab, ababab, . . . }

• (a|b)* = {ε, a, b, aa, bb, ab, ba, . . . }

• a*ba* = strings with exactly 1 “b”

• (a|b)*b(a|b)* = strings with at least 1 “b”



COMP 520 Winter 2017 Scanning (10)

We can write regular expressions for the tokens in our source language using standard POSIX

notation:

• simple operators: "*", "/", "+", "-"

• parentheses: "(", ")"

• integer constants: 0|([1-9][0-9]*)

• identifiers: [a-zA-Z_][a-zA-Z0-9_]*

• white space: [ \t\n]+

[. . . ] define a character class:

• matches a single character from a set;

• allows ranges of characters to be “alternated”; and

• can be negated using “^” (i.e. [^\n]).

The wildcard character:

• is represented as “.” (dot); and

• matches all characters except newlines by default (in most implementations).



COMP 520 Winter 2017 Scanning (11)

A scanner:

• can be generated using tools like flex (or lex), JFlex, . . . ;

• by defining regular expressions for each type of token.

Internally, a scanner or lexer:

• uses a combination of deterministic finite automata (DFA);

• plus some glue code to make it work.
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A finite state machine (FSM):

• represents a set of possible states for a system;

• uses transitions to link related states.

A deterministic finite automaton (DFA):

• is a machine which recognizes regular languages;

• for an input sequence of symbols, the automaton either accepts or rejects the string;

• it works deterministically - that is given some input, there is only one sequence of steps.
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Background (DFAs) from textbook, “Crafting a Compiler”
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DFAs (for the previous example regexes):

lhl -- lhl --lhl --

lhl -- lhl --lh
lh
lh lh

lhl ?
-- \t\n

\t\n

l
l l
--

�
�3

Q
Qs
?

- -
?

-

* / +

( )-

0

0-91-9

a-zA-Z0-9_
a-zA-Z_
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Try it yourself:

• Design a DFA matching binary strings divisible by 3. Use only 3 states.

• Design a regular expression for floating point numbers of form: {1., 1.1, .1} (a digit on at least one side

of the decimal)

• Design a DFA for the language above language.
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Background (Scanner Table) from textbook, “Crafting a Compiler”
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Background (Scanner Algorithm) from textbook, “Crafting a Compiler”
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A non-deterministric finite automaton:

• is a machine which recognizes regular languages;

• for an input sequence of symbols, the automaton either accepts or rejects the string;

• it works non-deterministically - that is given some input, there is potentially more than one path;

• an NFA accepts a string if at least one path leads to an accept.

Note: DFAs and NFAs are equally powerful.
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Regular Expressions to NFA (1) from textbook, “Crafting a Compiler”
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Regular Expressions to NFA (2) from textbook, ”Crafting a Compiler"
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Regular Expressions to NFA (3) from textbook, ”Crafting a Compiler"
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How to go from regular expressions to DFAs?

1. flex accepts a list of regular expressions (regex);

2. converts each regex internally to an NFA (Thompson construction);

3. converts each NFA to a DFA (subset construction)

4. may minimize DFA

See “Crafting a Compiler", Chapter 3; or “Modern Compiler Implementation in Java", Chapter 2
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What you should know:

1. Understand the definition of a regular language, whether that be: prose, regular expression, DFA, or

NFA.

2. Given the definition of a regular language, construct either a regular expression or an automaton.

What you do not need to know:

1. Specific algorithms for converting between regular language definitions.

2. DFA minimization
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Let’s assume we have a collection of DFAs, one for each lex rule

reg_expr1 -> DFA1

reg_expr2 -> DFA2

...

reg_rexpn -> DFAn

How do we decide which regular expression should match the next characters to be scanned?
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Given DFAsD1, . . . ,Dn, ordered by the input rule order, the behaviour of a flex-generated

scanner on an input string is:

while input is not empty do

si := the longest prefix that Di accepts

l := max{|si|}
if l > 0 then

j := min{i : |si| = l}
remove sj from input

perform the jth action

else (error case)

move one character from input to output

end

end

• The longest initial substring match forms the next token, and it is subject to some action

• The first rule to match breaks any ties

• Non-matching characters are echoed back
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Why the “longest match” principle?

Example: keywords

...

import return tIMPORT;

[a-zA-Z_][a-zA-Z0-9_]* return tIDENTIFIER;

...

Given a string “importedFiles”, we want the token output of the scanner to be

tIDENTIFIER(importedFiles)

and not

tIMPORT tIDENTIFIER(edFiles)

Because we prefer longer matches, we get the right result.
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Why the “first match” principle?

Example: keywords

...

continue return tCONTINUE;

[a-zA-Z_][a-zA-Z0-9_]* return tIDENTIFIER;

...

Given a string “continue foo”, we want the token output of the scanner to be

tCONTINUE tIDENTIFIER(foo)

and not

tIDENTIFIER(continue) tIDENTIFIER(foo)

“First match” rule gives us the right answer: When both tCONTINUE and tIDENTIFIER match,

prefer the first.
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When “first longest match” (flm) is not enough, look-ahead may help.

FORTRAN allows for the following tokens:

.EQ., 363, 363., .363

flm analysis of 363.EQ.363 gives us:

tFLOAT(363) E Q tFLOAT(0.363)

What we actually want is:

tINTEGER(363) tEQ tINTEGER(363)

To distinguish between a tFLOAT and a tINTEGER followed by a “.”, flex allows us to use

look-ahead, using ’/’:

363/.EQ. return tINTEGER;

A look-ahead matches on the full pattern, but only processes the characters before the ’/’. All

subsequent characters are returned to the input stream for further matches.
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Another example taken from FORTRAN, FORTRAN ignores whitespace

1. DO5I = 1.25; DO5I=1.25

in C, these are equivalent to an assignment:

do5i = 1.25;

2. DO 5 I = 1,25; DO5I=1,25

in C, these are equivalent to looping:

for(i=1;i<25;++i){...}

(5 is interpreted as a line number here)

To get the correct token output:

1. flm analysis correct:

tID(DO5I) tEQ tREAL(1.25)

2. flm analysis gives the incorrect result. What we want is:
tDO tINT(5) tID(I) tEQ tINT(1) tCOMMA tINT(25)

But we cannot make decision on tDO until we see the comma, look-ahead comes to the rescue:

DO/({letter}|{digit})*=({letter}|{digit})*, return tDO;
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Announcements (Monday, January 9th)

Facebook group:

• Useful for discussions/announcements

• Link on myCourses or in email

Milestones:

• Learn flex, bison, SableCC

• Assignment 1 out Wednesday

• Continue forming your groups

Midterm:

• Friday, March 17th

• 1.5 hour “in class” midterm. You have the option of either 13:00-14:30 or 13:30-15:00.
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Introduce yourselves! (no, not joking)

• Name

• Major/year

• If grad student, research area

• Any other fun facts we should know...
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In practice, we use tools to generate scanners. Using flex:
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joos.l

flex

lex.yy.c gcc scanner

foo.joos

tokens
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A flex file:

• is used to define a scanner implementation;

• has 3 main sections divided by %%:

1. Declarations, helper code

2. Regular expression rules and associated actions

3. User code

• and saves much effort in compiler design.

/* includes and other arbitrary C code. copied to the scanner verbatim */

%{

%}

/* helper definitions */

DIGIT [0-9]

%%

/* regex + action rules come after the first %% */

RULE ACTION

%%

/* user code comes after the second %% */

main () {}
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$ cat print_tokens.l # flex source code

/* includes and other arbitrary C code */

%{

#include <stdio.h> /* for printf */

%}

/* helper definitions */

DIGIT [0-9]

/* regex + action rules come after the first %% */

%%

[ \t\n]+ printf ("white space, length %i\n", yyleng);

"*" printf ("times\n");

"/" printf ("div\n");

"+" printf ("plus\n");

"-" printf ("minus\n");

"(" printf ("left parenthesis\n");

")" printf ("right parenthesis\n");

0|([1-9]{DIGIT}*) printf ("integer constant: %s\n", yytext);

[a-zA-Z_][a-zA-Z0-9_]* printf ("identifier: %s\n", yytext);

%%

/* user code comes after the second %% */

main () {

yylex ();

}



COMP 520 Winter 2017 Scanning (35)

Sometimes a token is not enough, we need the value as well:

• want to capture the value of an identifier; or

• need the value of a string, int, or float literal.

In these cases, flex provides:

• yytext: the scanned sequence of characters;

• yylval: a user-defined variable from the parser (bison) to be returned with the token; and

• yyleng: the length of the scanned sequence.

[a-zA-Z_][a-zA-Z0-9_]* {

yylval.stringconst = (char *)malloc(strlen(yytext)+1);

printf(yylval.stringconst,"%s",yytext);

return tIDENTIFIER;

}
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Using flex to create a scanner is really simple:

$ vim print_tokens.l

$ flex print_tokens.l

$ gcc -o print_tokens lex.yy.c -lfl
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Running this scanner with input:

a*(b-17) + 5/c

$ echo "a*(b-17) + 5/c" | ./print_tokens

our print_tokens scanner outputs:

identifier: a

times

left parenthesis

identifier: b

minus

integer constant: 17

right parenthesis

white space, length 1

plus

white space, length 1

integer constant: 5

div

identifier: c

white space, length 1
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Count lines and characters:

%{

int lines = 0, chars = 0;

%}

%%

\n lines++; chars++;

. chars++;

%%

main () {

yylex ();

printf ("#lines = %i, #chars = %i\n", lines, chars);

}
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Getting (better) position information in flex:

• is easy for line numbers: option and variable yylineno; but

• is more involved for character positions.

If position information is useful for further compilation phases:

• it can be stored in a structure yylloc provided by the parser (bison); but

• must be updated by a user action.

typedef struct yyltype

{

int first_line, first_column, last_line, last_column;

} yyltype;

%{

#define YY_USER_ACTION yylloc.first_line = yylloc.last_line = yylineno;

%}

%option yylineno

%%

. { printf("Error: (line %d) unexpected char ’%s’\n", yylineno, yytext); exit(1); }
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Actions in a flex file can either:

• do nothing – ignore the characters;

• perform some computation, call a function, etc.; and/or

• return a token (token definitions provided by the parser).

%{

#include <stdlib.h> /* for atoi */

#include <stdio.h> /* for printf */

#include "lang.tab.h" /* for tokens */

%}

%%

[aeiouy] /* ignore */

[0-9]+ printf ("%i", atoi (yytext) + 1);

’\\n’ { yylval.rune_const = ’\n’;

return tRUNECONST; }

%%

main () {

yylex ();

}
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Summary

• a scanner transforms a string of characters into a string of tokens;

• scanner generating tools like flex allow you to define a regular expression for each type of token;

• internally, the regular expressions are transformed to a deterministic finite automata for matching;

• to break ties, matching uses 2 principles: “longest match” and “first match”.


