
COMP 520 Compiler Design
OncoTime Scopes and Type Specification

1 Overview:

The purpose of this document is to sketch out a plausible score and type structure for the
OncoTime language. You may deviate from this specification if you provide a good rationale
for your approach.

2 Program Header

Your compiler needs to verify that the script name matches the prefix of the name of the
containing file. That is file foo.onc should contain a script that begins with:

script foo // should be in file foo.onc

...

The script defines the top-level scope. Any parameters to the script should be inserted
into this scope.

script foo(x,y) // x, y are in the top-level scope

...

Note that at this point in the program we only know the names of parameters, the types
will be inferred by their uses.

3 Groups

The first thing that needs to be done in the groups section is to inline the groups defined by
the use clauses. This should be an inlining similar to the way includes work in C.

For example, if we had:

use foo.grp, goo.grp

then there should exist files foo.grp and goo.grp in the same directory as the program
being compiled. It is a semantic error if a file does not exist.

The semantics of the use clause should be as if the .grp files were inlined into the main
script file at the location of the use clause. You may wish to just use your scanner/parser
on the .grp file, and insert the resulting AST in the correct location into the main AST.
The .grp file can contain only group declarations and no other OncoTime constructs.

Assuming that all the use clauses have been inlined, then there are more checks to be
done on the group declarations.

1



First, we should decide if entering the group declarations introduces a new scope. If we
do start a new scope, then it would remain open until the end of the program, at which time
both the main scope and the new scope would be exited. If we make a new scope, then a
group declaration could declare something with the same name as a parameter.

script foo(x, y)

/* comment */

group x = {"red", "blue"}

If, instead, we put the group declarations into the main scope, then this example would
result in a redefined variable x. It is your choice, but justify which choice you made in your
design decisions.

Each group symbol associate the group identifier with the set of strings represented by
the group. Thus, if a group declaration refers to another group, then the strings should be
inlined. Since groups are sets, repeated elements are combined into one. You may find it
useful to store the group elements sorted, so that it is easier to operate on the groups later
on.

For example:

group x = {"red", "blue"}

group y = {x, "green", "blue"}

would result in two group symbols, x would be associated with the list ["blue", "red"]

and y would be associated with the list ["blue", "green", "red"]. Note that since groups
are just sets, it is ok that "blue" was specified twice. However, in the internal representation
it only occurs once.

We also need to decide upon what rules should be allowed for the identifiers that occur
on the rhs of a group declaration. Certainly such an identifier could be the name of another
group. You need to decide if the other group must already be defined, or if it could be
defined later.

For example, is the following allowed or not?

group x = { "red", y }

group y = { "blue", "green" }

What about?

group x = { "red", y }

group y = { "blue", x }

Or, do you insist upon a group being defined before it is used?

group x = { "red" }

group y = { "blue", x }

You need to implement the semantic check for your decision, and justify your decision in
the design notes.

Another design decision is to determine if an identifier in a group declaration could refer
to a parameter.

For example, does the following make sense?

2



script foo(x) // x is a string passed in when foo is called

/* comment */

group y = { "blue", x }

The implication of this decision is that if you allow a parameter, then you do not know
the full group definitions until run-time. If you do allow it, then this use of the parameter
could cause the inferred type of parameter x to be String.

After doing type-checking/semantic-analysis of the use and group sections of the pro-
gram, your symbol table should contain all the groups, with each group name associated
with the list of elements of the group.

4 Filters

For the purposes of the course project we can assume that the filters allow only the items
given in the OncoTime slides, although you may use a more modular/extensible design if
you prefer. The purpose of the type-checking/semantic analysis is to:

• Verify the correct use of fields and values.

• Store the values for every field (even the implicit ones) in a format useful for subsequent
code generation.

4.1 Fields

As outlined on the slides:

population filter should have five fields: id, gender, birthyear, diagnosis and postalcode.

period filter should have six fields: years, months, days, hours, start, end.

events is a list of events, where each event must be from the allowed events list. (detailed
list to come, for now just assume an event could be one of the events listed on the page
called What are events? on the OncoTime slides. Basically, you will need to be able
to check that each event is in a pre-defined list of strings)

All fields should be represented in your internal representation, even if the user did not
specify all the fields.

For example, if the user specified:

population is

birthyear: 1958

You would insert the missing fields, with the ’*’ value. That is, you would store the equivalent
of:

3



population is

id: *

gender: *

birthyear: 1958

diagnosis: *

postalcode: *

You should simplify your representation as much as possible. For example, you might
want to resolve things like weekend to the actual days. For example,

period is

days: weekend

would be represented as:

period is

years: *

months: *

days: Sat, Sun

hours: *

start: *

end: *

4.2 Groups in field declarations

Any place that a group name occurs in the filter declaration, this should be replaced by the
list of group items in your internal representation.

For example:

group Preplanning = {"consult_referral_received", "CT_sim_booked"}

group Planning = {"CT_sim_completed", "ready_for_treatment"}

events are Preplanning, Planning, "ready_for_physics_QA"

In this case the list of values associated with events should be the union of the items in
Preplanning, Planning and ”ready for physics QA”.

4.3 Parameters in filters

It was suggested by one OncoTime student group that one should be able to use parameters
in the filters. For example,

script foo(gen)

/* comment */

population is

gender: gen

4



would allow the user to call the script as foo(female) or foo(male).

It is up to you if you want to allow this feature. If you do support it, then the use of a
parameter should trigger a type inference. In this case the parameter has type ”gender”.

Whenever a parameter gets an inferred type, you have to check that it does not already
have a conflicting type. For example,

script foo(gen)

/* comment */

population is

years: gen

gender: gen

Should first infer that gen is a year (or integer), and then tries to infer that it is a gender,
which should result in a type conflict.

4.4 A possible Doctor filter

In the original specification we gave filters for population, period, and events, but we did not
allow filtering by doctor. You may, optionally add a filter for Doctor that has two fields as
follows:

doctor is

id: 10, 12 to 14

oncologist: yes // or no

The real database has a lot more information about doctors, but we need to restrict to
these fields to keep it anonymous. However, adding this filter would make it easy for us to
do a study on an individual doctor, or a small group of doctors.

5 Computations

The filter part of an OncoTime program defines which patients, doctors, diagnoses and events
will be operated on in the computation part of the script. Thus, we can imagine that the
computation part creates three tables: patients, doctors, diagnoses. Each table will have an
entry for each patient, doctor or diagnosis that makes it through the filter, and will have the
field information as defined earlier.

5.1 Foreach

There are three related kinds of foreach constructions, foreach patient, foreach diagnosis

and foreach doctor. These can be nested such that each kind of foreach is used at most
once.

Thus, something like the following is allowed:

5



foreach diagnosis d

foreach patient p

foreach doctor md

...

But, the following would not be allowed:

foreach diagnosis d

foreach patient p

foreach doctor d

...

A question to determine is if it should be allowed to reuse the same identifier in an inner
foreach.

For example, should the following be allowed?

foreach diagnosis d

foreach doctor d

...

You can decide to allow it or not, but justify your decision. Whether it is allowed or
not, each foreach introduces a new scope, and the identifier introduced in the head of the
foreach is only visible for the body of the foreach. Thus you will have an enterscope on
entering a foreach and an exitscope on exiting a foreach.

In each case, the foreach also declares a type for the identifier: patient, doctor, or
diagnosis. Each of those types have some predefined allowed fields which are:

patient ID, Gender, Birthyear, Diagnosis, Postalcode

doctor ID, Oncologist

diagnosis Name

It should be invalid to refer to a field which is not defined on that type. For example,
the reference to the Gender field of a doctor is invalid.

foreach doctor d

print Gender of d

5.2 Tables

Tables are created by the table declaration, and in this simple version of OncoTime can only
be created with the count statement.

For example, the following program creates a table x. This means that x should be
inserted into the symbol table, and its type should be table.

table x = count patients by Diagnosis

6



Similar to the foreach we have patients, doctors and diagnoses as the actors, and the
fields that can be counted are only those that were defined in the previous section.

For example, suppose we had a database that contained only three females, two of which
had breast cancer and one had lung cancer. Then consider the following OncoTime program:

script count

/* comment */

population is

gender: female

{ table x = count patients by Diagnosis

}

This would create a table with as follows:

0 breast 2
1 lung 1

Tables can be plotted, can have their length taken, and can have their items extracted.

For example, we could continue our previous example:

script count

/* comment */

population is

gender: female

{ table x = count patients by Diagnosis

print x.length // can only apply length to tables (and lists?)

foreach element i of x // i is inferred to be an index, x must be a table

print x[i] // prints the pairs, [breast, 2] and [lung, 1]

// x must have type table, and i must be an index

barchart x // displays the table as a bar chart, x must be a table

}

A reasonable restriction would be that tables can only be created in the outermost scope
(and not inside foreach constructs. We could allow redefinitions of tables, as long as both
definitions are tables. For example, the following would be allowed.

script count

/* comment */

population is

gender: female

{ table x = count patients by Diagnosis

barchart x // displays the table as a bar chart, x must be a table

table x = count patients by Birthyear

barchart x

}

However, tables must be defined before they can be used, and one cannot use the same
identifier to represent a table and a list (does this rule make sense?). Thus the following is
not allowed:

7



script count

/* comment */

population is

gender: female

{ barchart x // x not defined

table x = count patients by Birthyear

table y = count doctors by Oncologist

list y = ... // cannot reuse y as a list, is this a reasonable restriction?

}

5.3 Sequences

In addition to the three tables (patients, doctors, diagnoses), the filter will also determine
which events will be extracted from the database. We can imagine that we have a long series
of events, each event has at least two fields: Time and patientID. However, some events will
have additional fields.

We are still deciding the exact list of events, but let us use some simple ones for this
description:

CT_sim_booked(time, patientID)

CT_sim_completed(time, patientID)

ready_for_physics_QA(time, patientID)

appointment_scheduled(time, patientID, doctorID)

When finding sequences the time field is used to decide the relative ordering, and the
remaining fields can be used for matching. So, we could specify things like:

...

{

list S = sequences like CT_sim_booked(p) -> CT_sim_completed(p)

foreach member s in S

print s

}

For these cases the sequences declaration creates a list of all matching sequences of
events. The events listed must be from the valid list of events. If arguments are given for the
match, the number of arguments must match the number of fields (not counting the time
field, which is implicit). The first use of the arguments in the match also introduces a new
identifier (that may be reused later in the the same pattern). The uses of these identifiers
should be consistent.

Here are some examples of errors:

{ // the following uses an undefined event, so error

list S = sequences like CT_sim_booked(p) -> bad_name(p) -> CT_sim_completed(p)

8



// the following uses p in the 2nd arg of appointment_scheduled, which

// doctorid, but it is already being used as a patientid, so error

list Q = sequences like CT_sim_booked(p) -> appointment_scheduled(p,p)

}

6 Deliverables for Milestone #2

1. For the types, you should print out:

• all the groups, with the all the groups expanded and sorted.

• the complete filters, with default values filled in.

• the type for each implicit declaration (i.e. every place where a variable gets a
type based on its use).

2. For the symbol table, you should print the symbol table on exit of each scope.

9


