
COMP 520 Fall 2009 Introduction (1)

Introduction

COMP 520: Compiler Design

Chris Pickett

MWF 11:35-12:35 ENGTR 0070

COMP 520 Fall 2009 Introduction (2)

Purpose:

• This course covers modern compiler

techniques and their application to both

general-purpose and domain-specific

languages.

• The practical aspects focus on current

technologies, primarily Java and interactive

web services.

COMP 520 Fall 2009 Introduction (3)

Contents:

• Deterministic parsing: Scanners, LR parsers,

the flex/bison and SableCC tools.

• Semantic analysis: abstract syntax trees,

symbol tables & attribute grammars, type

checking, resource allocation.

• Virtual machines and run-time environments:

stacks, heaps, objects.

• Code generation: resources, templates,

optimizations.

• Surveys on: native code generation, static

analysis,

COMP 520 Fall 2009 Introduction (4)

Schedule:

• Lectures: 3 hours/week.

Prerequisites:

• COMP 273, COMP 302, (COMP 330), ability

to read and write “large” programs.

• Students without COMP 330 should read the

background material indicated in Week 1 of

the web page ASAP.

Lecturer:

• Chris Pickett, McConnell 226/234,

Office hours after class, ENGTR 00070

TA:

• Nurudeen Lameed & Jesse Doherty,

McConnell 226/234,

Office Hours 13:00–16:00 M–F

Midterm: in-class, near end of October

Final exam: in-class, last day of lectures

COMP 520 Fall 2009 Introduction (5)

Marking Scheme:

• 10% midterm, 15% final exam, 75%

assignments and project

• the 75% for assignments and projects will be

divided as follows:

– 15% for the first 3 JOOS deliverables (5%

each)

– 10% for the JOOS peephole optimizer

– 30% for content submitted at milestones

– 20% for the final WIG compiler and report

• Group members may be given different grades

on the project work if the contributions are

not reasonably equal.

COMP 520 Fall 2009 Introduction (6)

Academic Integrity:

• McGill University values academic integrity.

Therefore all students must understand the

meaning and consequences of cheating,

plagiarism and other academic offences under

the Code of Student Conduct and

Disciplinary Procedures.

http://www.mcgill.ca/integrity/studentguide/

• In terms of this course, part of your

responsibility is to ensure that you put the

name of the author on all code that is

submitted. By putting your name on the code

you are indicating that it is completely your

own work.

• If you use some third-party code you must

have permission to use it and you must

clearly indicate the source of the code.

COMP 520 Fall 2009 Introduction (7)

Course material:

• course pack readings (readings C1-C8);

• online readings (readings O1-O5);

• slides for the lectures; and

• extensive documentation on the course web

pages.

COMP 520 Fall 2009 Introduction (8)

The course pack and the online readings:

• are mainly background reading;

• do not discuss the JOOS and WIG projects

used in this course; and

• are required for the exercises.

The slides:

• are quite detailed; and

• are available online just before class in 1-up

and 4-up formats.

The web pages:

• aim to contain all information;

• provide on-line documentation; and

• may be updated frequently.

COMP 520 Fall 2009 Introduction (9)

Subversion (SVN)

• Versioning system

• Good for maintaining source code but also for

other things

• You will use it for your submissions

• You can also use it to track changes on the

website and to access your source code

templates

• Tasks for this week

– Read SVN documentation on the website

– Pair up with group mates (may use

discussion group)

– Send SSH key and name(s) of group

mate(s) to the TA (see website)

COMP 520 Fall 2009 Introduction (10)

New programming languages per year:

0

10

20

30

40

50

60

70

80

90

100

525354555657585960616263646566676869707172

0

10

20

30

40

50

60

70

80

90

100

110

120

130

737475767778798081828384858687888990919293

COMP 520 Fall 2009 Introduction (11)

The compiler for the FORTRAN language:

• was implemented in 1954–1957;

• was the world’s first compiler;

• was motivated by the economics of

programming;

• had to overcome deep skepticism;

• paid little attention to language design;

• focused on efficiency of the generated code;

• pioneered many concepts and techniques; and

• revolutionized computer programming.

COMP 520 Fall 2009 Introduction (12)

C AREA OF A TRIANGLE WITH A STANDARD SQUARE ROOT FUNCTION

C INPUT - CARD READER UNIT 5, INTEGER INPUT

C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT

C INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB CONTROL

LISTING

READ INPUT TAPE 5, 501, IA, IB, IC

501 FORMAT (3I5)

C IA, IB, AND IC MAY NOT BE NEGATIVE

C FURTHERMORE, THE SUM OF TWO SIDES OF A TRIANGLE

C IS GREATER THAN THE THIRD SIDE, SO WE CHECK FOR THAT, TOO

IF (IA) 777, 777, 701

701 IF (IB) 777, 777, 702

702 IF (IC) 777, 777, 703

703 IF (IA+IB-IC) 777,777,704

704 IF (IA+IC-IB) 777,777,705

705 IF (IB+IC-IA) 777,777,799

777 STOP 1

C USING HERON’S FORMULA WE CALCULATE THE

C AREA OF THE TRIANGLE

799 S = FLOATF (IA + IB + IC) / 2.0

AREA = SQRT(S * (S - FLOATF(IA)) * (S - FLOATF(IB)) *

+ (S - FLOATF(IC)))

WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA

601 FORMAT (4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,

F10.2,

+ 13H SQUARE UNITS)

STOP

END

COMP 520 Fall 2009 Introduction (13)

General-purpose languages:

• allow for arbitrarily useful programs to be

written

• in the theoretical sense are all

Turing-complete; and

• are the focus of most programming language

courses.

Prominent examples are:

• C

• C++

• FORTRAN

• Java

• . . .

General purpose languages fairly obviously require

full-scale compiler technology to run efficiently.

COMP 520 Fall 2009 Introduction (14)

Domain-specific languages:

• extend software design; and

• are concrete artifacts that permit

representation, optimization, and analysis in

ways that low-level programs and libraries do

not.

• They may even be visual! (e.g. boxes &

arrows)

Prominent examples are:

• LATEX

• yacc and lex

• Makefiles

• HTML

• SVG

• . . .

Domain-specific languages also require full-scale

compiler technology.

COMP 520 Fall 2009 Introduction (15)

Reasons to learn compiler technology:

• understand existing languages;

• appreciate current limitations;

• talk intelligently about language design;

• implement your very own general purpose

language; and

• implement lots of useful domain-specific

languages

– encoding everything in XML is not always

the best way to go

(see Makefiles vs. Ant’s build.xml)

COMP 520 Fall 2009 Introduction (16)

The phases of a modern compiler:

The individual phases:

• are modular software components;

• have their own standard technology; and

• are increasingly being supported by

automatic tools.

Advanced backends may contain an additional

5–10 phases.

COMP 520 Fall 2009 Introduction (17)

The project:

• Java’s Object-Oriented Subset

• is compiled to Java bytecode;

• illustrates a general purpose language;

• allows client-side programming on the web;

• is used to teach by example;

• has source code available;

• and will be upgraded by you into an

version.

COMP 520 Fall 2009 Introduction (18)

The project:

• Web Interface Generator

• is compiled to C-based CGI-scripts (or other

targets...);

• illustrates a domain-specific language;

• allows server-side programming on the web;

• is used to get hands-on experience;

• and will be implemented from scratch, by you!

COMP 520 Fall 2009 Introduction (19)

The top 10 list of reasons why we use C for

compilers:

10) it’s tradition;

9) it’s (truly) portable;

8) it’s efficient;

7) it has many different uses;

6) ANSI C will never change;

5) you must learn C at some point;

4) it teaches discipline (the hard way);

3) methodology is language independent;

2) we have flex and bison; and

1) you can say that you have implemented a

large project in C.

COMP 520 Fall 2009 Introduction (20)

The top 10 list of reasons why we use Java for

compilers:

10) you already know Java from previous courses;

9) run-time errors like null-pointer exceptions are

easy to locate;

8) it is relatively strongly typed, so many errors are

caught at compile time;

7) you can use the large Java library (hash maps,

sets, lists, . . .);

6) Java bytecode is portable and can be executed

without recompilation;

5) you don’t mind slow compilers;

4) it allows you to use object-orientation;

3) methodology is language independent;

2) we have sablecc, developed at McGill; and

1) you can say that you have implemented a large

project in Java.

COMP 520 Fall 2009 Introduction (21)

How to bootstrap a compiler (SCALA example):

• we are given a source language (L in the

reading), say SCALA; and

• a target language (M in the reading), say

Java.

We need the following:

source target

implementation

S J

J

Of course, actually we like SCALA much better

than Java and would therefore rather implement

SCALA in itself:

source target

implementation

S J

S

COMP 520 Fall 2009 Introduction (22)

Define the following:

• S↓ is a simple subset of SCALA;

• J− is inefficient Java code, and

• P is our favourite programming language,

here “Pizza”.

We can easily implement:

S
↓

J
−

P

1

and in parallel, using S↓, we can implement:

S J

S
↓

2

using basically our favourite language.

COMP 520 Fall 2009 Introduction (23)

Combining the two compilers, we get:

S J

S
↓

2

S
↓

J
−

P

1

S J

J
−

2’

which is an inefficient SCALA compiler (based on

generated Java code) generating efficient Java

code.

A final combination gives us what we want:

S J

S
↓

2

S J

S

3 S J

J

3’

S
↓

J
−

P

1

S J

J
−

2’

an efficient SCALA compiler, written in SCALA,

running on the Java platform.

