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RECAP and Some Ideas from the Readings!

Please note that these topics are discussed using the blackboard, and you may want to take notes on this

discussion.

• Why study compilers?

• Who has a compiler with them today?

• General-Purpose vs. Domain-Specific Languages

• Interpreters vs. compilers

• Compilers that generate assembly code or machine code (pure, augmented, virtual machine)

• Ahead-of-time versus JIT compilers
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The top 10 list of reasons why we use C for compilers:

10) it’s tradition;

9) it’s (truly) portable;

8) it’s efficient;

7) it has many different uses;

6) ANSI C will never change;

5) you must learn C at some point;

4) it teaches discipline (the hard way);

3) methodology is language independent;

2) we have flex and bison; and

1) you can say that you have implemented a large project in C.
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The top 10 list of reasons why we use Java for compilers:

10) you already know Java from previous courses;

9) run-time errors like null-pointer exceptions are easy to locate;

8) it is relatively strongly typed, so many errors are caught at compile time;

7) you can use the large Java library (hash maps, sets, lists, . . . );

6) Java bytecode is portable and can be executed without recompilation;

5) you don’t mind slow compilers;

4) it allows you to use object-orientation;

3) methodology is language independent;

2) we have sablecc, developed at McGill; and

1) you can say that you have implemented a large project in Java.
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Bootstrapping as illustrated in text, ”Crafting a Compiler”
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How to bootstrap a compiler (SCALA example):

• we are given a source language (L in the reading), say SCALA; and

• a target language (M in the reading), say Java.

We need the following:

source target

implementation

S J

J

Of course, actually we like SCALA much better than Java and would therefore rather implement SCALA in

itself:

source target

implementation

S J

S
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Define the following:

• S↓ is a simple subset of SCALA;

• J− is inefficient Java code, and

• P is our favourite programming language, here “Pizza”.

We can easily implement:

S↓ J−

P

1

and in parallel, using S↓, we can implement:

S J

S↓
2

using basically our favourite language.
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Combining the two compilers, we get:

S J

S↓
2

S↓ J−

P

1

S J

J−
2’

which is an inefficient SCALA compiler (based on generated Java code) generating efficient Java code.

A final combination gives us what we want, an efficient SCALA compiler, written in SCALA, running on

the Java platform.

S J

S↓
2

S J

S

3 S J

J

3’

S↓ J−

P

1

S J

J−
2’


