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1 Introduction
The field of approximation algorithms for clustering is a very
active one and a large number of algorithms have been devel-
oped for clustering objectives such as k-median, min-sum,
and sparsest cut clustering. For most of these objectives, the
approximation guarantees do not match the known hardness
results, and much effort is spent on obtaining tighter approx-
imation guarantees [1, 4, 5, 8, 6, 9, 10].

However, for many practical clustering problems such as
clustering proteins by function, or clustering images by sub-
ject, there is some unknown correct “target” clustering; in
such cases the pairwise information is merely based on some
heuristics and the real goal is to achieve low error on the data.
In these settings, the implicit hope is that approximately op-
timizing objective functions such as those mentioned above
will in fact produce a clustering of low error, i.e., a cluster-
ing that is close pointwise to the truth. Formally, for a set
of n data points the error of a clustering the error of a clus-
tering C′ = {C ′1, ..., C ′k} with respect to target clustering
C = {C1, ..., Ck} is the fraction of points on which C and
C′ disagree under the optimal matching of clusters in C to
clusters in C′, i.e.

err(C) = min
σ∈Sk

1
n

k∑

i=1

|Ci − C ′σ(i)|,

where Sk is the set of bijections σ : [k] → [k].
Mathematically, the implicit assumption made when us-

ing a c-approximation algorithm for objective φ in order to
get clusterings of low error, is that the clustering error of any
c-approximation to φ on the data set is bounded by some ε.
We will refer to this assumed property as the (c, ε) property
for φ. From this perspective, a natural motivation for improv-
ing a c2-approximation to a c1-approximation (for c1 < c2)
is that perhaps the data satisfies the (c1, ε) property, but not
the (c2, ε) property. This is well justified, but perhaps one
can do even better by using the (c, ε) property explicitly.

In recent work, Balcan, Blum, and Gupta [2] have shown
that if we make this implicit assumption explicit, then one
can get accurate clusterings even in cases where getting a
good approximation to these objective functions is provably
NP-hard. More specifically, [2] show that for any c > 1, if
we assume that any c-approximation to the k-median or the
k-means clustering objectives is ε-close to the target, then
one can produce clusterings that are O(ε)-close to the target,

even for values c for which obtaining a c-approximation is
NP-hard. Balcan and Braverman [3] have recently shown
similar results for the min-sum objective [3]. This is perhaps
even more interesting since this problem has a large gap be-
tween the best known approximation guarantees and the best
known inapproximability results [3].

2 The Open Question
This line of work shows how for a clustering objective such
as k-means or min-sum one can get much better results than
those obtained so far in the approximation algorithms liter-
ature by wisely using implications of assumptions that were
already being made implicitly. This note poses as an open
question obtaining similar results for other natural classes of
commonly used and studied clustering objective functions
for which the best known approximation ratios are quite large.
In particular, clustering techniques based on the sparsest cut
objective and variations [1] have been extremely popular, so
it would be interesting to analyze them in this framework.

Since it is cleanest to think about it, we will state the
question for the case of two clusters, i.e., k = 2. We are
given a weighted graph G = (V, E) with positive edge weights
we for every edge e (for learning motivated clustering ap-
plications these represent similarities between the two end-
points of the edge e). Given a cut or a partition of the graph
into two pieces or clusters (S, S̄), S ∪ S̄ = V , we define the
sparsity of the cut (S, S̄) as

φ(S) =
w(S, S̄)
|S| · |S̄| .

The objective of sparsest cut problem [1, 9] is to find a cut
(S∗, S̄∗) which minimizes φ(S).

This objective and its variations have been long studied.
Leighton and Rao [9] designed the first interesting approx-
imation algorithm by giving an O(log n)-approximation al-
gorithm for this problem. They used a linear programming
relaxation of the problem based on multicommodity flows.
Later in a seminal paper Arora, Vazirani, and Rao [1] have
developed a semidefinite programming relaxation based al-
gorithm which provides an O(

√
log n) approximation for the

(uniform) sparsest cut problem. This O(
√

log n) approxima-
tion is the best factor known for this problem. However, per-
haps one can cluster as well as if one could approximate this
objective to a constant factor. In particular, it would be in-
teresting to see if one could cluster well in the Balcan et. al



framework [2] under the (c, ε) property. That is, under the as-
sumption that all the c-approximations to the sparsest cut ob-
jective are ε-close to the target, can one find a clustering that
is O(ε)-close to the target, even though no c-approximation
to sparsest cut is known? Given that best known approx-
imation for sparsest cut is O(

√
log n) [1], a result for any

constant c would be interesting in this framework.
Other interesting objectives to consider in this framework

are the balanced cut objective [1] or the bicriteria objective
of [7].
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