
COMP 520 Compiler Design
Individual Assignment #1
Language Specifications

Overview:

Given the example program sqrt.min and the discussion in class, your first assignment is to
implement the scanner and parser for the minilang programming language. Note that as
you implement your compiler, some decisions may be more difficult to implement than you
first thought - or we might have missed out a key detail you need. In these cases, bring them
up in class and we can discuss possible changes.

sqrt.min

// Approximate the square root of x.

var x: float;

var guess: float;

var quot: float;

var iter: int;

read x;

guess = 1;

iter = 10;

while iter do

quot = x / guess;

guess = 0.5 * (guess + quot);

iter = iter - 1;

done

print guess;

print guess * guess;

Specifications

A program in minilang consists of a list of variable declarations followed by a list of state-
ments. Unlike many programming languages, declarations and statements may not be inter-
woven. Note though, the list of declarations or statements may be empty - that is, the empty
program, programs with just declarations, and programs with just statements are valid.

1

General

Reserved words in the language are as follows:

var while do

done if then

else endif

float int string

print read

They may not be used in variable declarations as identifiers, and may not be reassigned (i.e.
while=3 is invalid). Keywords are case sensitive.

Comments in this language are single line, and start with the double forward slash. There
are no block comments.

// this is a comment

Unidentified symbols (those not valid in any token) must cause the program to be rejected.

UPDATE (Jan 18th): For the purpose of this assignment, we will assume the only valid
whitespace characters are \n \r \t and space.

Declarations

A variable declaration has the following form, where variables can either be of type int,
float, or string. Note the terminating semicolon.

var a: float;

Types in this language are defined as:

• int: an integer with no leading zero (unless of course it is zero)

• float: a floating point (decimal) number with digits on both sides of the decimal. (i.e.
3. or .3 are not valid floating point numbers).

UPDATE (Jan 18th): Floating points may not contain leading zeros on the LHS of
the decimal (unless it is zero), however they may have trailing zeros. In other words,
the LHS of the decimal must be a valid integer according to our specification.

– leading: 000.01 and 01.3 are INVALID, while 0.01 is VALID

– trailing: 0.00000, 0.01000, etc... all VALID

2

• string: a string of characters surrounded by quotation marks "...". Note that in this
language we will accept escaped quotation marks within the string. This means that
"derp\"derp" should be treated as a valid string.

UPDATE (Jan 18-20th): String literals may contain the following characters:

– Spaces

– Alphanumerics: [a-zA-Z0-9]

– Symbols: ~ # $ % ^ & * - + / ‘ (i.e. backtick) < > = |

’ (i.e. singlequote) ; : { } [] ()

– Escape sequences: \a \b \f \n \r \t \v \" \\
All other escape sequences are invalid

– Optional symbols: You may optionally support the following symbols within
strings (they were omitted by accident): @ ! ? . ,

Note that numeric literals do not have a sign.

An identifier must start with either: a letter (uppercase or lowercase) or an underscore. Sub-
sequent characters can either be letters, underscores, or digits. Identifiers are case sensitive
(this will matter for later phases of the compiler).

Statements

Statements in the language can either be one of the following. Note that the first 3 (read,
print and assignment) are all terminated by semicolons. Statement lists (<stmts>) are a list
of zero or more statements.

• Read into a variable

read x;

• Print an expression

print x * x;

• Assignment into a variable

guess = 1;

• If statement, with optional else branch

3

if <expression> then

<stmts>

[else

<stmts>]

endif

• While loop

while <expression> do

<stmts>

done

Expressions

Expressions follow the typical math notation found in modern programming languages, and
consist of:

• Binary operations: +, -, *, /

• Unary operations: - (i.e. -3 is a valid expression)

• Matched parentheses

• Left associativity

• Typical math precedence of operations

4

