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Abstract

Private Information Retrieval (PIR), which allows users to query one (or

many replicated) database(s) for the ith element, while keeping i private,

has received a lot of attention in recent years. Indeed, since Chor et al.

[31, 32] introduced this problem in 1995, many researchers have improved

bounds and proposed extensions. The following pages continue along this

path : pushing the techniques of [52] we obtain an improved upper bound

and define and provide a solution to a new problem which we call private

information retrieval with authentication. In addition, we motivate the study

of PIRs by presenting new and useful real world applications.
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Résumé

Les protocoles permettant des requêtes privées (PIR), c’est à dire des requêtes

qui ne dévoilent pas quelle information est recherchée, a beaucoup été étudiés

au cours des dernières années. Depuis que Chor et al. [31, 32] ont in-

troduit ce problème en 1995, plusieurs chercheurs ont amélioré les perfor-

mances et suggéré des modifications. Nous poursuivons dans cette voie: nous

améliorons un protocole de Ishai et Kushilevitz [52] et suggérons un nou-

veau problème (ainsi qu’une solution) que nous nommons requêtes privées

d’information avec authentification. Nous présentons également de nouvelles

applications pratiques utilisant le PIR.
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Chapter 1

Introduction

As the Internet expands, privacy issues are becoming more and more of a

problem1. In fact, some would argue that it is one of the main stumbling

blocks to a fully online society. Fortunately, many of these issues can be

solved by technical means. Moreover, these methods are so effective that, the-

oretically at least, many online/digital processes are more secure than their

real world counterparts. For example, protecting message privacy without

the help of computing devices is a challenging problem (e.g. it might involve

storing a message in a safe). With computers however, we can quite easily

protect message privacy by using encryption.

1See http://www.freedom.net for examples.
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1.1 On Cryptography

The most fundamental problem in cryptography2 is that of sending secret

information. Precisely, one wants to send some secret information over an

insecure communication channel. For about four thousand years, the state

of the art protocols consisted of more or less ad-hoc methods. Two major

efforts by Shannon [66] in the late 40’s and by Diffie and Hellman [38] in

the 70’s drastically changed this sorry state of affairs. Shannon, by invent-

ing information theory, provided a framework for rigorously quantifying how

successful protocols are at keeping sensitive information secret. Diffie and

Hellman, in their 1976 seminal paper ”New direction in cryptography” [38],

develop a protocol for public secure key exchange and provide blue prints for

public key cryptography. The foundation was thus laid so that cryptography

could evolve from an art to a science.

From the initial problem of sending a secret message, cryptography has

grown to encompass many entities such as zero-knowledge proofs [46], digital

signatures [8], bit commitments [22], oblivious transfers [62], etc. Perhaps

the most significant contribution of Diffie and Hellman [38] has been the link

they created between cryptography and complexity theory. Both fields have

2We refer the interested reader to [56, 67] for excellent introductions to cryptography.
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greatly benefited from this association. The relationship has grown so strong

that some research topics, zero-knowledge proofs for example, are hard to

classify as belonging to either cryptography or complexity.

1.2 Communication Complexity

Complexity theorists are usually interested in quantifying problems with re-

spect to the time and space required to solve them. There are however

other ways of analyzing problems such as interactive proofs [46], circuits

[15], branching programs [69], Arthur-Merlin games [11], etc.

The rise of telecommunications motivated the study of algorithms with

respect to a different resource : the amount of bits exchanged, that is, com-

munication complexity. This approach has proved very successful as many

fundamental results [12, 13, 48, 53, 68] have been obtained with its utiliza-

tion.

1.3 Private Information Retrieval

This work will be concerned with techniques related to private information

retrieval (PIR). In this problem, a user wants to retrieve the ith element (bit)

from one or many replicated (there are k databases), non communicating

database(s), which we model as an n bit string, without revealing i. We
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can think of many real world applications where such a mechanism would be

useful. For example, the retrieval of stock prices, medical information and

patent descriptions. Furthermore, it appears that PIRs would be extremely

useful in privacy protecting mix networks based infrastructures [25, 43].

The obvious solution to the problem of query privacy is to have the user

download the entire database. Unfortunately, the communication complexity

(n+1) is too large for most applications. And so, PIRs are defined as having

sub-linear communication complexity.

The first indication that we could do better than O(n) communication

complexity came from complexity theorists [9, 18, 60, 61] who constructed

protocols (with other results in mind) that could easily be used to obtain

efficient PIRs. In 1995 Chor et al. [31, 32] introduced the model and provided

some new, more efficient, solutions (communication complexity : O(n1/k)).

New bounds and extensions were soon to follow . . .

1.4 New Bounds and Extensions

Ambainis [10] got the ball rolling by presenting an improved protocol (com-

munication complexity : O(n1/(2k−1))). Several years later, Ishai and Kushile-

vitz [52] developed a linear algebraic framework that enabled them to ob-
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tain yet another more efficient construction (communication complexity :

O(n1/(2k−1)), with smaller multiplicative constants than [10]).

Probably the most important extension is what is called computational

private information retrieval (cPIR). In this model, the database(s) is (are)

assumed to have limited computational power. Using pseudorandom number

generators [65] allowed Chor and Gilboa [29] to present a two database cPIR

with communication complexity substantially smaller than the best known

PIR (communication complexity : O(nε), for any ε > 0).

In addition to having lower communication complexity, cPIRs, unlike

PIRs, allow private information retrieval with just one database. This advan-

tage was first demonstrated by Kushilevitz and Ostrovsky [55] who accom-

plished this using the quadratic residuosity assumption [47] (communication

complexity : O(nε), for any ε > 0). An astounding poly-logarithmic upper

bound for a one database cPIR was obtained by Cachin et al. [24]. The only

caveat to this result is that a new computational assumption, the φ-hiding

assumption3, is used.

The main drawback of cPIRs in comparison to PIRs is that they have

significantly higher computational complexity. The PIR’s computations are

3Informally, this assumption states that it is computationally intractable to decide
whether a given small prime divides φ(m).
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usually limited to a few exclusive-ors whereas cPIRs need expensive proce-

dures such as prime number generators. Recently, Beimel et al. [20] have

attempted to address this problem by showing how the databases can carry

out pre-computations.

Ostrovsky and Shoup [59], extending the methods used in oblivious RAM

protocols [44, 45, 58], provided an efficient solution for the problem of private

information storage and retrieval. In this model, the user can, not only read

privately, but also write privately.

Oblivious transfer [23, 39, 62], a flavor of which is essentially the same

as a one database cPIR in which the user gains no knowledge other than

the bit he requested, motivated the study of symmetric private information

retrieval (SPIR). SPIRs can be seen as a distributed, information theoretic

oblivious transfer with emphasis placed on communication complexity. In

[42], Gertner et al. introduced the model and showed how to transform any

k-database PIR to a (k+1)-database SPIR. Recently Naor et al. [57] gave a

similar construction that does not require an extra database; unfortunately,

their scheme works only in the computational setting.

Using ideas from Beaver’s “Commodity Based Cryptography” paper [16],

Di Crescenso et al. [36] gave a scheme using commodity servers which help in
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decreasing the communication between the database and the user to logn+1.

(Most of the communication is done offline)

In certain situations it is not desirable to have all the databases keep a

copy of the data. For example when the data is private/sensitive. Gertner et

al. [41] provided a solution to this problem which uses databases containing

random strings.

In most real world settings, the user does not know the index and wants

to search the database for keywords. Chor et al. [30] provided clean methods

in which one can modify a PIR to make it searchable.

Researchers have also been interested in uncovering fundamental prop-

erties of PIR. It is known that A) one-way functions are essential for one

database PIRs [19] B) One database PIR implies oblivious transfer4 [37] and

C) one-way trapdoor permutations are sufficient for non-trivial PIR [54].

1.5 Relation With Other Models

Private information retrieval has many similarities with other models. For

example, the hiding instance from an oracle model (HIO) [7, 17, 18], resem-

4

• Note that in view of [50] it is unlikely (since it would yield a proof of P not equal
NP) that one database PIRs can be implemented from one-way functions only.

• Also note that in view of [49], this result implies A).
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bles PIR. In this model, a user wants to evaluate a function f() on some

private input y. The catch is that he cannot compute f(y) by himself, and

so needs the help of an(many) oracle(s). Furthermore, as y is private, he

needs to formulate his query(ies) in such a way that : the oracle(s) gains no

knowledge about y and replies(y) with data allowing him to determine f(y).

There are important differences between HIO and PIR. First of all retrieving

data from a database is just a special case of HIO and many results have

been obtained for computable functions. Secondly, y has length n which im-

plies that there are 2n possible inputs, compared to n for PIRs. It is thus

not surprising that PIR is mostly interested in the case where the number of

databases is constant whereas HIO concentrates on the non-constant number

of oracle case.

As mentioned previously, there are obvious links between oblivious trans-

fer [23, 39, 62] and PIR, in fact SPIRs are essentially one out of n oblivious

transfers with sub-linear communication complexity.

1.6 Overview of Thesis

In chapter 2 we present a formal definition, common assumptions used in

cryptography (and their relation to PIR) and a simple PIR protocol. Ishai
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and Kushilevitz’s linear algebraic method [52] as well as our improvement

can be found in chapter 3. A new problem which we call private information

retrieval with authentication is given in chapter 4. We present some new

applications for which PIR is useful in chapter 5. And finally, we conclude

in chapter 6.

9



Chapter 2

Basic PIR Protocols

In this Chapter we present some notation and conventions, formally define

PIR, discuss adversary models and expose a simple PIR found in [31, 32].

2.1 Notation and Convention

In this section we present some new notation and give conventions.

• By [n] we mean the set {1, 2, . . . , n}.

• Elements in a vector (a.k.a. string) are usually referred to by subscript-

ing the vector identifier. For example xj refers to the jth element in

the vector x.

• It is extremely important to note and remember that, in the following,

when we say “chosen at random”, we mean, chosen at random from a

uniform distribution.

10



The exclusive-or of a set and an element, which we call set-xor, is defined

in a natural way:

Definition: let S be a set and x an element.

S
⊕

x =

{
S ∪ {x} if x /∈ S
S \ {x} otherwise

2.2 A Formal Definition

A PIR is a series of processes in which a user (U) queries k, non communi-

cating, databases (DB1,DB2, . . . ,DBk), which all store the same n bit string

x, for the ith element (xi – the ith bit of the string x). Furthermore, the

databases must gain no information about the index i and the user must be

able to determine xi. We also limit ourselves to protocols taking one round.

For this task, we need k functions that generate queries, k functions to an-

swer these queries and finally a function that will take all the information

available to the user at the end of the protocol as input and evaluate to xi.

Notice that, in an information theoretic setting, each query must be ran-

dom. Hence the query generating functions cannot be deterministic (they

must have access to lrand random bits). Formally, we have:

Definition: A (one-round) PIR consists of the following functions:

• k query functions of the form:

11



{0, 1}lgn × {0, 1}lrand → {0, 1}lq

(queries have length lq and {0, 1}lgn is taken to be i.)

Note that : no information can be inferred from the output of a query

function (it must be random). Precisely, we need that the probability

of a query being associated with xβ equals that for xγ, for all β, γ ∈ [n].

• k answer functions of the form:

{0, 1}lq × {0, 1}n → {0, 1}la

(answers have length la and {0, 1}n is taken to be x.)

• one reconstruction function of the form:

{0, 1}lgn × ({0, 1}la)k × ({0, 1}lrand)k → {0, 1}

({0, 1}lgn is taken to be i.)

Where the output of the reconstruction function equals xi (assuming

the inputs are correct). Note that the k query values and answer values

(({0, 1}lrand)k and ({0, 1}la)k respectively) are dependent.

12



2.3 Adversary Models

One of the main challenges in cryptography is to model attackers. In this

section, we briefly present common assumptions and their relation to private

information retrieval.

2.3.1 Information Theoretic VS Computational Set-

tings

We say we are in an information theoretic setting when an adversary cannot

gain any information [66] about the secret data. The data the adversary

has access to follows a probability distribution that is independent from the

secret information’s probability distribution.

Alternatively, we are in a computational setting when the adversary’s

computations are bounded. In this setting, the adversary might be able to

obtain some information about the secret information if he could carry out

some infeasible computations or if he is extremely lucky. Typical assumptions

include: the adversary is limited to probabilistic polynomial time computa-

tions and the adversary cannot compute some “hard” function (e.g. discrete

log). Note that these assumptions allow us to create protocols which have

properties that cannot be obtained in an information theoretic setting. For

example, it is impossible to construct a PIR with one database whereas this

13



is possible for cPIR.

2.3.2 Semi-Honest VS Arbitrarily Malicious

A semi-honest adversary does nothing to disrupt the protocol; he follows the

rules exactly like an honest participant. He may however, unlike a completely

honest player, try to learn something about the secret information (e.g. by

carrying out some extra computation).

Adversaries who can do anything in their power to gain some illegal in-

formation are called arbitrarily malicious adversaries. They can disrupt the

protocol in many ways, sending arbitrary messages for example.

Note that these two types of adversaries are sometimes referred to as

passive (semi-honest) and active (arbitrarily malicious).

2.3.3 Standard Assumptions in Private Information Re-

trieval

In the private information retrieval model, we assume that the communica-

tion channels are secure. Hence, the adversary is not some outside party as

in the secret message scenario. The only party(ies) that can violate query

privacy is (are) the database(s).

As mentioned in the introduction, the database(s) can be assumed com-

putationally bounded or not. Most of the work on PIR, and its variants, has

14



assumed that the database(s) is (are) semi-honest. Some protocols allow us

to relax the assumption that the databases cannot communicate with each

other (the no communication assumption) by allowing a certain number, t,

of databases to do so. Note that when designing and analyzing protocols,

the parameter t is important.

Note that some extensions need to use different assumptions. For example

in SPIRs, the user is assumed to be arbitrarily malicious.

In this work, we will only study the information theoretic setting, and

will assume semi-honest, non-communicating databases.

The remainder of this chapter is devoted to the presentation of a simple

PIR from [31, 32].

2.4 An Inefficient Solution

Most efficient PIRs have one thing in common : they are slight modifications

of simple, often inefficient, schemes. This next procedure is not an exception.

We now present a simple two database PIR which will form the foundation

of a more efficient solution.

The user randomly selects a set of indexes S0 (i.e. he randomly chooses

a subset of [n]). He sends this set to DB1 and sends S1 = S0

⊕
i to DB2.

15



Notice that the sets received by DB1 and DB2 are random (each index has

a 50% chance of being in a given set) and so leak no information about

i. DB1 and DB2 then compute their answers A1 =
⊕

j∈S0

xj and A2 =
⊕

j∈S1

xj

respectively. The exclusive-or of the two answers A1 and A2 equals xi because

all other indexes (j 6= i) appear an even number of time (i.e. 0 or 2 times).

Unfortunately this protocol has linear communication complexity. However,

using this idea along with a more compact index representation scheme, we

can obtain better results.

2.5 A More Efficient Solution

Without loss of generality, we assume n has the form n = ld. We can con-

struct a bijection mapping elements of [n] to the points in a d-dimensional

hyper cube (Zd
l ) by expressing elements of [n] in their base l encoding. For

example 9 is expressed as 1001 when using base l = 2 encoding.

Consequently any xj can now be thought of as the point xj1...jd in a hyper

cube where jα ∈ [l] for all α ∈ [d]. As usual, U is interested in bit xi which

can be expressed as xi1...id. Note that throughout the remainder of this work,

we will use j and j1 . . . jd interchangeably (the base, l, will be clear from the

context.)

16



It is also convenient to assume k = 2d. Using the same mapping as for the

string indexes (substituting l by 2), we can map DBσ to DBσ1...σd (σα ∈ {0, 1}

for all α ∈ [d]). The protocol goes as follows:

1. U chooses independently and at random d subsets of [l] which we denote

by S1
0 , S

2
0 , . . . , S

d
0 .

2. U defines the sets Sα
1 as being equal to Sα

0

⊕
iα, for all α ∈ [d].

3. U then sends each DBσ1...σd the sets of indexes S1
σ1
, . . . , Sd

σd
.

4. We can see the queries as representing sub-cubes. For example, the

query sent to DBσ1...σd represents the sub-cube containing all points

(xj1...jd) such that jα ∈ Sα
σα for all α ∈ [d].

Each database, DBσ1...σd , evaluates the exclusive-or of all the elements

of the query’s sub-cube and sends the result, Aσ1 ...σd , to U .

5. U then evaluates the exclusive-or of all the answers, Aσ1 ...σd , to obtain

xi.

The message exchanges are graphically presented in figure 2.1.

Before showing the protocol actually works, it is useful to realize that U ’s

reconstruction function calculates:

17



U
S1
σ1
,... ,Sdσd−−−−−−−−−−−−−→ DBσ1,... ,σd

L

j1∈S
1
σ1

,... ,jd∈S
d
σd

xj1...jd

←−−−−−−−−−−−−−

Figure 2.1: A Simple PIR

⊕

σ1∈{0,1},... ,σd∈{0,1}

(
⊕

j1∈S1
σ1
,...jd∈Sdσd

xj1...jd) (2.1)

The first property to notice is that xi1...id appears only once in this formula

since all indexes, iα, appear in exactly one of Sα
0 and Sα

1 . We will prove in

lemma 2.5.1 that all other xj1...jd appear an even number of times in formula

2.1. Which means they cancel out, leaving only xi1...id .

Lemma 2.5.1 All xj1...jd for which (j1, . . . , jd) 6= (i1, . . . , id) appear an even

number of times in U ’s final computation (formula 2.1).

Proof:

First notice that if xj1...jd is not used in any of the databases’ computa-

tions, it obviously appears an even number of times (0) in formula 2.1.

Otherwise, if xj1...jd ((j1, . . . , jd) 6= (i1, . . . , id)) then for all αp such that

jαp 6= iαp (w.l.o.g. assume that p ∈ [q]). It is not hard to see that :

18



(j1, j2, . . . , jd) ∈

S1
σ1
× . . .× Sα1−1

σα1−1
× Sα1

y1 × Sα1+1
σα1+1

× . . .× Sαq−1
σαq−1

× Sαq
yq × Sαq+1

σαq+1
× . . .× Sd

σd

for all 2q possible values of (y1, . . . , yq). This follows directly from the way

the Sα
σα are constructed. Hence, xj1...jd appears an even number of times in

formula 2.1.

�

Note that the queries are random and so do not leak any information

about i to the databases.

Communication Complexity:

Analyzing the communication complexity, we see that U sends dkl bits; l

bits for each set1 Sα
σα , there are d such sets to send to each of the k databases.

The DBs send k bits. Hence, the scheme’s total communication complexity

is dkl + k = O(dkn1/d) = O(d2dn1/d).

Notice that almost all of the communication goes from the user to the

databases. In the next chapter, we will, among other things, balance the

communication which will help in obtaining an improved upper bound.

1We can represent any subset of [l] with l bits.
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Chapter 3

An Improved PIR

In this chapter, we present Ishai and Kushilevitz’s PIR [52] as well as our

improvement.

Formalizing the techniques of chapter 2 turns out to be very useful as it

allows us to grasp the essence of the protocol. This in turn facilitates our

work finding better bounds.

Schemes in this chapter use:

• a more efficient secret sharing scheme1.

• a solid framework that allows us to prove tight bounds.

1see definition in section 3.2.
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3.1 Some definitions

Before describing protocols, we need a few definitions and conventions. As in

the sub-cube PIR of chapter 2, n is assumed to be equal to ld. We define eα

as being a unit vector, that is a vector in which all coordinates are 0 except

the αth which has value 1. The unit vector’s dimension will be clear from

the context.

We define the query space as being Q
def
= F l. Where F is some field

which, in this chapter, will always be GF (2). Note that all computations

will be carried out in F .

Remark: The sub-cube scheme fits into this framework.

In the next sections, the following function’s nice properties are used.

Definition: Define
∏

: Qd → F n such that the jth bit of the output

is obtained by calculating q1
j1
· q2

j2
· . . . · · · qdjd from the input which can be

expressed in matrix form as:








q1
1 q2

1 . . . qd1
q1
2 q2

2 . . . qd2
...

...
. . .

...
q1
l q2

l . . . qdl







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To calculate the jth bit of the output, we simply choose the jαth element

from the αth column for all α ∈ [d] and multiply the d values together.

This mapping turns out to be useful because of the following properties:

1.
∏

(ej1, . . . , ejd) = ej

the ejαs can be seen as column vectors.

Proof: There is only one 1 per column and so only one bit of the

output will equal 1.

�

2.
∏

(q1, . . . , qα−1, u+v, qα+1, . . . , qd) =
∏

(q1, . . . , qα−1, u, qα+1, . . . , qd)+

∏
(q1, . . . , qα−1, v, qα+1, . . . , qd)

This property is usually referred to as multilinearity.

Proof:

This is another easy proof, and it follows directly from the definition.

∏
(q1, . . . , qα−1, u+ v, qα+1, . . . , qd) =

= (q1
1 ·. . . q

α−1
1 ·(u1+v1)·q

α+1
1 ·. . .·qd1, . . . , q

1
l ·. . .·q

α−1
l ·(ul+vl)·q

α+1
l ·. . .·qdl )
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= (q1
1 · . . . · q

α−1
1 · u1 · q

α+1
1 · . . . · qd1 , . . . , q

1
l · . . . · q

α−1
l · ul · q

α+1
l · . . . · qdl )

+(q1
1 · . . . · q

α−1
1 · v1 · q

α+1
1 · . . . · qd1 , . . . , q

1
l · . . . · q

α−1
l · vl · q

α+1
l · . . . · qdl )

�

3.2 Ishai and Kushilevitz’s protocol

The secret sharing primitive, which was introduced by Shamir [64], allows

k players to have a share of some secret. Each group of less than t shares,

yields no information about the secret. However, with at least t shares we

can determine the secret efficiently.

The basic idea of the next PIR is to perform secret sharing on the private

indexes i1, . . . , id and have the databases perform computations with their

shares.

3.2.1 Basic Protocol

The secret sharing scheme goes as follows : for all α ∈ [d], U starts by

randomly choosing k−1 random l bit vectors aα1 , . . . , a
α
k−1 and setting another

one, aαk , such that
∑

β∈[k]

aαβ = eiα . (Remember that i can be expressed as

i1, i2, . . . , id.) He then sends all databases, DBσ, their shares which consist

of all aαβ such that β 6= σ. That is, each database gets all the shares except

those that are labeled (subscripted) by his identifier.
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Remark: The databases have no information on i. To determine iα they

need k shares; with their k − 1 shares they have no information. (t equals k

in this secret sharing scheme.)

The following development effectively illustrates how the databases can

use their shares in a useful manner.

We use the two properties defined above along with the multilinearity of

the inner product denoted by 〈w, z〉.

xi = 〈x, ei〉

= 〈x,
∏

(ei1 , . . . , eid)〉

= 〈x,
∏

(
∑

β1∈[k]

a1
β1
, . . . ,

∑

βd∈[k]

adβd)〉

= 〈x,
∑

β1,... ,βd∈[k]

∏

(a1
β1
, . . . , adβd)〉

=
∑

β1,... ,βd∈[k]

〈x,
∏

(a1
β1
, . . . , adβd)〉

The first line follows directly from the inner product’s definition; the

second from
∏

’s first property. The third line illustrates the secret sharing.

Using
∏

’s and the inner product’s multilinearity, we obtain lines four and

five respectively. We can see that each database can compute and add all

terms, 〈x,
∏

(a1
β1
, . . . , adβd)〉, for which it has all the shares aαβα (i.e. DBσ can
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U
All aα

βα
s.t. βα 6=σ

−−−−−−−−−−−−−−−−−−→ DBσ
Sum of all terms assigned to DBσ
←−−−−−−−−−−−−−−−−−−

Figure 3.1: Ishai and Kushilevitz’s unbalanced PIR

calculate 〈x,
∏

(a1
β1
, . . . , adβd)〉 if σ /∈

⋃

α∈[d]

βα) .

Each database can thus send the sum of the terms it has calculated, and

U can determine xi by adding all the database answers.

Remark: If more than one database can compute a term, it is assumed only

one does so.

The only remaining problem is to make sure that there does not exist a

term that cannot be computed by any database. If all terms 〈x,
∏

(a1
β1
, . . . , adβd)〉

have the property that
⋃

α∈[d]

aαβα 6= [k] we are assured that all terms can be

computed by at least one database. Fortunately, if we set d = k − 1, every

term will have this property. There are k− 1 slots and k elements so at least

one element will not be in any of the k − 1 slots.

The protocol is graphically represented in figure 3.1

Communication Complexity: U sends each database (k−1) vectors (aαβα)

for each of the d dimension. These vectors have l elements (bits). Hence, he

sends ((k − 1)dl)k bits. Each database can sum all terms it has computed
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and thus sends only one bit. The communication complexity of the scheme

is thus (k − 1)dkl + k = O((k − 1)2kn1/d) = O(k2kn1/k−1) = O(k3n1/k−1).

Again, notice that the communication is not balanced. As mentioned in

the previous chapter, balancing the communication can help us obtain better

bounds. The idea is that if a database is missing a share aαβα to calculate a

term, it can still calculate an l = n1/d bit list containing all possible answers.

This in turn allows us to increase d.

3.2.2 Balancing the Communication

Instead of presenting the scheme of [52], we give a modified protocol that

will facilitate the presentation of our improvement. Before starting, we need

to define some more notation.

Denote the term 〈x,
∏

(a1
β1
, . . . , adβd)〉 by the d-tuple (β1, . . . , βd). Sim-

ilarily, we define the term (β1, . . . , βα−1, ?, βα+1, . . . , βd) as being equal to

〈x,
∏

(a1
β1
, . . . , aα−1

βα−1
, eiα, a

α+1
βα+1

, . . . , adβd)〉. The star (?) can be thought of as

a type of wildcard not unlike those used in formal languages. Generalizing

the notation a bit, we see that
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xi = 〈x, ei〉

= 〈x,
∏

(ei1 , . . . , eid)〉

= (?, . . . , ?)

Starred terms that have the property that the union of all non-starred

coordinates does not equal [k] are called blocks. If a block contains X stars, it

is called a X-block. As an example, for k = 5, (1, 2, 3, 4, ?) is a 1-block. Note

that if k = 4, (1, 2, 3, 4, ?) is not a block since the union of all non-starred

coordinates equals [4] = {1, 2, 3, 4}.

We say a term of the form (β1, . . . , βα−1, β, βα+1, . . . , βd) is covered by (or

included in)(β1, . . . , βα−1, ?, βα+1, . . . , βd). More generally, a term is covered

by a starred term if all non-stared coordinates are equal.

U is interested in obtaining a linear combination of values that spans

the sum of all terms. To this end, we allow the databases to compute the

following values :

• We are allowing 0-blocks: As in the previous subsection the databases

can easily compute terms (β1, . . . , βd) such that
⋃

α∈[d]

βα 6= [k]. That is,
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at least one database possesses all the shares needed to compute the

term.

• We are allowing 1-blocks: If a database, DBσ, is missing only one

coordinate to calculate a term (β1, . . . , βα−1, σ, βα+1, . . . , βd), that is

σ /∈
⋃

γ∈[d]\α

βγ, it can prepare (and send) a list containing all n1/d possible

values for (β1, . . . , βα−1, ?, βα+1, . . . , βd). The pth entry in this list will

be (β1, . . . , βα−1, ep, βα+1, . . . , βd). U , knowing eiα , can pick the correct

value.

The goal is now to find a linear combination of 0-blocks and 1-blocks

that equals (?, . . . , ?). Equivalently, we need to show that all 0-blocks and

all 1-blocks span (?, . . . , ?). Remember that all computations are performed

in GF (2).

Lemma 3.2.1 If all terms are either 0-blocks or are covered by at least one

1-block, (?, . . . , ?) can be spanned using 0 and 1-blocks.

Proof:

We will show that each term can be spanned which implies that the sum

of all terms has the desired property. First note that all 0-blocks are trivially

spanned. We now show that the remaining terms can also be expressed as
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a linear combination of 0-blocks and 1-blocks. Without loss of generality,

suppose such a term, (β1, . . . , βα−1, β, βα+1, . . . , βd), is covered by a 1-block

(β1, . . . , βα−1, ?, βα+1, . . . , βd). The term can be expressed as:

(β1, . . . , βα−1, β, βα+1, . . . , βd) = (β1, . . . , βα−1, ?, βα+1, . . . , βd)

−
∑

φ∈[k]\β

(β1, . . . , βα−1, φ, βα+1, . . . , βd)

But all terms (β1, . . . , βα−1, φ, βα+1, . . . , βd) such that φ 6= β, are 0-blocks

since β /∈
⋃

γ∈[d]\α

βγ.

Hence, all terms can be expressed as a linear combination of 0-blocks and

1-blocks and so it follows that the sum of all terms can be spanned.

�

What is the maximum value of d which guarantees that each term is

either a 0-block or included in at least one 1-block? It is not hard to see

that if d = 2k− 1 it is impossible to have a term not included in any 1-block

because at least one database index will appear less than two times. It is

impossible to put k values into 2k − 1 slots in such a way that all values

appear in at least two slots.

The scheme proceeds as expected, each database computing and then
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U
All aα

βα
s.t. βα 6=σ

−−−−−−−−−−−−−→ DBσ
Lists assigned to DBσ
←−−−−−−−−−−−−−

Figure 3.2: Ishai and Kushilevitz’s balanced PIR

adding the required 0-blocks and 1-blocks and sending the result to U . Note

that instead of sending each list, the databases can merge lists for 1-blocks

having a star at the same position (e.g. α). This is done by simply adding

elements that have assumed the same value for epα.

Remark: The databases determine beforehand who will compute each 0-

blocks and 1-blocks. (Some 0-blocks and 1-blocks can be computed by more

than one database – This will be used in the next section.)

The protocol is graphically presented in figure 3.2.

Communication Complexity: U sends O(k3n1/d) bits while each database

sends at most d (one for each starred coordinate), n1/d bit lists, yielding a

communication complexity of O(kdn1/d) = O(k2n1/d). Hence, the communi-

cation complexity is O(k3n1/2k−1). This gives the best known two database

PIR.
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3.3 Our Improvement

The following two questions are at the heart of our improvement:

• Why do we limit ourselves to 0-blocks and 1-blocks? Can using X-

blocks (X > 1) improve the previous PIR?

Allowing databases to compute X-blocks, for X > 1, allows us to in-

crease d. Unfortunately, the size of the lists increases which counteracts

any improvement gained by having a larger d.

• Instead of sending lists, of which U needs only one bit, why don’t we

perform a PIR?

The databases send large lists which consist mostly of useless data. If

more than one database could compute the same list, it would allow us

to perform a PIR to transfer the useful bit. Unfortunately, increasing

the number of databases so that sets of Y databases can process the

same lists does not yield an improvement over other PIRs.

Even though each idea, taken individually does not yield any improvement,

combining them we can obtain an improved bound!
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3.3.1 Basic Tools

In the previous section, what blocks can be computed (seen) by Y databases?

This is an important question as we can perform Y database PIRs to transfer

the relevant bit from the lists associated with such blocks. Observe that Y

databases can compute the list associated with

(β1, . . . , βα1−1, ?, βα1+1, . . . , βα2−1, ?, βα2+1, . . . , . . . , βατ−1, ?, βατ+1, . . . , βd)

if

(
⋃

γ∈[d]\W

βγ)
⋂

C = ?

where W = {α1, α2, . . . , ατ} and C is a subset of [k] of cardinality Y.

We call τ -blocks that have this property (τ ,Y)-blocks2.

We now introduce a natural classification of terms that will be useful in

the next subsection. We classify terms that are not 0-blocks with respect

to which database indexes appear more than X times and where these are

located. We call such classes covering classes. Covering classes are denoted

the same way as their member terms except that elements appearing less

than or equal to X times are replaced by �. For example, if X = 2 and k =

2note that τ ≥ Y.
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3, (1, 1, 1, 2, 3) and (1, 1, 1, 3, 2) ∈ (1, 1, 1,�,�). Notice that all classes are

disjoint for any given X.

3.3.2 A New PIR

We start by finding a d that will guarantee that all terms are either 0-blocks

or belong to a covering class that has at most k−Y database indexes appear-

ing more than X times3. This implies that each term will either be a 0-block

or be covered by an (A,B)-block with A ≥ B ≥ Y. The easiest way to attack

this problem is to find the smallest(dimension) term such that this property

does not hold; d will be one less than the length of this term. We need k slots

so that the term is not a 0-block. Now if k − (Y − 1) values appear another

X times the term does not have the desired property. The minimum term is

thus :

(1, 2, . . . , k, 1, 1, . . . , 1
︸ ︷︷ ︸

X

, 2, 2, . . . , 2
︸ ︷︷ ︸

X

, . . . , k − (Y − 1), . . . , k − (Y − 1)
︸ ︷︷ ︸

X

)

Hence, we choose d = (k + (k − (Y − 1))X)− 1.

Lemma 3.3.1 With d = k + (k − (Y − 1))X − 1, the sum of all terms in

any covering class having the property that there are at most k−Y indexes

3Hence there are at least Y databases appearing less than or equal to X times.
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appearing more than X times, can be spanned by (A,B)-blocks and 0-blocks

(A ≥ B ≥ Y).

Proof:

We proceed by induction on the number of �s.

Base case: The covering class has Y �s. Note that there are no covering

classes possessing the desired property with less than Y �s. Without loss of

generality, consider the class:

∆ = (�,�, . . . ,�
︸ ︷︷ ︸

Y

, 1, 1, . . . , 1
︸ ︷︷ ︸

λ1>X

, . . . , k − Y, . . . , k − Y
︸ ︷︷ ︸

λk−Y>X

)

In order to simplify the notation, let Ψ equal the sum of terms covered by

(?, . . . , ?
︸ ︷︷ ︸

Y

, 1, 1, . . . , 1
︸ ︷︷ ︸

λ1>X

, . . . , k − Y, . . . , k − Y
︸ ︷︷ ︸

λk−Y>X

) but not in ∆.

The sum of terms in ∆ equals:

(?, . . . , ?
︸ ︷︷ ︸

Y

, 1, 1, . . . , 1
︸ ︷︷ ︸

λ1>X

, . . . , k − Y, . . . , k − Y
︸ ︷︷ ︸

λk−Y>X

)− Ψ.

Note that the starred term in the previous equation is a (Y,Y)-block. It

turns out that all terms that need to be summed in order to compute Ψ are 0-

blocks since any term covered by a (Y, Y )-block and not in ∆ has to be missing

at least one database index. This can be seen by noting that one of the starred
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(or “bagelled”) coordinates will equal an element of {1, 2, . . . , k−Y}. Hence,

by the pigeonhole principle, an element of {k−Y+1, . . . , d} will not appear

in the term. It follows that ∆ can be spanned by 0-blocks and a (Y, Y )-block.

Induction hypothesis: We assume the property holds for less than ρ �s

(ρ > Y) and show that it holds for ρ. Without loss of generality consider the

class:

∆′ = (�, . . . ,�
︸ ︷︷ ︸

ρ

, 1, 1, . . . , 1
︸ ︷︷ ︸

λ′1>X

, . . . , β, . . . , β
︸ ︷︷ ︸

λ′
β
>X

).

In order to simplify the notation, let Ψ′ equal the sum of terms covered by

(?, . . . , ?
︸ ︷︷ ︸

ρ

, 1, 1, . . . , 1
︸ ︷︷ ︸

λ′1>X

, . . . , β, . . . , β
︸ ︷︷ ︸

λ′
β
>X

)) but not included in ∆′.

The sum of terms in this class (∆′) equals:

(?, . . . , ?
︸ ︷︷ ︸

ρ

, 1, 1, . . . , 1
︸ ︷︷ ︸

λ′1>X

, . . . , β, . . . , β
︸ ︷︷ ︸

λ′
β
>X

)−Ψ′

Note that the starred term is a (ρ, k − β) block. Now, remark that the

terms that need to be summed in Ψ′ are all either 0-blocks or included in

covering classes with less than ρ �s since they cannot be included in a class

with more than ρ �s. (The non-starred (or non-bagelled) coordinates are

fixed.)

Furthermore, if a term summed in Ψ′ belongs to some covering class, then

all terms belonging to this covering class are also summed in Ψ′. Hence, by
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the induction hypothesis, Ψ′ can be spanned which implies ∆′ can also be

spanned.

�

Theorem 3.3.2 With d = k+(k− (Y −1))X−1, (?, . . . , ?) can be spanned

by (A,B)-blocks having the property that there are at most k − Y indexes

appearing more than X times (A ≥ B ≥ Y).

Proof: Since the sum of terms in every covering class having the required

property can be spanned (by lemma 3.3.1) and that all terms belong to

exactly one such class or are 0-blocks, the sum of all terms can be spanned.

�

Remark: X and Y need to be chosen carefully as retrieving (?, . . . , ?) as

a sub-problem makes no sense. Setting d >XY assures us that we will not

have this problem since at least one database index will appear more than X

times in every term. X and Y need to satisfy the following inequalities:
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d > XY

k + (k − (Y − 1))X − 1 > XY

(X + 1)k −XY + X − 1 > XY

(X + 1)k + X − 1 > 2XY

Every list ((A-B)-block) that needs to be transferred is seen by at least

Y databases. These lists have different lengths, for example the shortest one

has length (n1/d)Y whereas the largest one has length (n1/d)X(k−1). The most

expensive lists to transfer (via PIR) are those of length (n1/d)Xb which are

seen by b databases. For all known efficient PIRs, it turns out that of all

possible values for b, b = Y requires the most communication. As an upper

bound is sought, it will be assumed that all PIRs executed have the same

communication complexity as the PIR followed for these (XY,Y)-blocks.

How many lists do we need to transfer? We need to send the same

number of lists as classes whose members need to be spanned. Being loose

in our analysis, there are O(kd) such classes. Again, preferring clarity for

efficiency, we perform one PIR per list4.
4Note that these simplifications do not effect our result in a substantial manner.
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Communication Complexity: The share distribution part of the protocol

takes, as usual, O(k3n1/d). The sub-PIRs take O(kdPIRY ((n1/d)XY )) bits

of communication where PIRY (m) is the communication complexity of a Y

database PIR with a data string of length m. Our scheme needs O(k3n1/d +

kdPIRY (nXY/d)) = O(n1/d+PIRY (nXY/d)).

In the next section, we give some explicit bounds.

3.4 Analysis

The previous PIR is not as clean and is more complicated than those in

[9, 52] and so requires a more careful analysis. We need to find an optimal

sub-protocol (sub-PIRs to transfer lists) and optimal values for X and Y .

We now give a table that shows a few bounds for different values of X, Y , k

and for different sub-PIRs.

Remember that k is taken to be a constant. Unless otherwise noted, we

use section 3.2’s PIR as a sub-protocol.

Complexity k = 3 k = 6 k = 100

section 3.2’s PIR O(n1/2k−1) O(n1/5) O(n0.091) O(n0.00503)

X, Y = 2 O(n(4/3)(1/3k−3)) O(n2/9) O(n0.089) O(n0.00449)

(?)X=2, Y=3 O(n(6/5)(1/3k−5)) - O(n0.092) O(n0.00407)

X=3, Y=10 O(n(30/18)(1/4k−28)) - - O(n0.00448)

(�) X=3, Y=10 O(n(180/125)(1/4k−28)) - - O(n0.00387)
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�: using ? as sub-PIR.

For most real world applications, n is very large and so our protocols

yield a significant improvement.

Given that k � X, Y , the larger X and Y are, the more efficient the pro-

tocol is (first, second and third table entry). Furthermore, using an efficient

sub-PIR decreases the communication as well (third and fourth table entry).

As k is constant, optimal values for X and Y can easily be found by

inspection – simple heuristic. Furthermore, it always makes sense to use the

most efficient PIRs as sub-protocols.

Unfortunately our scheme is not applicable to HIO as when k is cho-

sen to be non-constant, kd is super-polynomial (in the PIR scenario, kd is a

multiplicative constant and so does not appear when using the big-oh nota-

tion). An interesting open problem is to find a way to span (?, . . . , ?) using

only polynomially (in k) many (A,B)-blocks. This would yield a significant

improvement over the best known HIO. This might be possible but unfortu-

nately we have not been able to make lots of progress in this direction . . .

Having k not be a constant allows us to “unfold” the analysis and find a

clean value for the communication complexity (i.e. one that does not include

the communication complexity of the sub-PIR).
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Chapter 4

Private Information Retrieval

with Authentication

We define and give protocols for a new problem which we call private infor-

mation retrieval with authentication.

Before delving into our new extension, we present some definitions and

protocols.

4.1 Preliminaries

Symmetric Private Information Retrieval (SPIR), Private Information Re-

trieval of Blocks (PIRB) and PrivatE infomation Retrieval by KeYwords

(PERKY) are now presented.
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4.1.1 Symmetric Private Information Retrieval

In their fascinating article [42], Gertner et al. show how to construct infor-

mation theoretic distributed oblivious transfers (a.k.a. Symmetric private

information retrievals (SPIRs)). These protocols are like ordinary PIRs with

the additional constraint that the database privacy is protected. U can only

obtain information about one physical bit of data.

It is shown that in order to have an information theoretic SPIR, the

databases need to have access to a common random string.

Fact 4.1.1 There exist no (multi-round) k-database SPIR without direct in-

teraction between different databases, even if the databases are allowed to

hold private, independent, random inputs, and the user is semi-honest.

Here are a few of the most important and useful results from their work:

Fact 4.1.2 There exists a method in which we can transform an arbitrary

k database PIR with communication complexity C(n) into a k + 1 database

SPIR with communication complexity O(C(n)).

Fact 4.1.3 There exists a method in which we can transform all k database

PIRs exposed in this work into k database SPIRs having the same communi-

cation complexity (up to a multiplicative constant).
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Remark: The user is assumed to be arbitrarily malicious when the database

privacy is to be protected (i.e. in SPIR).

4.1.2 Private Information Retrieval of Blocks

PIRs allow U to retrieve a single bit; unfortunately this is not realistic as

in most real world applications, the data is usually arranged in blocks (an

index refers to more than one bit). The problem of privately retrieving blocks

(PIRB) is studied in [31, 32] and many protocols solving this problem are

given. We now present one of these.

Given any PIR, we can transform it into a PIR of blocks (PIRB). Suppose

the databases have blocks of size m, the data-string can be thought of as an

m× n array. Each of the n columns represents a block.

The user sends one query for the ith record and the databases process

this query on each of the m rows and send each answer. Suppose we have a

PIR in which U sends α(n) bits and the databases send β(n) bits then the

communication complexity of the PIRB is α(n) + mβ(n). The protocol is

graphically presented in figure 4.1. (Where Q(i) is a PIR query pointing to

the ith element and A(j, Q(i)) is the answer obtained when processing the

query Q(i) using jth bit of each block as the data string.)

Note that we can obtain a symmetric PIRB (SPIRB) by simply replacing
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U
Q(i)

−−−−−−−−−−−−−→ DBσ
A(1,Q(i))

←−−−−−−−−−−−−
A(2,Q(i))

←−−−−−−−−−−−−

...
←−−−−−−−−−−−−

A(m,Q(i))
←−−−−−−−−−−−−

Figure 4.1: A simple PIRB.

the PIR with a SPIR. (A SPIRB is a PIRB in which the user can only obtain

information about the bits in one block.)

4.1.3 Private Information Retrieval by Keywords

The n bit data-string used in PIRs does not properly model most databases.

Indeed, most databases are queried by keyword instead of by index. Users are

generally interested in searching a database for a keyword. This problem is

tackled in [30] where PrivatE infoRmation by KeYwords (PERKY) protocols

are defined as :

Definition: Suppose each of the k databases possess n, m bit strings s1, . . . , sn

and that U holds a string w ∈ {0, 1}m. A solution to the PERKY problem

allows the user to find out if there exists a j ∈ [n] such that w = sj, without

leaking any information about w to the databases.
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Figure 4.2: A binary search tree block

In addition to defining the problem, Chor et al. [30] give many interesting

protocols. Some of these use classical data-structures such as tries and binary

search trees [34]. We now present a protocol that uses balanced binary search

trees. These trees have lg(n) + 1 levels and n leaves.

The binary tree are implemented as lg(n)+1 arrays1, the arrays containing

the nodes for level i have 2i entries (0 ≤ i ≤ lg(n)). Each entry (block)

consists of a left and a right pointer and a label. The pointers are simply

addresses (indexes) of the next level’s nodes. The last level’s pointers are set

to −1. See figure 4.2 for a graphical representation of a block. Note that we

assume that there are no duplicate entries in the tree and that all keywords

can be ordered in some way (e.g. alphabetically).

We can use this structure for PERKY if the leaves are labeled by s1, . . . , sn.

The user searches the tree for w and if the leaf he gets to is labeled by w he

knows w ∈ {s1, . . . , sn} and if not, he is assured w /∈ {s1, . . . , sn}.

1one for each level.
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The idea behind the scheme in [30] is to have the user perform an oblivious

walk on the binary search tree. This is done as follows:

1. U retrieves the root2. If w is less than the root’s label, he will use the

address of the left child at the next level; otherwise he will take that of

the right child.

2. U and the databases perform a PIRB using the level one array as the

data-string. The user retrieves the node he chose in the first step (of

which he knows the index). He then determines which child to follow

to the next level.

3. The protocol continues like this until the last level is reached and the

user can determine whether w ∈ {s1, . . . , sn} or not.

Note that, at every level, the databases have no information on which

index the user is querying and so are oblivious to the path followed.

An interesting (and perhaps useful) observation is that the data structure

queried can be used for regular (non-private) queries as well.

The protocol is graphically represented in figure 4.3. Qj(lj) is the query

for the jth level of the tree. A(lj, Qj(lj)) is the answer to the query Qj(lj)

2There is no need to use a PIR for this.
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U
Root

←−−−−−−−−−−−−− DBσ
Q1(l1)

−−−−−−−−−−−−−−→
A(l1,Q1(l1))

←−−−−−−−−−−−−−−
Q2(l2)

−−−−−−−−−−−−−−→
A(l2,Q2(l2))

←−−−−−−−−−−−−−−

. . .
Qlg(n)(llg(n))

−−−−−−−−−−−−−−→
A(llg(n),Qlg(n)(llg(n)))
←−−−−−−−−−−−−−

Figure 4.3: A simple PERKY

using the jth level array as the data string.

Communication Complexity: Remember that the keywords have length

m and assume the labels all have length m. If the PIRBs have communication

complexity C(n,m), the communication complexity of the previous scheme

equals O(m+ C(2, m) + C(4, m) + . . .+ C(n,m)) ⊆ O(lg(n)C(n,m)).

Unlike the previous retrieval schemes, this one needs more than one round

of communication. It is not too complicated to see that the protocol takes

lg(n) + 1 rounds; one per level.
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4.2 A Definition

In many application, both user privacy and user authentication are require-

ments. These two seemingly contradictory goals give rise to many interesting

problems and solutions. For example, the digital cash schemes of Chaum et

al. [28] and Brands [21], maintain user privacy and provide authentication

(i.e. coin validation).

We are able to present a protocol for PIR which only works if the user

is “allowed” to access the database entry he is querying. That is, the user

proves that his query points to a database index he is allowed to access

without revealing anything about the value of this index. The idea behind

our protocols is to have U prove to the databases that his query retrieves a

bit he is allowed to access.

Definition: A Private Information Retrieval with Authentication scheme

(PIRA) is a SPIR in which the user cannot (with high probability) obtain

information about entries he has not been authorized to access.

4.3 Protocol Phases

We present a high-level overview of the major protocols needed to construct

a PIRA system.
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4.3.1 Registration

In order to have access to a database entry, the user first needs to obtain the

approval of some party – the authenticator. The information3 the user needs

to present in order to obtain authorization depends on the application and

so is not discussed here. As will be seen in the following section, there are

different mechanisms that can be used in order to “register” users.

4.3.2 Authenticated Private Query

The goal of this stage is to have the user send an “authenticated” SPIR query

for a database entry i and convince the databases that he will not obtain any

information about entries he has not been allowed to access.

4.4 A Protocol Based on Ideas from Elec-

tronic Cash

A straightforward method for solving this problem is to have the authenti-

cator create the queries for the user. This might be a viable option in many

settings but, unfortunately, we need to trust that the authenticator will not

collude with the databases. Simple extensions to the privacy protecting elec-

tronic cash protocols of [21] can be used to eliminate this assumption.

3e.g. drivers license, credential, etc.
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The idea is to get the authenticator to sign (authenticate) the user’s

queries in such a way that :

1. The authenticator cannot recognize his signature (i.e. it is blinded).

Otherwise, he can collude with a database and reveal the user’s identity

and, more importantly, the index queried, i.

2. The authenticator should not know the queries he has signed. Other-

wise, he might be able to collude with a database and reveal the user’s

identity and the index queried, i.

3. The probability that the user gets a signature on queries pointing to

an index other than i should be small.

Now, the user can convince a database to process his query by providing

a proof that the authenticator has authorized it (i.e. showing the signature).

A simple modification4 of the protocol described in section 4.5.2 of [21]

allows us satisfy the first two “requirements”. The requirement that the

probability that a user gets a signature on an invalid queries be small can

be solved by methods specific to the underlying SPIR. We will not go into

4Because of space constraints, we do not describe Brands’ constructs or even attempt to
give some intuition. Presenting the basic notions, by themselves, would almost constitute
a full thesis. We refer the uninitiated reader to [21] for more details and to [56, 67] for
good introductions to fundamental cryptographic primitives.
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these but, instead, we propose a general method which works for any PIR.

The method is based on the “cut and choose” paradigm.

The protocols are based on the assumption that the discrete log problem

is computationally intractable (see [56, 67] for details).

The user will prepare and send q “blinded” PIR query sets (pointing

to i if the user is honest) and the authenticator will ask him to unblind

q − 1 of them. Brands’ constructs have the useful property that the user

cannot change his queries, that is, he cannot show that his blinded query set

corresponds to more than one query set. So, in a sense, the blinded query

set is a commitment to the actual queries.

It is easily seen that the user has a 1/q chance of obtaining a signature

on an invalid query.

More rigorously, we have:

1. Given a generator g that generates a group for which the discrete

log problem is difficult, the authenticator chooses k random values,

y1, . . . , yk, from [e], where e is the order of the group generated by g.

The authenticator then publishes/distributes the values g1 = gy1, g2 =

gy2, . . . , gk = gyk to all users (keeping the yjs private of course).

2. The user takes these values and sends hz = g
Qz

1
1 g

Qz
2

2 . . . g
Qz
k

k , for all z ∈
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[q], where Qz
j is the query destined for DBj in the z’th query set. Note

that given the assumption that computing discrete logs is intractable,

the queries are blinded (the databases cannot determine what there

values are).

3. The authenticator randomly chooses q − 1 elements from [q] and asks

the user to reveal all of the queries associated with these indexes.

4. The authenticator and the user then carry out the protocol in section

4.5.2 in [21] so that the user’s query commitment can be authenticated.

The protocol used has the property that the information that the user

will present to the databases cannot be linked with any particular reg-

istration session.

We now show that the user cannot “change” the values of his queries once

they have been committed5.

Theorem 4.4.1 The user cannot change the value of his commitments in

the scheme given above. More precisely, let a commitment be of the form h =

gQ1

1 gQ2

2 . . . gQk

k . The user cannot find a (Q′
1, . . . , Q

′
k) not equal to (Q1, . . . , Qk)

such that h = g
Q′

1
1 g

Q′

2
2 . . . g

Q′

k

k . Note that the queries, taken individually, are

5Note that this property is not used in [21].
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random (otherwise the PIR scheme is not unconditionally secure).

Proof:

We show that if the user had an efficient algorithm A for changing his

commitments, he could find (y1, . . . , yk) which violates the discrete log as-

sumption.

First notice that if a user knows a F = (Q1, . . . , Qk) and a F ′ = (Q′
1, . . . , Q

′
k)

(with F 6= F ′) such that h = gQ1
1 gQ2

2 . . . gQk

k = g
Q′

1
1 g

Q′

2
2 . . . g

Q′

k

k he can easily

infer that y1Q1 + . . . + ykQk = y1Q
′
1 + . . . + ykQ

′
k. But this is an equation

with the yj being the variable and we just need k other such equations (with

different coefficients), which can be obtained using A, in order to be able to

solve a system of equation and thus find all yjs! Hence, given an algorithm

A, it is easy to compute discrete logs which contradicts our assumption.

�

It is important to note the following.

1. Firstly, the user must be computationally bounded6 otherwise he can

forge the authenticator’s signatures and change his commitments.

2. The authenticator and the databases can be assumed to be computa-

tionally unbounded.
6He must not be able to compute discrete logs.
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User q, blinded query sets
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Authenticator

q − 1 indexes from [q]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Queries Associated with q − 1 blinded query sets
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 4.4: E-Cash Inspired Issuing Protocol

The signature issuing protocol is graphically presented in figure 4.4.

Note that it is not clear at all how we could implement this protocol using

Chaumian blinding [26] as these constructs do not have the commitment

property. That is, the user could “reveal” anything/query he wants, he has

not committed to anything with the blinded query set.

4.5 A Password Based Solution

The idea behind the following construction is to have the user obtain a pass-

word for each index he can access. The databases will then need to verify

that the password is consistent with the index being queried without knowing

either the password nor the index.

The registration protocol is uninteresting as the user simply needs to

obtain passwords for each index he is interested in from the authenticator.

Hence, we focus on the authenticated query part of the system.

We separate the remainder of this section in two, the password verification
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part and the query validation part.

Remark: Unless otherwise noted, all computations will be carried out in

GF (2h) where h is the length of the inputs which will be clear from the

context.

4.5.1 Password Verification

For each index he is allowed to access, the user will have a password P of

length m. To access the ith bit, the user has a password which we will

denote by Pi. Furthermore, assume that given Pi, it is easy to determine

i. For example, we might have that the first lg(n) bits of the password Pi

equal i.

All the passwords will be stored in a data-structure that is compatible

with PERKYs. This data-structure will be held by a second set of databases,

PDB1, . . . ,PDBe, who will be queried by the databases possessing the data-

string U is interested in (DB1, . . . ,DBk). In order to facilitate the presenta-

tion, we will assume k = 2 (the number of databases equals 2).

The problem here is to have the databases query a data-structure for an

element they do not know (if the user reveals his password all is lost!). This

can be done as follows.
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U p1−−−−−−−→
DB1 Shift Entries By p1−−−−−−−−−−−−−−−−−−→

PDBJ ’s

p2−−−−−−−→
DB2 PERKY for p2←−−−−−−−−−−−−−−−→

Figure 4.5: The Password Verification Protocol

1. The user randomly chooses p1 from Z2m and sets p2 = Pi − p1 (Pi is

additively shared). p1 and p2 are then sent to DB1 and DB2 respec-

tively.

2. DB1 sends p1 to all PDBjs who then subtract it from the passwords

and rearrange the data-structure to cope with the change.

3. DB2 acts as a user and performs a PERKY (keyword = p2) with the

PDBjs. If p2 is in the database then the password is valid.

The graphical representation of the protocol can be seen in figure 4.5.

Notice that the password has been verified without any database gaining

any information about it other than whether it is valid or not.

Communication Complexity: The communication complexity of the pass-

word verification scheme is O(C(o,m)) where o is the number of passwords,

m is the length of the password and C(o,m) is the communication complexity

of the PERKY.
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Remark: The user has a small probability of randomly choosing a correct

password. Fortunately this probability is exponentially small in the length

of the password m.

4.5.2 Query Validation

The last subsection solves an important problem by obliviously verifying the

password. Unfortunately, the user can still query any bit he wants as long

as he has a valid password. We need to force the query to be consistent with

the password. That is, Pi must only be used with queries to the ith bit. Two

solutions to this problem are now given.

Secure Multi-Party Computations and Conditional Disclosure of

Secrets

First note that if we allow the databases to communicate with each other,

they can perform a secure multi-party computation [35] to determine whether

the query is consistent with the password.

Fortunately, we do not need to change our assumptions if we use an inter-

esting primitive called conditional disclosure of secrets (CDS) first introduced

in [42]. This primitive allows k players to disclose a secret to another partic-

ipant (Carol) if and only if some function f(x1, . . . , xk) evaluates to 1.

Definition: A conditional disclosure of secret (CDS) protocol has k + 1
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participants : k players, P1, . . . , Pk (who can only communicate with Carol),

receive inputs from the other participant who is called Carol. Let xj denote

the value received by Pj. At least one of the k players possesses a secret s

and the players share some random string.

After receiving their inputs, each player sends Carol some information. If

f(x1, . . . , xk) = 1, Carol can take all the data she has received and determine

s. But if f(x1, . . . , xk) 6= 1, Carol gains no information about s.

This is exactly what we need! We just have to construct a function f()

taking as inputs the query sent by the user (password and SPIR query) that

outputs 1 if and only if the query and the password are related to the same

index7. The secret can be taken to be the answers of the databases. It follows

that the user will only gain information about the database answers if f()

evaluates to 1.

The construction of the function f() depends on the SPIR used and so

will be omitted from this work. CDS protocols are relatively efficient as can

be seen from the following fact taken from [42].

Fact 4.5.1 There exists a protocol for CDS that has communication com-

plexity O(z2) where z is the size of the branching program8 realizing f().
7Remember that it’s easy given a password to find the associated index.
8See [51] for details.
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Cut and Choose

The idea here is to have the user send many queries that will almost all be

checked for validity (without revealing i). The remaining query will be used

to retrieve the desired bit.

The password will be composed of two parts : the index and some random

identifier, id. In order to simplify the presentation, we assume that there are

two databases (DB1,DB2).

The user prepares and sends β queries in the following manner9:

• U chooses two random values q, w such that q +w = i. q will be taken

to be the shift value and w the query index.

• U prepares and sends SPIR queries for retrieving the wth bit.

• U chooses six random values q1, q2, w1, w2, id1, id2 such that q1 +q2 = q,

w1 + w2 = w and id1 + id2 = id. He sends q1 and w1 to DB1 and q2

and w2 to DB2.

All the passwords are first verified using a slightly modified version of

techniques of subsection 4.5. That is, the password now consists of two parts

9The field in which the computations are carried out and the random numbers chosen
will be clear from the context.
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that are already additively shared and both parts can just be concatenated

so that the normal protocol can be followed.

The databases then randomly choose β − 1 of the queries and check that

the SPIR queries point to w (they share w1 and w2 and the SPIR queries).

In order to verify the correctness of the β−1 queries, the databases can com-

municate with each other or transmit messages via the user. This might be

acceptable in some settings but it does violate the assumption that databases

do not communicate with each other. We propose a simple and efficient so-

lution that does not violate this assumption.

First note that Gertner et al. [42] provide an efficient CDS scheme10

for functions verifying that the sum of all distributed shares equal 0. This

protocol can be easily modified for our purposes, precisely, we have that :

Fact 4.5.2 There exists a CDS scheme in which the user sends w1, w
′
1 to

DB1 and w2 and w′
2 to DB2 and the user obtains the secret if and only if

w′
1 = w′

2 and w1 + w2 = w′
1.

Furthermore, the communication complexity of the scheme is the largest

of the lengths of w1, w
′
1, w2, w

′
2 and of the secret.

If the user sends the query index, w, to each database for each of the

10Lemma 2 of [42].
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β − 1 chosen queries, we can easily use this scheme to reveal some secret to

the user if and only if he has correctly followed the protocol (i.e. w1+w2 = w

and the same w was sent to both databases).

The trick now is to have the databases apply the selected queries on

databases containing random entries (for which the databases know the value

of the w’th bit) and use the response as the secret. By repeatedly applying

the queries on different databases, the databases can make sure that the

user’s query points to the correct value (by asking the user to divulge the

wth bit of each of these random databases).

This trick works because, if the user cheats and does not divulge the

correct w, he will not gain any information about the database responses

and so no information on the wth bit. Furthermore, the queries protect the

database privacy and so if the query does not point to the w’th bit then the

user has no information about it.

It is not hard to see that for every execution (for each random database)

of this protocol, the user has a 1/2 chance of cheating. Hence, if we repeat

the process t times, the user has a probability of success of 1/2t.

The communication complexity of this scheme is reasonable :

(β − 1)tk max(length of database responses, length of passwords).
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Now that this problem is solved, we see that since w is a random index,

the databases gain no information about i. If the user has cheated in one of

these β − 1 queries then he is assured of getting caught.

For the remaining query, the databases tell each other their share of q

and cyclically shift the data-string q positions to the left. The SPIR query

should now point to the correct slot (i − q = w). The SPIR query is then

processed on the shifted data-string.

The user has one chance in β of querying a bit he is not allowed to see

(he can give a correct password Pi′ , and use a SPIR query pointing the ith

bit).

Communication Complexity: The communication complexity of this

scheme is O(β(C(n) + m)) where C(n) is the communication complexity

of the SPIR and m is the length of the password.
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Chapter 5

Applications

Although PIR is an interesting primitive from a theoretical perspective, the

potential application that are mentioned in the literature are rather unin-

teresting. For example, retrieving stock prices or patent information from a

database privately probably do not satisfy any important real world require-

ments, in any case, they certainly are not “killer apps”. In this chapter, we

attempt to improve this deficiency by presenting more convincing applica-

tions.

5.1 Privacy Protecting Network Information

Databases

Since Chaum introduced constructions for anonymous broadcast networks1

[27] (i.e. dc-nets) and privacy protecting networks2 (i.e. mix-nets) [25] many

1The identity of the sender of the broadcasted message is hidden from most attackers.
2Most attackers cannot determine which parties are communicating with each other.
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researchers have attempted to implement them in real world settings. One of

the difficulties in making the transition from theoretical constructions to real

world systems is that networks are not stable (network configurations change,

machines malfunction, etc.). This problem is usually dealt with by having

network information query servers that parties can use to obtain information

pertaining to the current network status.

These servers are usually fine for “normal” systems. However, for anony-

mous broadcast and privacy protecting networks, a simple query can violate

user privacy. Indeed, queries typically reveal information about the system’s

clients that could violate their privacy or, at the very least, leak information

that can be used in subsequent attacks. Hence, the use of these network

information query servers basically obliges the user to trust the server oper-

ator.

The use of PIRs with network information query servers would effectively

solve this problem as the server would not have any knowledge of what the

clients are interested in. Note that ideas of this kind were first suggested in

[33].
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5.2 Unlinkable e-mail Addresses

In some settings (e.g. [25, 43]) individuals want their different e-mail ad-

dresses to be unlinkable. For example, we can see why one would want to

hide that the e-mail address Clark Kent@anonymous.com does not belong

to the same person as Superman@anonymous.com. At first glance, it seems

that this problem can be easily solved by mix-nets and/or dc-nets which were

mentioned in section 5.1. However, the problem is that users typically want

to retrieve all of their e-mail messages at the same time and so, the e-mail

storage system administrators might be able to link e-mail addresses just by

looking at the time at which they are accessed.

It’s not hard to see that if users collected their e-mails with PIR, this

problem could be solved. Note that PIRA is more appropriate in most set-

tings as e-mails are usually confidential and the system administrators cannot

enforce access restrictions if a simple PIR is used.

5.3 Privacy Protecting Certificate Revocation

Databases

Public Key Infrastructures (PKI) [40], although they allow confidentiality

and authentication, pose serious privacy risks. If governments, companies
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and organizations do not change their plans, PKIs will probably form the

foundations for the most extensive surveillance system ever known to mankind.

In view of the fact that companies specializing in PKIs [1, 2, 3] are already

worth millions of dollars, it will probably be hard to prevent Big Brother

from coming into existence (see [21] for more details). In addition to the

fascinating techniques of [21], PIRs could help us annihilate this threat.

One of the most important construct in PKIs is the Certificate Revoca-

tion List (CRL), this list allows the Certificate Authority (CA) to revoke

certificates. Large CRLs are not attractive from a privacy perspective as

they cannot be distributed to all parties and so if Alice wants to communi-

cate with Bob, she will need to query a CRL databases in order to verify

that Bob’s certificate is valid. But this allows the CRL database operator to

link who is communicating with whom which is clearly a breach of privacy.

PIR can obviously be used to solve this problem. We believe this is going to

be the first real world application in which PIRs will be used as the size of

the CRLs usually is not extremely large and so the resulting retrieval scheme

will be efficient enough.
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5.4 Privacy Protecting Distributed Informa-

tion Storage and Distribution Systems

The Internet has always provided mechanisms in which users can trade, dis-

tribute and exchange information. This year, a lot of controversy has erupted

because users have been using this functionality to distribute (perhaps ille-

gally) copyrighted material3. Parties distributing, retrieving and facilitating

the transfer of copyrighted material have even been taken to court [5, 6].

Whether these lawsuits will be successful remains to be seen but, in any

case, PIR schemes can be used in order to complicate prosecutor’s tasks even

more and protect participant privacy . . .

Note that even though this is a controversial example, we remark that

one could think of situations in which these mechanisms are clearly desirable

(e.g. political dissidents securely publishing manifestos, etc.).

There are many paradigms for distributing information, we limit ourselves

to two : the distributed server repository and the massively distributed user

repository with indexing server.

3See for example [4].
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5.4.1 Distributed Server Repository

Here, the data files are submitted to a certain number (> 1) of repository

servers where they can be retrieved by other clients. At first glance, this

setup seems vulnerable to attacks against privacy. That is, an attacker can

determine what the servers are distributing and what the users are retrieving.

Cryptographic techniques can however make this model more resistant.

• Firstly, the data can be distributed using a secret sharing scheme (see

section 3) so that any group of less than t servers do not know what

data is actually stored. This protects the servers as they do not know

what is stored on their system.

• Secondly, the clients can access the servers using a PIR. This protects

the clients as they do not reveal what information they actually obtain.

• Thirdly, for added security the participants can use mix-net [25] type

communication channels.

5.4.2 Massively Distributed Repository with Indexing

Server

In this setting, the data is stored on a large number of machines, typically,

each user will be a repository and an indexing server is used to help in deter-
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mining where the files are stored4. The naive implementation of this model

is not resistant as all user/repositories are obviously vulnerable and, even the

indexing server is susceptible to law suits for facilitating the transfer of du-

bious data files. Again, using cryptographic methods allows us to overcome

these shortcomings.

• Firstly, the indexing server can be queried using a slight extension to

PERKY. This protects the indexing server since it does not know what

information it is distributing.

• If just storing indexes is risky, the indexes can be distributed over a

large number of indexing servers using a secret sharing scheme.

• A secret sharing scheme can be used to distribute the actual data (the

users do not know what they are storing).

• The users/content providers can be accessed via PIR so that they do

not know what they are distributing.

• Finally, if an extra layer of security is required, all participants can com-

municate via a privacy protecting communication channel (e.g. mix-

nets).

4This is the model used by napster [4].
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Chapter 6

Conclusion

The improved upper bound on information theoretic PIR presented in section

3 provides a new framework for working with PIRs. We believe this is a

significant contribution to the state of the art in cryptography. The result not

only improves the best known upper bound but it also poses some new open

problems which might pave the way for other interesting research. Indeed, it

would not be surprising for future work to extend our methods and improve

the tightness of our bound. We mention the two most important problems

related to this result.

• Is there a way of more tightly spanning (?, ?, . . . , ?)? If this can be

done using only polynomially many in k different blocks, this would

yield a significant improvement in the HIO model.

• It would be interesting to gain a more solid understanding of the prop-
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erties exploited in this protocol; perhaps through a link with other

mathematical theories (coding?).

The second contribution of this work has focussed on extending the func-

tionality of PIR. We believe this is an important step in the path towards

using PIR based protocols in practice. This work has greatly increased the

range of applications in which we can foresee using PIRs.

Addressing real world requirements is not only potentially useful but can

also yield interesting problems and elegant solutions. Private information

retrieval with authentication nicely illustrates this point.

We mention the three most important problems related to this result.

• Are there efficient methods that allow the user to prove, without leaking

any other information, that his queries (in the e-cash inspired model)

are valid without actually revealing them. This would allow us to get

rid of the cut and choose step which is clearly the weakest link of

the protocol. Brands, in [21], shows that some useful (for credentials)

properties can be efficiently demonstrated. Unfortunately, these do not

seem to be helpful for demonstrating the validity of PIR queries.

• Are there better ways to bind password and query? Can we do better
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than linear security in the number of queries?

• Are there tricks that could help us in the computational setting ? We

have put little effort addressing this problem even though it does seem

very promising.

It is an extremely important to try and motivate research using convinc-

ing practical applications. Theoretical research without grounding in real

world considerations risks being totally arbitrary and of following the path

of least resistance. In chapter 5, we present some new applications which

truly validate the study of PIRs. Researchers and practitioners can look at

PIR and see more than just a frivolous research topic. We note an interesting

open problem :

• In section 5.2 we propose the use of PIRs. We note however that they

have security properties that are not required to solve this problem (we

just need unlinkability, not query privacy). Are there schemes that are

more efficient than PIR for the e-mail unlinkability problem?

In concluding, we would like to stress that this work has only tackled a

small subset of interesting questions related PIR and that there is still lots
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of work to be done. We now mention a few of the most interesting problems

which peek our curiosity :

• Can we assume more powerful adversaries? For example, can we do

anything if a subset of the databases can be arbitrarily malicious?

• Can we come up with an efficient probabilistic PIR? That is, one in

which the databases gain only probabilistic information such as : the

query points to bit j with probability 2/n (more than the current 1/n).

• What are the real world implementation (performance, pitfalls)?

• What are the other functionalities which would be useful?

• Can we integrate PIR with information dispersal algorithms [63]?

• Can we find lower bounds? There are a few results [31, 32], but they

are weak.

• As noted by A. Back [14], another way of looking at the problem is to

hide the meaning1 of i to the database. There is a simple and clever

way of doing this using mix nets [25], are there other?

1For example, the database does not know that the value stored at database index i is
Alice’s e-mail box.
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Appendix A

List of Acronyms

1. cPIR: computational Private Information Retrieval

2. HIO: Hiding an Instance from an Oracle

3. PERKY: PrivatE information Retrieval by KeYword

4. PIR: Private Information Retrieval

5. PIRA: Private Information Retrieval with Authentication

6. PIRB: Private Information Retrieval of Blocks

7. SPERKY: Symmetric PrivatE information Retrieval by KeYword

8. SPIR: Symmetric Private Information Retrieval

9. SPIRB: Symmetric Private Information Retrieval of Blocks
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[60] P. Pudlák and V. Rödl. Modified ranks of tensors and the size of cir-

cuits. In Proceedings of the 25th ACM Symposium on the Theory of

Computing, pages 523–531. ACM Press, 1993.
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