
COMP 520 Winter 2017 Scanning (1)

Scanning
COMP 520: Compiler Design (4 credits)

Alexander Krolik

alexander.krolik@mail.mcgill.ca

MWF 13:30-14:30, MD 279

COMP 520 Winter 2017 Scanning (2)

Announcements (Friday, January 6th)

Facebook group:

• Useful for discussions/announcements

• Link on myCourses or in email

Milestones:

• Continue picking your group (3 recommended)

• Create a GitHub account, learn git as needed

Midterm:

• Either 1st or 2nd week after break on the Friday

• 1.5 hour “in class” midterm, so either 30 minutes before/after class. Thoughts?

• Tentative date: Friday, March 10th. Or the week after? Thoughts?

COMP 520 Winter 2017 Scanning (3)

Readings

Textbook, Crafting a Compiler:

• Chapter 2: A Simple Compiler

• Chapter 3: Scanning–Theory and Practice

Modern Compiler Implementation in Java:

• Chapter 1: Introduction

• Chapter 2: Lexical Analysis

Flex tool:

• Manual - https://github.com/westes/flex

• Reference book, Flex & bison -

http://mcgill.worldcat.org/title/flex-bison/oclc/457179470

COMP 520 Winter 2017 Scanning (4)

Scanning:

• also called lexical analysis;

• is the first phase of a compiler;

• takes an arbitrary source file, and identifies meaningful character sequences.

• note: at this point we do not have any semantic or syntactic information

Overall:

• a scanner transforms a string of characters into a string of tokens.

COMP 520 Winter 2017 Scanning (5)

An example:

var a = 5

if (a == 5)

{

print "success"

}

tVAR

tIDENTIFIER: a

tASSIGN

tINTEGER: 5

tIF

tLPAREN

tIDENTIFIER: a

tEQUALS

tINTEGER: 5

tRPAREN

tLBRACE

tIDENTIFIER: print

tSTRING: success

tRBRACE

COMP 520 Winter 2017 Scanning (6)

Review of COMP 330:

• Σ is an alphabet, a (usually finite) set of symbols;

• a word is a finite sequence of symbols from an alphabet;

• Σ∗ is a set consisting of all possible words using symbols from Σ;

• a language is a subset of Σ∗.

An example:

• alphabet: Σ={0,1}

• words: {ε, 0, 1, 00, 01, 10, 11, . . . , 0001, 1000, . . . }

• language:

– {1, 10, 100, 1000, 10000, 100000, . . . }: “1” followed by any number of zeros

– {0, 1, 1000, 0011, 11111100, . . . }: ?!

COMP 520 Winter 2017 Scanning (7)

A regular expression:

• is a string that defines a language (set of strings);

• in fact, a regular language.

A regular language:

• is a language that can be accepted by a DFA;

• is a language for which a regular expression exists.

COMP 520 Winter 2017 Scanning (8)

In a scanner, tokens are defined by regular expressions:

• ∅ is a regular expression [the empty set: a language with no strings]

• ε is a regular expression [the empty string]

• a, where a ∈ Σ is a regular expression [Σ is our alphabet]

• ifM andN are regular expressions, thenM |N is a regular expression

[alternation: eitherM orN]

• ifM andN are regular expressions, thenM ·N is a regular expression

[concatenation: M followed byN]

• ifM is a regular expression, thenM∗ is a regular expression

[zero or more occurences ofM]

What areM? andM+?

COMP 520 Winter 2017 Scanning (9)

Examples of regular expressions:

• Alphabet Σ={a,b}

• a* = {ε, a, aa, aaa, aaaa, . . . }

• (ab)* = {ε, ab, abab, ababab, . . . }

• (a|b)* = {ε, a, b, aa, bb, ab, ba, . . . }

• a*ba* = strings with exactly 1 “b”

• (a|b)*b(a|b)* = strings with at least 1 “b”

COMP 520 Winter 2017 Scanning (10)

We can write regular expressions for the tokens in our source language using standard POSIX

notation:

• simple operators: "*", "/", "+", "-"

• parentheses: "(", ")"

• integer constants: 0|([1-9][0-9]*)

• identifiers: [a-zA-Z_][a-zA-Z0-9_]*

• white space: [\t\n]+

[. . .] define a character class:

• matches a single character from a set;

• allows ranges of characters to be “alternated”; and

• can be negated using “^” (i.e. [^\n]).

The wildcard character:

• is represented as “.” (dot); and

• matches all characters except newlines by default (in most implementations).

COMP 520 Winter 2017 Scanning (11)

A scanner:

• can be generated using tools like flex (or lex), JFlex, . . . ;

• by defining regular expressions for each type of token.

Internally, a scanner or lexer:

• uses a combination of deterministic finite automata (DFA);

• plus some glue code to make it work.

COMP 520 Winter 2017 Scanning (12)

A finite state machine (FSM):

• represents a set of possible states for a system;

• uses transitions to link related states.

A deterministic finite automaton (DFA):

• is a machine which recognizes regular languages;

• for an input sequence of symbols, the automaton either accepts or rejects the string;

• it works deterministically - that is given some input, there is only one sequence of steps.

COMP 520 Winter 2017 Scanning (13)

Background (DFAs) from textbook, “Crafting a Compiler”

COMP 520 Winter 2017 Scanning (14)

DFAs (for the previous example regexes):

lhl -- lhl --lhl --

lhl -- lhl --lh
lh
lh lh

lhl ?
-- \t\n

\t\n

l
l l
--

�
�3

Q
Qs
?

- -
?

-

* / +

()-

0

0-91-9

a-zA-Z0-9_
a-zA-Z_

COMP 520 Winter 2017 Scanning (15)

Try it yourself:

• Design a DFA matching binary strings divisible by 3. Use only 3 states.

• Design a regular expression for floating point numbers of form: {1., 1.1, .1} (a digit on at least one side

of the decimal)

• Design a DFA for the language above language.

COMP 520 Winter 2017 Scanning (16)

Background (Scanner Table) from textbook, “Crafting a Compiler”

COMP 520 Winter 2017 Scanning (17)

Background (Scanner Algorithm) from textbook, “Crafting a Compiler”

COMP 520 Winter 2017 Scanning (18)

A non-deterministric finite automaton:

• is a machine which recognizes regular languages;

• for an input sequence of symbols, the automaton either accepts or rejects the string;

• it works non-deterministically - that is given some input, there is potentially more than one path;

• an NFA accepts a string if at least one path leads to an accept.

Note: DFAs and NFAs are equally powerful.

COMP 520 Winter 2017 Scanning (19)

Regular Expressions to NFA (1) from textbook, “Crafting a Compiler”

COMP 520 Winter 2017 Scanning (20)

Regular Expressions to NFA (2) from textbook, ”Crafting a Compiler"

COMP 520 Winter 2017 Scanning (21)

Regular Expressions to NFA (3) from textbook, ”Crafting a Compiler"

COMP 520 Winter 2017 Scanning (22)

How to go from regular expressions to DFAs?

1. flex accepts a list of regular expressions (regex);

2. converts each regex internally to an NFA (Thompson construction);

3. converts each NFA to a DFA (subset construction)

4. may minimize DFA

See “Crafting a Compiler", Chapter 3; or “Modern Compiler Implementation in Java", Chapter 2

COMP 520 Winter 2017 Scanning (23)

What you should know:

1. Understand the definition of a regular language, whether that be: prose, regular expression, DFA, or

NFA.

2. Given the definition of a regular language, construct either a regular expression or an automaton.

What you do not need to know:

1. Specific algorithms for converting between regular language definitions.

2. DFA minimization

COMP 520 Winter 2017 Scanning (24)

Let’s assume we have a collection of DFAs, one for each lex rule

reg_expr1 -> DFA1

reg_expr2 -> DFA2

...

reg_rexpn -> DFAn

How do we decide which regular expression should match the next characters to be scanned?

COMP 520 Winter 2017 Scanning (25)

Given DFAsD1, . . . ,Dn, ordered by the input rule order, the behaviour of a flex-generated

scanner on an input string is:

while input is not empty do

si := the longest prefix that Di accepts

l := max{|si|}
if l > 0 then

j := min{i : |si| = l}
remove sj from input

perform the jth action

else (error case)

move one character from input to output

end

end

• The longest initial substring match forms the next token, and it is subject to some action

• The first rule to match breaks any ties

• Non-matching characters are echoed back

COMP 520 Winter 2017 Scanning (26)

Why the “longest match” principle?

Example: keywords

...

import return tIMPORT;

[a-zA-Z_][a-zA-Z0-9_]* return tIDENTIFIER;

...

Given a string “importedFiles”, we want the token output of the scanner to be

tIDENTIFIER(importedFiles)

and not

tIMPORT tIDENTIFIER(edFiles)

Because we prefer longer matches, we get the right result.

COMP 520 Winter 2017 Scanning (27)

Why the “first match” principle?

Example: keywords

...

continue return tCONTINUE;

[a-zA-Z_][a-zA-Z0-9_]* return tIDENTIFIER;

...

Given a string “continue foo”, we want the token output of the scanner to be

tCONTINUE tIDENTIFIER(foo)

and not

tIDENTIFIER(continue) tIDENTIFIER(foo)

“First match” rule gives us the right answer: When both tCONTINUE and tIDENTIFIER match,

prefer the first.

COMP 520 Winter 2017 Scanning (28)

When “first longest match” (flm) is not enough, look-ahead may help.

FORTRAN allows for the following tokens:

.EQ., 363, 363., .363

flm analysis of 363.EQ.363 gives us:

tFLOAT(363) E Q tFLOAT(0.363)

What we actually want is:

tINTEGER(363) tEQ tINTEGER(363)

To distinguish between a tFLOAT and a tINTEGER followed by a “.”, flex allows us to use

look-ahead, using ’/’:

363/.EQ. return tINTEGER;

A look-ahead matches on the full pattern, but only processes the characters before the ’/’. All

subsequent characters are returned to the input stream for further matches.

COMP 520 Winter 2017 Scanning (29)

Another example taken from FORTRAN, FORTRAN ignores whitespace

1. DO5I = 1.25; DO5I=1.25

in C, these are equivalent to an assignment:

do5i = 1.25;

2. DO 5 I = 1,25; DO5I=1,25

in C, these are equivalent to looping:

for(i=1;i<25;++i){...}

(5 is interpreted as a line number here)

To get the correct token output:

1. flm analysis correct:

tID(DO5I) tEQ tREAL(1.25)

2. flm analysis gives the incorrect result. What we want is:
tDO tINT(5) tID(I) tEQ tINT(1) tCOMMA tINT(25)

But we cannot make decision on tDO until we see the comma, look-ahead comes to the rescue:

DO/({letter}|{digit})*=({letter}|{digit})*, return tDO;

COMP 520 Winter 2017 Scanning (30)

Announcements (Monday, January 9th)

Facebook group:

• Useful for discussions/announcements

• Link on myCourses or in email

Milestones:

• Learn flex, bison, SableCC

• Assignment 1 out Wednesday

• Continue forming your groups

Midterm:

• Friday, March 17th

• 1.5 hour “in class” midterm. You have the option of either 13:00-14:30 or 13:30-15:00.

COMP 520 Winter 2017 Scanning (31)

Introduce yourselves! (no, not joking)

• Name

• Major/year

• If grad student, research area

• Any other fun facts we should know...

COMP 520 Winter 2017 Scanning (32)

In practice, we use tools to generate scanners. Using flex:

�
�
�
�
�
�
�
�
�
�
�
�

?

?
- -

?

?

joos.l

flex

lex.yy.c gcc scanner

foo.joos

tokens

COMP 520 Winter 2017 Scanning (33)

A flex file:

• is used to define a scanner implementation;

• has 3 main sections divided by %%:

1. Declarations, helper code

2. Regular expression rules and associated actions

3. User code

• and saves much effort in compiler design.

/* includes and other arbitrary C code. copied to the scanner verbatim */

%{

%}

/* helper definitions */

DIGIT [0-9]

%%

/* regex + action rules come after the first %% */

RULE ACTION

%%

/* user code comes after the second %% */

main () {}

COMP 520 Winter 2017 Scanning (34)

$ cat print_tokens.l # flex source code

/* includes and other arbitrary C code */

%{

#include <stdio.h> /* for printf */

%}

/* helper definitions */

DIGIT [0-9]

/* regex + action rules come after the first %% */

%%

[\t\n]+ printf ("white space, length %i\n", yyleng);

"*" printf ("times\n");

"/" printf ("div\n");

"+" printf ("plus\n");

"-" printf ("minus\n");

"(" printf ("left parenthesis\n");

")" printf ("right parenthesis\n");

0|([1-9]{DIGIT}*) printf ("integer constant: %s\n", yytext);

[a-zA-Z_][a-zA-Z0-9_]* printf ("identifier: %s\n", yytext);

%%

/* user code comes after the second %% */

main () {

yylex ();

}

COMP 520 Winter 2017 Scanning (35)

Sometimes a token is not enough, we need the value as well:

• want to capture the value of an identifier; or

• need the value of a string, int, or float literal.

In these cases, flex provides:

• yytext: the scanned sequence of characters;

• yylval: a user-defined variable from the parser (bison) to be returned with the token; and

• yyleng: the length of the scanned sequence.

[a-zA-Z_][a-zA-Z0-9_]* {

yylval.stringconst = (char *)malloc(strlen(yytext)+1);

printf(yylval.stringconst,"%s",yytext);

return tIDENTIFIER;

}

COMP 520 Winter 2017 Scanning (36)

Using flex to create a scanner is really simple:

$ vim print_tokens.l

$ flex print_tokens.l

$ gcc -o print_tokens lex.yy.c -lfl

COMP 520 Winter 2017 Scanning (37)

Running this scanner with input:

a*(b-17) + 5/c

$ echo "a*(b-17) + 5/c" | ./print_tokens

our print_tokens scanner outputs:

identifier: a

times

left parenthesis

identifier: b

minus

integer constant: 17

right parenthesis

white space, length 1

plus

white space, length 1

integer constant: 5

div

identifier: c

white space, length 1

COMP 520 Winter 2017 Scanning (38)

Count lines and characters:

%{

int lines = 0, chars = 0;

%}

%%

\n lines++; chars++;

. chars++;

%%

main () {

yylex ();

printf ("#lines = %i, #chars = %i\n", lines, chars);

}

COMP 520 Winter 2017 Scanning (39)

Getting (better) position information in flex:

• is easy for line numbers: option and variable yylineno; but

• is more involved for character positions.

If position information is useful for further compilation phases:

• it can be stored in a structure yylloc provided by the parser (bison); but

• must be updated by a user action.

typedef struct yyltype

{

int first_line, first_column, last_line, last_column;

} yyltype;

%{

#define YY_USER_ACTION yylloc.first_line = yylloc.last_line = yylineno;

%}

%option yylineno

%%

. { printf("Error: (line %d) unexpected char ’%s’\n", yylineno, yytext); exit(1); }

COMP 520 Winter 2017 Scanning (40)

Actions in a flex file can either:

• do nothing – ignore the characters;

• perform some computation, call a function, etc.; and/or

• return a token (token definitions provided by the parser).

%{

#include <stdlib.h> /* for atoi */

#include <stdio.h> /* for printf */

#include "lang.tab.h" /* for tokens */

%}

%%

[aeiouy] /* ignore */

[0-9]+ printf ("%i", atoi (yytext) + 1);

’\\n’ { yylval.rune_const = ’\n’;

return tRUNECONST; }

%%

main () {

yylex ();

}

COMP 520 Winter 2017 Scanning (41)

Summary

• a scanner transforms a string of characters into a string of tokens;

• scanner generating tools like flex allow you to define a regular expression for each type of token;

• internally, the regular expressions are transformed to a deterministic finite automata for matching;

• to break ties, matching uses 2 principles: “longest match” and “first match”.

