COMP 520 Winter 2017 Parsing (1)

Parsing

COMP 520: Compiler Design (4 credits)
Alexander Krolik

alexander.krolik@mail.mcgill.ca
MWF 13:30-14:30, MD 279

—> SCAN >| PARSE > WEED

Y
SYMBOL

RESOURCE |= TYPE

A

Y
CODE >| OPTIMIZE > EMIT [—>

COMP 520 Winter 2017 Parsing (2)

Announcements (Wednesday, January 11th)

Milestones:
e Continue forming your groups
e Llearn flex, bison, SableCC

e Assignment 1 out today, due Wednesday, January 25th 11:59PM on myCourses

COMP 520 Winter 2017 Parsing (3)
Readings
Crafting a Compiler (recommended):
e Chapter4.1t04.4
e Chapter 5.1t05.2
e Chapter 6.1, 6.2 and 6.4
Crafting a Compiler (optional):
e Chapter 4.5
e Chapter 5.3t05.9
e Chapter 6.3 and 6.5
Modern Compiler Implementation in Java:
e Chapter 3
Tool Documentation: (linkson http://www.cs.mcgill.ca/~cs520/2017/)

e flex, bison, SableCC

COMP 520 Winter 2017 Parsing (4)

Parsing:
® is the second phase of a compiler;
e takes a string of tokens generated by the scanner as input; and
® buils a parse tree according to some grammar.
Internally:
® it corresponds to a deterministic push-down automaton,
e plus some glue code to make it work;

® can be generated by bison (or yacc), CUP, ANTLR, SableCC, Beaver, JavaCQC, ...

COMP 520 Winter 2017 Parsing (5)

A push-down automaton:
e is a FSM + an unbounded stack;
e allows recognizing a larger set of languages to DFAs/NFAs;
e has a stack that can be viewed/manipulated by transitions; and

e are used to recognize context-free languages.

COMP 520 Winter 2017 Parsing (6)

A context-free grammar is a 4-tuple (V, 32, R, S), where we have:
e V aset of variables (or non-terminals)
e X asetof terminalssuchthat V N X =

e R, a set of rules, where the LHS is a variable in V' and the RHS is a string of variables in V" and

terminals in X2

e S € V, the start variable

COMP 520 Winter 2017 Parsing (7)

Context-free grammars:
e are stronger than regular expressions;
e are able to express recursively-defined constructs; and
® generate a context-free language.

For example: we cannot write a regular expression for any number of matched parentheses:

(M™ | n>1y =0, (O), ((O)), ...

Using a CFG:

E— (E)|e

COMP 520 Winter 2017 Parsing (8)

Notes on CFLs:
e it is undecidable if the language described by a context-free grammar is regular (Greibach’s theorem);

e there exist languages that cannot be expressed by context-free grammars:
{a”p"c™ | n > 1}
® in parser construction we use a proper subset of context-free languages, namely deterministic

context-free languages;

e such languages can be described by a deterministic push-down automaton (same idea as DFA vs
NFA, only one transition possible from a given state).

COMP 520 Winter 2017 Parsing (9)

Chomsky Hierarchy:

recursively enumerable

context-sensitive

context-free

regular

https://en.wikipedia.org/wiki/Chomsky_hierarchy#/media/File:Chomsky—-hierarchy.svg

COMP 520 Winter 2017 Parsing (10)

Automated parser generators:

e use CFGs are input; and

® generate parsers using the machinery of a deterministic push-down automaton.
However, to be efficient:

e they limit the kind of CFGs that are allowed as input; and

e do not accept any valid context-free language.

COMP 520 Winter 2017 Parsing (11)

An example:
Simple CFG: Alternatively:
A—aB A—aB|e
A—e€ B —>bB|c
B—-bB
B —c

In both cases we specify S = A. Can you write this grammar as a regular expression?

We can perform a rightmost derivation by repeatedly replacing variables with their RHS until only terminals

remain:

COMP 520 Winter 2017
An example programming language:

CFG rules:
Prog — Dcls Stmts

Dcls — Dcl Dcls | €

Dcl — "int" ident | "float" ident
Stmts — Stmt Stmts | €

Stmt — ident "=" Val

Val — num | ident

This derivation corresponds to the program:

int a
float b
a =>

Parsing (12)

Leftmost derivation:
Prog
Dcls Stmts
Dcl Dcls Stmts
"int" ident Dels Stmts
"int" ident "float" ident Stmts
"int" ident "float" ident Stmt Stmts
"int" ident "float" ident ident "=" Val Stmts
"int" ident "float" ident ident "=" ident Stmts
"int" ident "float" identident "=" ident

COMP 520 Winter 2017

Different grammar formalisms. First, consider BNF (Backus-Naur Form):

stmt ::= stmt_expr ";" |
while stmt |
block |
if stmt
while_stmt ::= WHILE " (" expr ")" stmt
block ::= "{" stmt_1list "}"
if_stmt ::= IF " (" expr ")" stmt |
IF " (" expr ")" stmt ELSE stmt

We have four options for stmt_11st:

1. stmt_11st ::= stmt_list stmt | €
2. stmt_list ::= stmt stmt_list | €
3. stmt_list ::= stmt_list stmt | stmt
4., stmt_1list ::= stmt stmt_list | stmt

(0 or more, left-recursive)
(0 or more, right-recursive)
(1 or more, left-recursive)

(1 or more, right-recursive)

Parsing (13)

COMP 520 Winter 2017

Second, consider EBNF (Extended BNF):

BNF derivations | EBNF
A— Aalb |b|Aa A —bfa}
(left-recursive) Aaa

baa
A—aAlb |b|adA A —{alb
(right-recursive) aaA

aab

where '{’ and '}’ are like Kleene *’s in regular expressions.

Parsing (14)

COMP 520 Winter 2017

Parsing (15)

Now, how to specify stmt__ 11 st: Using EBNF repetition, our four choices for stmt_1ist

1.

stmt_1list

2. stmt_list

3. stmt_1ist

4. stmt_1list

become:

1.

stmt_list

. stmt_1ist
. stmt_1ist

.stmt_1list

stmt_1ist stmt | € (0 or more, left-recursive)
stmt stmt_list | € (0 or more, right-recursive)
stmt_list stmt | stmt (1 or more, left-recursive)
stmt stmt_list | stmt (1 or more, right-recursive)
{ stmt }

{ stmt }

{ stmt } stmt

stmt { stmt }

COMP 520 Winter 2017 Parsing (16)

EBNF also has an optional-construct. For example:
stmt_1ist ::= stmt stmt _list | stmt

could be written as:

stmt_1list ::= stmt [stmt_list]
And similarly:
if stmt ::= IF "(" expr ")" stmt |

IF " (" expr ")" stmt ELSE stmt
could be written as:

if stmt ::=
IF " (" expr ")" stmt [ELSE stmt]

where’ [and ']’ are like '?’ in regular expressions.

COMP 520 Winter 2017 Parsing (17)

Third, consider “railroad” syntax diagrams: (thanks rail.sty!)

stmt

—~ stmt_expr »@7—>

N while stmt —

s block =
N if stmt ~
while _stmt
(Ofewr}0

block

N Wy Ry W

COMP 520 Winter 2017

stmt _list (O or more)

Y

.

stmt

)

stmt_list (1 or more)

stmt

-

o

Parsing (18)

COMP 520 Winter 2017

if_stmt

expr

.

stmt

else>—>

stmt

Y

Parsing (19)

COMP 520 Winter 2017 Parsing (20)

Derivations:
e consist of replacing variables with other variables and terminals according to the rules;
e i.e. for a rewrite rule A — v, we replace A by ~y.
Choosing the variable to rewrite:
® can be done as you wish; but
® in practice we either use rightmost or leftmost derivations;
e expanding the rightmost or leftmost variable respectively.

e Note: this can lead to different parse trees!

COMP 520 Winter 2017 Parsing (21)

A parse tree:
® is a tree that represents the syntax structure of a string;
® is built from the rules given in a context-free grammar.
Nodes in the parse tree:
e internal (parent) nodes represent the LHS of a rewrite rule;
e child nodes represent the RHS of a rewrite rule;
e depend on the order of the derivation.

The fringe or leaves are the sentence you derived.

COMP 520 Winter 2017

S—5:S E —id
S —id=F E — num
S —pint(L) EFE—FE+FE

E— (S, ,FE)
Rightmost derivation:
S
S; S
S:id=F
S;d=FE+F
S:id:=F +

L — F
L—L F

This derivation corresponds to the program:

’

a
b :(=c¢c+ (d := 5+ 6, d)

S;id:= E + (id = E + E, id)
S;id:= E + (id := E + num, id)
S;id = F + (id := num + num, id)

S:;id :=id + (id := num + num, id)

id .= F;id :=id + (id := num + num, id)

id := num; id :=id + (id := num + num, id)

Parsing (22)

COMP 520 Winter 2017

S—5;S E —id

S—id=FE E — num

S—print(L) FE—FE+FE
E— (S, ,FE)
L —FE
L—L, ,E

Derivation corresponds to the program:

a :=7;
b :=c¢c + (d :=5 + 6, d)

S

I

/‘IS\
id = FE
num

)
i
i

d
E
d

AN\
SN

E
+ E
AN
S E)
= E id
AN
E + E

Parsing (23)

num

COMP 520 Winter 2017

A grammar is ambiguous if a sentence has different parse trees:

id := i1id + id + id

/R /l\

id =

/I\E E/l\
N B N
L |

id

O__

The above is harmless, but consider:

id := id - id - 1id
id := id + id *x id

Clearly, we need to consider associativity and precedence when designing grammars.

Parsing (24)

COMP 520 Winter 2017 Parsing (25)

How do make grammars unambiguous?
e firstly, note that not all languages have an unambiguous grammar;

e however, deterministic push-down automata that are used by parsers, require an unambiguous

grammar;

® in practice, we either rewrite the grammar to be unambiguous, or use precedence rules.

COMP 520 Winter 2017 Parsing (26)

Rewriting an ambiguous grammar:

An ambiguous grammar:

E —id EFE—-~FE/E FE—(F)
E

E — num FE—FE+LE /I\
F—+-FExE FE—-FEF-—-FE 7z . 78
may be rewritten to become unambiguous: T T/‘\F
F—FE+T T—TxF F—id F F id
E—-~FE-T T—-T/F F — num

id id

E —T T — F F—(F)

COMP 520 Winter 2017 Parsing (27)

Recall that parsers:
e take a string of tokens generated by the scanner as input; and
e buils a parse tree according to some grammar.
® note: this corresponds to checking a string is in a language.

e there are fundamentally two kinds of parsers:

1. Top-down, predictive or recursive descent parsers. Used in all languages designed by Wirth, e.g.

Pascal, Modula, and Oberon.

2. Bottom-up parsers.

COMP 520 Winter 2017 Parsing (28)

Top-down parsers:
e can (easily) be written by hand; or
® generated from an LL(k) grammar:
— Left-to-right parse;
— Leftmost-derivation; and

— k symbol lookahead.

e Algorithm idea: look at beginning of input (up to k characters) and unambiguously expand leftmost

non-terminal.

COMP 520 Winter 2017 Parsing (29)

A top-down parser:

® begins with the start symbol (root); and

® grows the parse tree using the defined grammar.

e this is predictive: the parser must determine (given some input) which rule to apply next.
Recall the definition of LL(k):

e [eft-to-right parse;

e [eftmost-derivation; and

e k symbol lookahead.

COMP 520 Winter 2017 Parsing (30)

An example LL(1) parsing:

Given the CFG: The token string generated by a scanner is:
Prog — Dcls Stmts £t INT
Dcls — Dcl Dcls | € t IDENTIFIER: a
tFLOAT

Dcl — "int" ident | "float" ident
tIDENTIFIER: b

tIDENTIFIER: a
tASSIGN
Val — num | ident tIDENTIFIER: b

Stmts — Stmt Stmts | €

Stmt — ident "=" Val

Parse the program:
int a
float b
a =>b

COMP 520 Winter 2017 Parsing (31)

Top-down parsers:
e are usually implemented as recursive descent;

® i.e. a set of mutually recursive functions that:
— predict which rule to apply; and

— apply the rules/productions:

* consume/match terminals; and

* recursively call functions for other non-terminals.

e can also be implemented as a table driven approache (textbook Chapter 5.4).

COMP 520 Winter 2017 Parsing (32)

A recursive descent parser:
e has 1 function for each non-terminal (variable);
e ecach non-terminal has a predict set for each of its rules;

e if the next token is in:
— exactly one of the predict sets: the corresponding rule is applied;
— more than one of the predict sets: there is a conflict;

— none of the predict sets: then there is a syntax error.

COMP 520 Winter 2017

For a subset of the example CFG:

Prog — Dcls Stmts

Dcls — Dcl Dcls | €

Dcl — "int" ident | "float" ident

We have the following recursive descent parser functions:

function Prog()
call Dcls ()
call Stmts ()

end

function Dcls ()

end

switch nextToken ()

end

case tINT|tFLOAT:
call Dcl ()
case tIDENT:

/* no more declarations,

function Dcl ()
switch nextToken ()
case tINT:
match (tINT)
match (tIDENT)
case tFLOAT:
match (EFLOAT)
match (EIDENT)
end
end

parsing

continues in the Prog method =*/

return

Parsing (33)

COMP 520 Winter 2017 Parsing (34)

Limitations of this approach (common prefixes):
Consider the following productions, defining an If-Else-End construct:

[fStmt — tIF Stmts tEND | tIF Stmts tELSE Stmts tEND

With a single token of lookahead (an LL(1) parser), we are unable to predict which rule to follow (both rules

expect the token tIF).
To get around this problem, we factor the grammar:

[fStmt — tIF Stmts IfEnd
IfEnd — tEND | tELSE Stmts tEND

Now, each production for IfEnd has different predict token (the predict sets have null intersection)

COMP 520 Winter 2017 Parsing (35)

Limitations of this approach (left recursion):
Left recursion also causes difficulties with LL(k) parsers. Consider the following production:

A—AQ3

Assume we can come up with a predict set consisting of token, tTOKEN. Then applying this rule gives us:

Expansion Next Token
A tTOKEN
ApQ3 tTOKEN
AB 3 tTOKEN
AB B3 tTOKEN

ABBBB {TOKEN
ABBBBB ITOKEN

This continues on forever. note there are other ways to think of this

COMP 520 Winter 2017 Parsing (36)

The dangling else problem:
[fStmt —> tIF Expr tTHEN Stmt tELSE Stmt

| tIF Expr tTHEN Stmt

Consider the following program (left) and token stream (right):

if {expr} then tIF
if {expr} then EXPR
<stmt> tTHEN

else tIF
<stmt> EXPR
tTHEN

Stmt
tELSE

Stmt

To which if-statement does the else (and corresponding statement) belong?

To resolve this ambiguity we associate the else with the nearest unmatched if-statement. Note that the

grammar we come up with is still not LL(k) - see textbook Chapter 5.6 for more details.

COMP 520 Winter 2017 Parsing (37)

Announcements (Friday, January 13th)

Milestones:
e Continue forming your groups
e Learn flex,bison, SableCC
e Assignment 1 due Wednesday, January 25th 11:59PM on myCourses
e Add/drop deadline, Tuesday, January 17th
Assighment 1:
e Due Wednesday, January 25th 11:59PM on myCourses
e Questions about the assignment?

e Questions about the language?

COMP 520 Winter 2017 Parsing (38)

Recall:

A parser transforms a string of tokens into a parse tree, according to some grammar:
® it corresponds to a deterministic push-down automaton;
® plus some glue code to make it work;

e can be generated by bison (or yacc), CUP, ANTLR, SableCC, Beaver, JavaCC, ...

COMP 520 Winter 2017 Parsing (39)

(Review) Top-down parsers:
e can (easily) be written by hand; or
e generated from an LL(k) grammar:
— Left-to-right parse;
— Leftmost-derivation; and

— k symbol lookahead.

e Algorithm idea: look at beginning of input (up to k characters) and unambiguously expand leftmost

non-terminal.

COMP 520 Winter 2017 Parsing (40)

Bottom-up parsers:
e can be written by hand (tricky); or
e generated from an LR(k) grammar (easy):
— Left-to-right parse;
— Rightmost-derivation; and

— k symbol lookahead.

e Algorithm idea: look for a sequence matching RHS and reduce to LHS. Postpone any decision until
entire RHS is seen, plus k tokens lookahead.

COMP 520 Winter 2017 Parsing (41)

Bottom-up parsers:
e build parse trees from the leaves to the root;
e performs a rightmost derivation in reverse; and
® uses productions to replace the RHS of a rule with the LHS.

This is the opposite of a top-down parser.

The techniques used by bottom-up parsers are more complex to understand, but can use a larger set of

grammars to top-down parsers.

COMP 520 Winter 2017 Parsing (42)

The shift-reduce bottom-up parsing technique

1) Extend the grammar with an end-of-file $, introduce fresh start symbol S”:

S’ —S$

S—+S5;S E —id L - FE
S—id=F E — num L—L FE
S—pint(L) EFE—FE+FE

EFE— (S, FE)

2) Choose between the following actions:

e shift:
move first input token to top of stack

e reduce:
replace a on top of stack by X
for some rule X — «

® accept:
when S’ is on the stack

COMP 520 Winter 2017

An example:

id

id :
id :
id :
S

S;
S id

&2

S:id:
S:id:
S:id:
S:id:
S:id:
S:id:
S:id:
S:id:
S:id:
S:id:
S:id:
S:id:

N T T N T T T T T T
Sluivisloloiviuioiolss
+ + + + + + + + +

P e e e e U U U e

3

id :
id :
id :

Qaaoaga

7; b:=c
7; b:=c
7; b:=c
; b:=c
; b:=c
; b:=c
b:=c
=C
C

= num

=F

=F +
= F + num
b+ F

+ 4+ 4+ 4+ + +++ + ++

d:

0.0 0 0.0 0.0 0.0 0. 0 O

shift
shift
shift
F—num

S—id=F

shift

shift

shift

shift
E—id
shift

shift

shift

shift

shift
FE—num
shift

shift
F—num

FEF—FE+FE

Parsing (43)

COMP 520 Winter 2017

S;d=F+(d=FE+FE
S;d=F +(id:=F
S:id=E+(S
S;id=F + (.S,
S:id=E+(S,id
S:id=E+(S, E
S;d=FE+(S,FE)
S:id=F+F
S:id=F

S;

S

S

S

SR

~ ~

Q. 0 O O
Wy U Ay D A D A D Ay A A

F—F+FE
S—id:=F
shift

shift
E—id
shift
E—(S;E)
F—F+FE
S—id:=F
S—S:S
shift
S’'—S$

accept

Parsing (44)

COMP 520 Winter 2017 Parsing (45)

Recall the previous rightmost derivation of this string:

a :=7;

b :(=c+ (d :=5 + 6, d)
Rightmost derivation:

" S;d=F+(d=F+FE,id
G B 9 B o
S;id:=FE Si!d :—E+(!d:=_+num,|).d
S;id=FE+F Sj!d =;+(('j .'=”Um+”um=.('j)
S:id:=E + O;id :=id + (id := num + num, id)

id .= F;id :=id + (id := num + num, id)

id := num; id := id + (id := num + num, id)

Note that the rules applied in LR parsing are the same as those above, in reverse.

COMP 520 Winter 2017 Parsing (46)

Internally, shift-reduce parsers:
e are implemented as a stack of states;

e states represent which tokens have been processed (are on the left side), without having to scan the

contents;
e shift/reduce according to the current state, and the next k unprocessed tokens.

e Note how this resembles a DFA.

We can implement this logic using a standard parser driver:

while not accepted do
action = LookupAction (currentState, nextTokens)
if action == shift<nextState>

push (nextState)

else if action == reduce<A->stuff>
pop (| stuffl)
push (NextState (currentState, A))
else
error ()

done

COMP 520 Winter 2017 Parsing (47)
Back to our example:

e ecach rule is given a number:
09" —S% 5 EE — num
195 —=95:85 e —FE +FE
oS —>id=F +E— (S, FE)
38 —>print(L) gL —F
14 F —id oL — L, E

e start with initial state (s1) on the stack;

e we choose the next action using a DFA - the stack contains only DFA states now;

e the actions are summarized in a table, indexed with (currentState, nextTokens):
— shift(m): skip next input symbol and push state
— reduce(k): rule k is X —a; pop || times; lookup (stack top, X) in table
— goto(n): push state

— accept: report success

Parsing (48)

COMP 520 Winter 2017
DFA terminals non-terminals
state| id numeprint ; , +:= () $| S E L
1 s4 s7 g2
2 s3 a
3 s4 s7 g5
4 s6
5 r r1
6 s20 s10 s8 gl
7 s9
8 s4 s/ gl2
9 gl5 gl14
10 5 r5rd5 r5 r5

Error transitions omitted.

DFA terminals non-terminals
state| id num print ; , + () $| S E L
11 r2 r2 s16 r2

12 s3 s18

13 r3 r3 r3

14 s19 s13

15 r8 r8

16 s20 s10 s8 gl7

17 r6 r6 si16 r6 ré

18 s20 s10 s8 g21

19 s20 s10 s8 023

20 r4 r4 r4 r4 r4

21 s22

22 r7 17 7 r7 r7

23 r9 s16 r9

COMP 520 Winter 2017

S1

shift(4)

S1 S84

shift(6)

S1 S4 S¢g

shift(10)

S1 84 S6 S10

reduce(5): E — num
S1 S4 Se /¥10
lookup(sg,F) = goto(11)

S1 84 S6 S11

reduce2): S — id = E
S1 /84 /e B
lookup(s1,S) = goto(2)

S1 S2

accept

7%

7%

7%

Parsing (49)

COMP 520 Winter 2017 Parsing (50)

LR(1) is an algorithm that attempts to construct a parsing table:
e Left-to-right parse;
® Rightmost-derivation; and
e 1 symbol lookahead.

If no conflicts (shift/reduce, reduce/reduce) arise, then we are happy; otherwise, fix grammar.
An LR(1) state is a set of LR(1) items.

An LR(1) item (A — . 37, x) consists of
1. A grammar production, A — a3~y
2. The RHS position, represented by °.
3. A lookahead symbol, x

The sequence «x is on top of the stack, and the head of the input is derivable from (3~yx. There are two

cases for (3, terminal or non-terminal.

COMP 520 Winter 2017 Parsing (51)

We first compute a set of LR(1) states from our grammar, and then use them to build a parse table. There

are four kinds of entry to make:
1. goto: when (3 is non-terminal
2. shift: when 3 is terminal

3. reduce: when 3 is empty (the next state is the number of the production used)

4. accept: when we have A— B . §

Follow construction on the tiny grammar:

OS—>E$ 2E—)T
1 E—>T+FE 3T — x

COMP 520 Winter 2017

Constructing the LR(1) NFA:

e start with state

S— . FE$

o state | A—~a. B3 |

has:

— e-successor | B— .~

* exists rule B — -, and

*x X € lookahead(3)

— B-successor

A—a B .3 |

o state | A—a.x3 |

has:

X-SUCCEeSSOor

A—ax.3

Parsing (52)

COMP 520 Winter 2017 Parsing (53)

Constructing the LR(1) DFA:

Standard power-set construction, “inlining” e-transitions.

E
1S—.E$ 2 S—E.$ 212
E—T+E $
E—T $ T X + $ | FEF T
T—)_x + _,.E—)T+E $ 3 ’ S5
g2 g3
T — x $ E—T. $
I 2 a
xl +l IT 3 s4 r2
f 4 | 85 g6 g3
5("'—x. + |l X FE—T+ FE $ |4 5 a3
T —x. $ E—~T+E $
6

r1

COMP 520 Winter 2017 Parsing (54)

Conflicts
A—.B X flict (lookahead decid
AC. y no conflict (lookahead decides)
A—.B X | shiftred flict
AC. « shift/reduce conflic
A—x Y| shiftred flict
AC. . shift/reduce conflic
A—B. X duce/red flict
AC. . reduce/reduce conflic

COMP 520 Winter 2017

What about shift/shift conflicts?

A—.B
A—C

X

B

= . s;

C

‘—>. Sj

=> by construction of the DFA

we have s; = S

Parsing (55)

COMP 520 Winter 2017 Parsing (56)

LR(1) tables may become very large.

Parser generators use LALR(1), which merges states that are identical except for lookaheads.

COMP 520 Winter 2017

LL(K) LR(K)
LL(1) LR(1)
LALR(1)
SLR
LL(0) LR(0)

Parsing (57)

COMP 520 Winter 2017 Parsing (58)

Takeaways:
You will not be asked to build a parser DFA/NFA/Table on the exams, but you should understand:

e what it means to shift and reduce;
e conflicts that can occur when generating a parser;

e the general idea of how the table or DFA is used during a parse.

COMP 520 Winter 2017 Parsing (59)

Announcements (Monday, January 16th)

Milestones:
e Group formation should be complete this week - a signup sheet will be distributed after Add/Drop
e Assignment 1 due Wednesday, January 25th 11:59PM on myCourses
e Add/drop deadline, tomorrow, Tuesday, January 17th
Assighment 1:
e Questions?

e No TA office hours tomorrow

COMP 520 Winter 2017 Parsing (60)

Reference compiler (minilang):

e ssh <socs_username>Q@teaching.cs.mcgill.ca

@ ~cs520/minilang/minic {keyword} < {file}

e if you find errors in the reference compiler, up to 5 bonus points on the assignment
Keywords for the first assignment:

e scan: run scanner only, VALID/INVALID

e tokens: produce the list of tokens for the program

® parse: run scanner+parser, VALID/INVALID

Run script should be out soon

COMP 520 Winter 2017 Parsing (61)

LALR Parser Tools

grammar acc
+ > y+ parser implemented in C
abcL:JtillcC)ln;St_lc_) bison (tokens --> AST)
parser implemented in Java
grammar g SableCC 2 (tokens_l-_-> CST)
code for traversing trees
grammar parser implemented in Java
+ (tokens --> AST)
actions to » | SableCC 3 > .

build AST code for traversing trees

COMP 520 Winter 2017 Parsing (62)

bison (yacc) is a parser generator:
® it inputs a grammar;
e it computes an LALR(1) parser table;
® it reports conflicts;
® it resolves conflicts using defaults (!); and

e it creates a C program.

Nobody writes (simple) parsers by hand anymore.

COMP 520 Winter 2017 Parsing (63)

The grammar:

1 E—id +1FE—-FE/E FE—(E)
o I/ — num sl —>FE+E
sE—-ExE ¢gF—FE—FE

is expressed in bison as:

S {
/* C declarations x/
5}
/* Bison declarations; tokens come from lexer (scanner) =/
$token tIDENTIFIER tINTCONST
sstart exp

[¢)

/* Grammar rules after the first %% =*/
exp : LIDENTIFIER

TINTCONST

exp "x' exp

exp '/’ exp

exp "+’ exp

exp "'-' exp

(" exp ")’

o° ™
o\
~

*

User C code after the second %% =/

COMP 520 Winter 2017

The grammar is ambiguous:

S bison ——-verbose

exp.y contains 16

$ cat
State
State
State
State

exp.output

11
12
13
14

contains
contains
contains

contains

exp.y # ——verbose produces exp.output

shift/reduce conflicts.

A e A T AN

shift/reduce
shift/reduce
shift/reduce
shift/reduce

conflicts.
conflicts.
conflicts.

conflicts.

Parsing (64)

COMP 520 Winter 2017

With more details about each state

state 11
exp —>
exp —>
exp —>
exp —>
exp —>
I*I
I/I
I_I_I
r _ 17
I*I
I/I
I+I
r _ 17
Sdefault

exp
exp
exp
exp

exp

I*I

I*/ eXp

I/I
I_l_l

’ 14

shift,
shift,
shift,
shift,

[reduce
[reduce
[reduce
[

reduce

reduce using rule 3

exp

exp
exp

exp

and go
and go
and go

and go

using
using
using

using

<-— problem is here

(rule 3)

(rule 3)

(rule 4)

(rule 5)

(rule 0)

to state 6
to state 7
to state 8
to state 9
rule 3 (exp)]
rule 3 (exp)]
rule 3 (exp)]
rule 3 (exp)]

Parsing (65)

COMP 520 Winter 2017

Rewrite the grammar to force reductions:

E—~FE+T T—->TxF F—id
E—-E-T T-—>T/F F —nm
E—T T — F F—(F)

stoken tIDENTIFIER tINTCONST

term : term ’'x’ factor
| term '/’ factor
| factor
’
factor : tIDENTIFIER
| TINTCONST
| 7 (" exp ")’

o0 e
o\

Parsing (66)

COMP 520 Winter 2017

Or use precedence directives:

stoken tIDENTIFIER tINTCONST

Tstart exp
sleft
sleft

o\°
o\°

O\O e
o\°

I_|_I

I*I

4 ’/

I/I

CTIDENTIFIER
CTINTCONST

exp
exp
exp

exp

I*I
I/I
I_I_I

4 4

exp
exp
exp

exp

/+ left—associative,

/+ left—associative,

lower precedence =*/

higher precedence =/

Parsing (67)

COMP 520 Winter 2017

Which resolve shift/reduce conflicts:

Conflict i1n state 11 between rule 5 and token

resolved as reduce. <-— Reduce exp + exp
Conflict in state 11 between rule 5 and token
resolved as reduce. <-— Reduce exp + exp
Conflict in state 11 between rule 5 and token

resolved as shift. <—-—- Shift exp + exp
Conflict in state 11 between rule 5 and token

resolved as shift. <—-—- Shift exp + exp

Note that this is not the same state 11 as before.

Parsing (68)

COMP 520 Winter 2017 Parsing (69)

The precedence directives are:
® 1left (left-associative)
e 3right (right-associative)
® nonassoc (non-associative)

When constructing a parse table, an action is chosen based on the precedence of the last symbol on the
right-hand side of the rule.

Precedences are ordered from lowest to highest on a linewise basis.

If precedences are equal, then:
e S1left favors reducing
e Sright favors shifting
® nonassoc Yields an error

This usually ends up working.

COMP 520 Winter 2017

Using —report we can see the full error:

tIDENTIFIER shift,

state 0
T INTCONST
r(r
exp
state 1
exp —>
Sdefault
state 2
exp —>
Sdefault
state 14
exp —>
exp —>
exp —>
exp —>
exp —>
Sdefault
state 15
$
state 16
Sdefault

and go to state 1

1)
(exp)

(exp)

(exp)

shift, and go to state 2
shift, and go to state 3
go to state 4

tIDENTIFIER (rule
reduce using rule 1

Tt INTCONST (rule 2)
reduce using rule 2

exp "' exp (rule

exp /7 exp (rule

exp '/ exp (rule

exp "+’ exp (rule

exp =7 exp (rule
reduce using rule 4
go to state 16
accept

Parsing (70)

COMP 520 Winter 2017

$ cat exp.y

o\°
—~

#include <stdio.h>
extern char xyytext;
void yyerror ()

%}
Sunion {

int intconst;

{ printt

char xstringconst;

}

$token <intconst> tINTCONST

/+ for printf =/
/+ string from scanner =*/
("syntax error before %s\n",

$token <stringconst> tIDENTIFIER

sstart exp
sleft 7+7 -7
Sleft "x" 1/’

o\
o\°

exp : LIDENTIFIER
TINTCONST

exp "x!' exp
exp '/’ exp
exp "+’ exp
exp "'-' exp
(" exp ")’

o0 e
o\°

e T et T et i et N et N et W et

printf
printf
printf
printf
printf
printf

"load %s\n", S$1); }
"push %i\n", $1); }
"mult\n"); }
"div\n"); }
"olus\n"); }

~ o~ o~ o~ o~ o~

"minus\n"); }

yytext);

}

Parsing (71)

COMP 520 Winter 2017

$ cat exp.l

o\

{

#include
#include
#include

") "

/* ignore

return
return
return
return
return

return

Ol ([1-9]1[0-9]x)
yylval.intconst
return tINTCONST;

}

I*I
I/I
I_|_I

"y.tab.h" /*
<string.h> /=*
<stdlib.h> /=

x/;

= atoi

[a—zA-7Z_] [a—-zA-Z0-9_]+ {
yylval.stringconst =

(char «)
sprintf

malloc

(strlen

return tIDENTIFIER;

oo .
o\°

/* ignore */

for exp.y types =/
for strlen «/
for malloc and atoi =/

(yytext);

(yytext) + 1);

(vylval.stringconst, "%s", yytext);

Parsing (72)

COMP 520 Winter 2017 Parsing (73)

Invoking the scanner and parser requires calling yyparse:

$ cat main.c
void yyparse () ;
int main (void)
{

vyparse ();
}

Using £lex/bison to create a parser is simple:

$ flex exp.1l

$ bison —--yacc —-—-defines exp.y # note compatability options

$ gcc lex.yy.c y.tab.c y.tab.h main.c -o exp —-1fl

COMP 520 Winter 2017 Parsing (74)

An example:
When input a* (b-17) + 5/c:

S echo "ax (b-17) + 5/c¢" | ./exp
our exp parser outputs the correct order of operations:

load a
load b
push 17
minus
mult
push 5
load c
div

plus

You should confirm this for yourself!

COMP 520 Winter 2017 Parsing (75)

Error recovery:

If the input contains syntax errors, then the b1 son-generated parser calls yyerror and stops.

We may ask it to recover from the error:

exp : TLIDENTIFIER { printf ("load %s\n", $1); }

| I(I exp I)I

| error { yyerror(); }

and on input a@ (b—17) ++ 5/c getthe output:

load a plus
syntax error before (push 5
syntax error before (load c
syntax error before (div
syntax error before b plus
push 17

minus

syntax error before)
syntax error before)

syntax error before +

COMP 520 Winter 2017 Parsing (76)

SableCC (by Etienne Gagnon, McGill alumnus) is a compiler compiler: it takes a grammatical description

of the source language as input, and generates a lexer (scanner) and parser for it.

Jjoos.sableckE

SableCC foo. joos
: . scannera

CST/AST

COMP 520 Winter 2017

The SableCC 2 grammar for our Tiny language:

Package tiny;

Helpers

tab = 9;

Ccr = 13;

1f = 10;

digit = ['0".."9"];

lowercase = ['a’..’"z"];

uppercase = [TA".."Z27];

letter = lowercase | uppercase;

idletter = letter | '_7’;

idchar = letter | '_" | digit;
Tokens

eol = cr | 1f | cr 1f;

blank =" 7 | tab;

star = "x';

slash = "/";

plus = "+';

minus = ’'-';

1l par = " (';

r_par = '")’";

number = "0’ | [digit-"0"] digitx;

id = idletter idcharx;

Ignored Tokens
blank, eol;

Parsing (77)

COMP 520 Winter 2017

Productions
exp =
{plus}
{minus}
{factor}

factor =
{mult}
{divd}

{term}

term =
{paren}
{id}

{number}

Version 2 produces parse trees, a.k.a. concrete syntax trees (CSTSs).

exp plus factor

exp minus factor

factor;

factor star term

factor slash term

Lerm;

1l _par exp r_par
id |

number;

Parsing (78)

COMP 520 Winter 2017 Parsing (79)

The SableCC 3 grammar for our Tiny language:

Productions
cst_exp {—> exp} =
{cst_plus} cst_exp plus factor
{—> New exp.plus(cst_exp.exp, factor.exp)} |
{cst_minus} cst_exp minus factor
{—> New exp.minus (cst_exp.exp, factor.exp)} |

{factor} factor {—> factor.exp};

factor {—-> exp} =
{cst_mult} factor star term
{—> New exp.mult (factor.exp,term.exp)} |
{cst_divd} factor slash term
{-> New exp.divd(factor.exp,term.exp)} |

{term} term {-> term.exp};

term {-> exp} =
{paren} 1l _par cst_exp r_par {—-> cst_exp.exp} |
{cst_1id} id {—> New exp.id(id)} |

{cst_number} number {—> New exp.number (number) };

COMP 520 Winter 2017 Parsing (80)

Abstract Syntax Tree

exp =
{plus} [1] :exp [r]:exp |
{minus} [1] :exp [r]:exp |
{mult} [1] :exp [r] :exp |
{divd} [1] :exp [r]:exp |
{1d} id |
{number} number;

Version 3 generates abstract syntax trees (ASTS).

COMP 520 Winter 2017 Parsing (81)

A bit more on SableCC and ambiguities

The next slides are from "Modern Compiler Implementation in Java", by Appel and Palsberg.

GRAMMAR 3.30

1. P—-1L 5. §—ifid then §

2. §S—-1d:=ud 6. §— ifid then Selse §
3. §— whileiddo § 7. L—=S

4. § — begin L end 8. L—-L:S

COMP 520 Winter 2017 Parsing (82)

First part of SableCC specfication (scanner)

GRAMMAR 3.32: SableCC version of Grammar 3.30.

Tokens
while = 'while';
begin = 'begin';
end = 'end';
do = 'do';
1f = '"ift';
then = 'then';
else = 'else';
semi = ';"';
assign = '="';
whitespace = (" " | "\t' | "\n'")+;
1id = [Ta'.."z"](["a".."z"] | ['O'".."'9"])*;

Ignored Tokens
whitespace;

COMP 520 Winter 2017 Parsing (83)

Second part of SableCC specfication (parser)

.

Productions
prog = stmlist;
stm = {assign} [left]:id assign [right]:id |

{while} while id do stm |

{begin} begin stmlist end |

{if then} if id then stm |

{if then else} if 1d then [true stm]:stm else [false stm]:stm;

stmlist = {stmt} stm |
{stmtlist} stmlist semi stm;

COMP 520 Winter 2017 Parsing (84)

Shift reduce confict because of "dangling else problem"

shift/reduce conflict in state [stack: TIf TId TThen PStm *] on TElse in {
[PStm = TIf TId TThen PStm * TElse PStm] (shift),
[PStm = TIf TId TThen PStm *] followed by TElse (reduce)

—
2

-2

Figure 3.33: SableCC shift-reduce error message for Grammar 3.3

COMP 520 Winter 2017 Parsing (85)

GRAMMAR 3.34: SableCC productions of Grammar 3.32 with conflicts resolved.

Productions
prog = stmlist;

stm = {stm without trailing substm}
stm without trailing substm |
{while} while id do stm |
{if then} if id then stm |
{if then else} if id then stm no short if
else [false stm]:stm;

stm no short if = {stm without trailing substm}
stm without trailing substm |
{while no short if}
while id do stm no short if |
{if then else no short if}
if id then [true stm]:stm no short if
else [fals stm]:stm no short if;

stm without trailing substm = {assign} [left]:id assign [right]:id |
{begin} begin stmlist end ;
stmlist = {stmt} stm | {stmtlist} stmlist semi stm;

COMP 520 Winter 2017 Parsing (86)

Shortcut for giving precedence to unary minus in bison/yacc

GRAMMAR 3.37: Yacc iammar with ﬁrecedence directives.

%{ declarations of yylex and yyerror %}
$token INT PLUS MINUS TIMES UMINUS
Fstart exp

$left PLUS MINUS
$left TIMES
3left UMINUS

oo
00

exp : INT

exp PLUS exp

exp MINUS exp

exp TIMES exp

MINUS exp $prec UMINUS

