
COMP 520 Winter 2015 Introduction (1)

Introduction - Part 2
COMP 520: Compiler Design (4 credits)

Professor Laurie Hendren

hendren@cs.mcgill.ca

TRF 10:30-11:30, MC 103



COMP 520 Winter 2015 Introduction (2)

RECAP and Some Ideas from the Readings!

Please note that these topics are discussed using the blackboard, and you may want to take notes on this

discussion.

• Why study compilers?

• Who has a compiler with them today?

• General-Purpose vs. Domain-Specific Languages

• Interpreters vs. compilers

• Compilers that generate assembly code or machine code (pure, augmented, virtual machine)

• Ahead-of-time versus JIT compilers



COMP 520 Winter 2015 Introduction (3)

The top 10 list of reasons why we use C for compilers:

10) it’s tradition;

9) it’s (truly) portable;

8) it’s efficient;

7) it has many different uses;

6) ANSI C will never change;

5) you must learn C at some point;

4) it teaches discipline (the hard way);

3) methodology is language independent;

2) we have flex and bison; and

1) you can say that you have implemented a large project in C.



COMP 520 Winter 2015 Introduction (4)

The top 10 list of reasons why we use Java for compilers:

10) you already know Java from previous courses;

9) run-time errors like null-pointer exceptions are easy to locate;

8) it is relatively strongly typed, so many errors are caught at compile time;

7) you can use the large Java library (hash maps, sets, lists, . . . );

6) Java bytecode is portable and can be executed without recompilation;

5) you don’t mind slow compilers;

4) it allows you to use object-orientation;

3) methodology is language independent;

2) we have sablecc, developed at McGill; and

1) you can say that you have implemented a large project in Java.



COMP 520 Winter 2015 Introduction (5)

Bootstrapping as illustrated in text, ”Crafting a Compiler”



COMP 520 Winter 2015 Introduction (6)

How to bootstrap a compiler (SCALA example):

• we are given a source language (L in the reading), say SCALA; and

• a target language (M in the reading), say Java.

We need the following:

source target

implementation

S J

J

Of course, actually we like SCALA much better than Java and would therefore rather implement SCALA in

itself:

source target

implementation

S J

S



COMP 520 Winter 2015 Introduction (7)

Define the following:

• S↓ is a simple subset of SCALA;

• J− is inefficient Java code, and

• P is our favourite programming language, here “Pizza”.

We can easily implement:

S↓ J−

P

1

and in parallel, using S↓, we can implement:

S J

S↓
2

using basically our favourite language.



COMP 520 Winter 2015 Introduction (8)

Combining the two compilers, we get:

S J

S↓
2

S↓ J−

P

1

S J

J−
2’

which is an inefficient SCALA compiler (based on generated Java code) generating efficient Java code.

A final combination gives us what we want, an efficient SCALA compiler, written in SCALA, running on

the Java platform.

S J

S↓
2

S J

S

3 S J

J

3’

S↓ J−

P

1

S J

J−
2’


