FORMATS: D = DVI, P = POSTSCRIPT, G = POSTSCRIPT+GZIP
Papers connecting Coding Theory and Cryptography

G. Brassard, C. Crépeau and M. Sàntha.
Oblivious Transfers and Intersecting Codes.
[
D
/
P
/
G
]
to appear in
IEEE Transaction on Information Theory , 1996.

C. Crépeau and L. Salvail.
Oblivious Verification of Common String.
[
D
/
P
/
G
]
CWI Quarterly ,
special issue for Crypto Course 10th Anniversary .
Volume 8, Number 2, pp. 97109, June 1995.

C. Crépeau.
Efficient Cryptographic Protocols Based on Noisy Channels.
[
D
/
P
/
G
]
Manuscript, 1996.

G. Brassard and C. Crépeau.
Oblivious Transfers and Privacy Amplification.
[
D
/
P
/
G
]
Manuscript, 1996.

C. Crépeau, J. van de Graaf, and A. Tapp.
Committed Oblivious Transfer and Private MultiParty Computations.
[
D
/
P
/
G
]
Advances in Cryptology: Proceedings
of Crypto '95 , SpringerVerlag, pages 110123, 1995.

C. Crépeau, and L. Salvail.
Quantum Oblivious Mutual Identification.
[
D
/
P
/
G
]
Advances in Cryptology: Proceedings
of Eurocrypt '95 , SpringerVerlag, pages 133147, 1995.

G. Brassard, C. Crépeau, R. Jozsa, and D. Langlois.
A quantum bit commitment scheme provably unbreakable by both parties.
[
D
/
P
/
G
]
In 34th Symp. on Found. of Computer Sci. , pages 4252.
IEEE, 1993.

C.H. Bennett, G. Brassard, C. Crépeau, and M.H. Skubiszewska.
Practical quantum oblivious transfer protocols.
[
D
/
P
/
G
]
In Advances in Cryptology: Proceedings of Crypto '91 , volume
576 of Lecture Notes in Computer Science , pages 351366.
SpringerVerlag, 1992.

C. Crépeau and M. Sántha.
Efficient reductions among oblivious transfer protocols based on new
selfintersecting codes.
[
D
/
P
/
G
]
In Sequences II, Methods in Communications, Security, and
Computer Science , pages 360368. SpringerVerlag, 1991.

D. Chaum, C. Crépeau, and I. Damgaard.
Multiparty unconditionally secure protocols.
[
P
/
G
]
In 19th Symp. on Theory of Computing , pages 1119. ACM,
1988.

G. Brassard, C. Crépeau, and J.M. Robert.
Information theoretic reductions among disclosure problems.
[
P
/
G
]
In 27th Symp. of Found. of Computer Sci. , pages 168173.
IEEE, 1986.
Some Coding Theory related papers I like

Feng and Rao.
Reflections on "Decoding
AlgebraicGeometric Codes up to the Designed Minimum Distance".
[
P
/
G
]

Rob Calderbank and Peter Shor.
Good Quantum Errorcorrecting Codes exist.
[
P
/
G
]
to appear.
with figure.
[
P
/
G
]

N.J.A. Sloane.
Covering Arrays and Intersecting Codes.
[
P
/
G
]
In
Journal of Combinatorial Designs 1(1993), pp.5163.

M. Sipser and D. Spielman.
Expander Codes.
[
P
/
G
]
In 36th Symp. of Found. of Computer Sci. , pages .
IEEE, 1995.

D. Spielman.
Linearly Encodable and Decodable ErrorCorrecting Codes.
[
P
/
G
]
as submitted.

D. Spielman.
Linearly Encodable and Decodable ErrorCorrecting Codes.
[
P
/
G
]
STOC '95.

D. Spielman.
MIT PhD Thesis.
[
P
/
G
]

N. Kahale.
Eigenvalues and Expansion of Regular Graphs.
[
P
/
G
]

N. Kahale.
Isoperimetric Inequalities and Eigenvalues.
[
P
/
G
]

N. Sendrier.
On the structure of a randomly permuted concatenated code,
[
P
/
G
]
In: EUROCODE'94, Côte d'Or, France, 2428 octobre 1994.

J. Feigenbaum.
The Use of Coding Theory in Computational Complexity.
[
P
/
G
]
In
Different Aspects of Coding Theory
, Proceedings of Symposia on
Applied Mathematics, R. Calderbank (ed.), American Mathematical Society,
Providence, 1995, 207233.