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Abstract

Recently it was shown that the true sample com-
plexity of active learning is asymptotically better
than that for passive learning. In many interesting
cases, the improvement has been shown to be ex-
ponential [BHW08]; however, there are artificial
examples in which the improvement is small. In
this paper we provide a basis for a exponential im-
provements in active learning. We show that ex-
ponential improvements arise when the underlying
learning problem is “smooth,” i.e., the hypothesis
class, the instance space and the distribution can all
be described by smooth functions. This provides a
unified and simplified analysis for most known ex-
amples and significantly extends the class learning
problems that are “actively learnable at an expo-
nential rate.”

1 Introduction
In many problems in machine learning there is a large amount
of unlabeled data available which can be labeled at a cost.
For example, in spam detection one has many unlabeled emails
which could be classified by humans, an expensive task. Thus,
there has been much interest in “active learning” in which
one tries to minimize the number of labels requested.

Until recently, the benefits of active learning have been
unclear. While there are some examples in which active
learning provides substantial benefits, there were others where
it appeared that active learning provided no significant ad-
vantage over ordinary learning [BBZ07, CAL94, Das05b,
Das05a, DHM07, Han07a, Han07b]; in particular the worst
case complexity appears to be the same. However, in a recent
breakthrough [BHW08], it was shown that active learning is
always (under mild assumptions) asymptotically better than
ordinary learning and in many cases it is “exponentially” bet-
ter. In fact, in all “reasonable problems” that have been stud-
ied it is exponentially better and only on “artificial” examples
is it only polynomially better. However, up until now, there
has been no formalization of “reasonable problems” and our
understanding of exponential improvements is merely anec-
dotal.
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In this paper we provide a formalization of “reasonable
problems” by showing that smoothness of the underlying
learning problem leads to exponential improvements. We
provide a formal definition of smoothness and show that many
realistic models are “smooth.” Thus, we provide a simplified
and unified analysis of these problems. In addition, our ap-
proach shows that one can significantly generalize many of
these problems, showing the reach of exponential improve-
ments for active learning.

The intuition for our analysis comes from nonlinear op-
timization where the asymptotic behavior is controlled by
the smoothness of the function. For example, if functions
are not smooth (but perhaps Lipschitz continuous) one must
resort to exhaustive search, even asymptotically; however, if
the function to be optimized is smooth then typically one can
exponentially improve the asymptotic convergence rate.

This paper is organized as follows. In the next section
we review the basic formulation of active learning and then
in Section 3 describe our formulation of smoothness and
present our main result. Section 4 shows the ease and gener-
ality with with this result can be applied and we conclude in
Section 5.

2 Active Learning
A learning problem is defined by a hypothesis class C, an
instance space X , and a distribution D on X . We will as-
sume that there are only 2 labels, {−,+} and a hypothesis
c ∈ C is a subset of X which labels all instances in this sub-
set with + and all others with −. Throughout this paper we
will assume that the learning problem is realizable, that is
there exists some c∗ ∈ C such that all instances are labeled
correctly by c∗.1

There exists a pseudo-metric d defined by d(c, c′) = P [c∆c′]
where c∆c′ is the symmetric difference,

c∆c′ = (c \ c′)
⋃

(c′ \ c).

Using this one defines the error rate of a hypothesis c with
respect to a true hypothesis c∗ to be

err(c; c∗) = d(c∗, c).

1Note that we do not need any assumptions on the VC dimen-
sion of C.; however, using the techniques in [BDL98] one can show
that the VC-exponents they hypotheses that we study are finite (S.
Ben-David and M. Lindenbaum, 1998.)



It is also convenient to define the ball of radius r around c to
be

Br(c) = {c′ ∈ C | d(c, c′) ≤ r}.
We assume that the algorithm has access to an infinite

sequence of examples, x1, x2, x3, . . . sampled i.i.d. from X
according to D. An active learning algorithm proceeds by
choosing some i and requesting the label of xi and proceed-
ing sequentially. We will be interested in the asymptotic be-
havior of the error of the chosen hypothesis as a function of
the number of labels requested.

Formally, we define the asymptotic complexity of active
learning as follows:

Definition 1 (Balcan, et. al.) A function S(ε, δ, c∗) is a sam-
ple complexity for a learning problem (C,D) if there exists an
active learning algorithm A(t, δ) that outputs a classifier ct

after making at most t label requests, such that for any target
function c∗ ∈ C, ε ∈ (0, 1/2), δ ∈ (0, 1/4), and for any

t > S(ε, δ, c∗),

then
P [err(ct) ≤ ε] ≥ 1− δ.

Note that, as discussed in detail in [BHW08], this defini-
tion only requires that the active learner have a small error,
not that it be able to guarantee this small error. The main re-
sult in that paper is that under this measure, the complexity
of active learning is always asymptotically better than that
of ordinary learning in which the learner simply requests the
labels of every sample in the order in which they arrive. Note
that for problems with finite VC dimension, the sample com-
plexity is typically O(1/ε) and their result shows that the
sample complexity of active learning is o(1/ε).

Of particular interest to our analysis is their definition of
learning problems which are actively learnable at an expo-
nential rate [BHW08], i.e. problems on which active learn-
ing shows an exponential improvement over standard learn-
ing.

Definition 2 (Balcan et. al.) We say that (C,D) is actively
learnable at an exponential rate if there exists an active learn-
ing algorithm achieving sample complexity

S(ε, δ, c∗) = γc∗polylog(1/(εδ))

for some finite γc∗ = γ(c∗, D) independent of ε and δ.

In [BHW08] several examples of problems which are ac-
tively learnable at an exponential rate were presented; how-
ever, no general analysis that sheds light on why they are
actively learnable at an exponential rate was given. In addi-
tion, each example required its own unique analysis. In the
next section we will resolve some of these issues by provid-
ing general smoothness conditions under which problems are
actively learnable at an exponential rate which encompass all
of the examples in that paper, provides a single direct method
of proof and extends these examples significantly.

Note that our analysis actually works for the “verifiable
sample complexity” which is a stronger requirement than the
“true sample complexity.”

An important technical tool that we will use in our anal-
ysis is Hanneke’s disagreement coefficient [Han07a] which

is defined as follows. For any hypothesis class C, define the
region of disagreement as

DIS(C) = {x ∈ X : ∃c1, c2 ∈ C s.t. x ∈ c1 and x 6∈ c2}.
One then defines the disagreement coefficient of a hypothesis
to be

θc = sup
r>0

P [DIS(B(c, r))]
r

.

Hanneke [Han07a] has shown that the algorithm of of Cohn,
Atlas, and Ladner [CAL94] has a sample complexity at most

θcpolylog(1/(εδ))

when run with concept class C for target function c ∈ C.

3 Smooth Hypothesis Classes
Our goal in this section is to show that “smooth hypothesis
classes” are actively learnable at an exponential rate. Our key
tool will be Hanneke’s disagreement coefficient, through the
following simple lemma.

Lemma 3 Let

θc = lim sup
r→0

P [DIS(B(c, r))]
r

.

If θc < ∞ then c ∈ C is actively learnable at an exponential
rate.

Proof: In order to guarantee finiteness of the coefficient one
only needs to consider the limit as r → 0 since

P [DIS(B(c, r))]
r

< 1/r.

We present our main result in several levels of complex-
ity. We begin with the simplest setting.

3.1 Smooth Euclidean Domains
We first present our analysis in Euclidean spaces. Let X ⊂
<n for some n > 0 and assume that X is compact and of full
dimension. Let D be a non-atomic measure with nonzero
density on X . We define the hypotheses via an auxiliary
function, f(x, h) and assume that the hypotheses are given
by

c(h) = {x ∈ X | f(x, h) ≤ 0},
for h ∈ H, where H is an open subset of an m dimensional
Euclidean space. We require that f(x, h) is C1.

The following assumptions simplify the analysis. Denote
the boundary of c(h) by ∂c(h).

Assumption 1

• Transversality:

|| 5x f(x, h)|| > 0

on ∂c(h). (Note that here and throughout the paper ||·||
will represent the Euclidean norm.)



• Non-degeneracy: for all dh ∈ <n there exists some
x ∈ ∂c(h) such that

| 5h f(x, h) · dh| > 0.

• Clone free: for all h ∈ H there is no h′ ∈ Closure(H)
such that c(h) = c(h′) and h 6= h′.

Transversality assumes that the boundary of c(h) is a
“regular point,” which will allow us to use linear approxi-
mations. We do not believe that removing this assumption
would change our results, although it would complicate the
proof.

Non-degeneracy implies that any small change in h leads
to changes in c(h). Once again, this simplifies the analysis
but is probably not required. For example, in most cases
one could reparameterize H so that this condition would be
satisfied.

Lastly, clone-freeness says that hypotheses are unique,
even in a limiting sense. As we discuss later, one can allow
a finite number of clones while maintaining the result. We
expect that one can also allow an infinite number of clones,
subject to some regularity conditions.

As these three conditions are quite mild we do not lose
much by assuming them.

The intuition behind our result is straightforward and fol-
lows from the fact that smooth functions can be locally well
approximated with linear functions. Consider the case where
the spaces are one dimensional, X ⊂ < and H ⊂ <, and the
elements of H are convex. Thus, c(h∗) is an interval and
let c±(h∗) be the endpoints of the interval. The key sim-
plification is that for small dh differentiability implies that
c±(h∗ + dh) = c±(h∗) + c′±(h∗)dh. The import of this is
that the endpoints move monotonically, so the maximum dis-
agreement region is the same as the maximum distance and
θc = 1. In addition this argument directly generalizes for
higher dimensional X (and 1 dimensional H) since in the
linear approximation, the boundary of c(h) moves monoton-
ically. For higher dimensional H ∈ <m, the same argument
applies in each dimension and patching them together loses
a factor of m showing that θc ≤ m3/2.

Fleshing out this argument yields:

Theorem 4 Assume the following:

1. X is a compact full dimensional subset of <n.

2. H is an open subset of <m.

3. D is a non-atomic measure with C0 density function
p(x) > 0 on X .

4. C is generated by a continuously differentiable func-
tion, f(x, h).

5. f(x, h) satisfies the non-degeneracy and transversality
conditions and is clone free.

Then for any c ∈ C,

θc ≤ 2m3/2

and thus this learning problem is actively learnable at an
exponential rate.

Proof: In the following we will fix h∗ and c∗ = c(h∗). First
note that by transversality all the zeros of f(x, h) for fixed h
are regular and therefore since X is compact, the boundary
∂c is compact. Thus, any real valued continuous function on
∂c will attain a minimum on ∂c. In addition, by transversal-
ity, this boundary is a continuous function of h, so in addition
this implies that d(c(h), c(h′)) is continuous in h.

We first apply these facts to see that transversality implies
that for any dh such that ||dh|| = 1,

min
dh s.t. ||dh||=1

max
x∈∂c∗

| 5h f(x, h) · dh|

is nonzero. This, combined with clone freeness implies that
for any s > 0 there exists some r+ > 0 such that for all
r < r+, Br(c∗) ⊆ c(Bs(h∗)), where

c(Bs(h∗)) = {c(h′) | h′ ∈ Bs(h∗)}.
Thus, small balls around c∗ are contained in small balls around
h∗.

This can be seen by defining

τ(r) = maxh′∈Br(h∗)d(c(h), c(h′)).

By compactness and continuity this value exists and is at-
tained by some h′ ∈ Br(h∗). By non-degeneracy τ(r) > 0
for s > 0 and since Br(h∗) ⊆ Br′(h∗) for s ≤ s′ we see that
τ(r) is monotonic in r. It is also continuous in r by transver-
sality. Lastly, note that by definition τ(0) = 0. Thus, for any
s > 0 we can find r+ such that τ(r+) = s.

Next, by compactness we can find a finite covering of ∂c∗
by balls of radius ε > 0 with centers x ∈ XP ⊂ ∂c∗, for any
ε > 0. This is used to create a partition of a neighborhood of
∂c∗ into a union of “small” closed neighborhoods. Each cell
of the partition is the set of points that are no farther from
the center of one of the small balls, x ∈ XP , than they are
from any other center. Thus, each cell is a closed set which
is contained in a ball of radius ε and the cells only intersect
each other on their boundaries, which are sets of measure 0
with respect to D.

Now, we will look at the effect of changes in ∂c∗ in each
cell. Consider a specific cell, denoted by Ax and centered at
x ∈ XP . On Ax we can approximate f(x, h) by its Taylor
expansion around x, the center of the ball that defined Ax.
Thus,

f(x + dx, h∗ + dh) =
5xf(x, h) · dx +5hf(x, h) · dh + o(||x||+ ||h||),

where we have used the fact that f(x, h∗) = 0 and 5x de-
notes the x components of the gradient while5h the h com-
ponents. Setting this to 0 gives us the approximate boundary
of c(h∗ + dh) which is the hyperplane in dx defined by

5xf(x, h∗) · dx = −5h f(x, h∗) · dh + o(||dx||+ ||dh||).
Thus, for small changes in h, locally the tangent plane to the
boundary simply shifts a small amount but remains parallel
to the original one.

If we want to approximate d(c(h∗), c(h∗ + dh)) we can
add up, over all the cells, the measure between the original
tangent planes and the shifted ones. We can approximate
the density in each cell by a constant density, chosen to be
its value at x, since the function is continuous. Also, since
the density is nonzero and the boundary is compact, p(x)



has a lower bound on ∂c∗, so the relative approximation is
arbitrarily accurate, o(ε), for small enough ε > 0.

The key point of this approach is that the movement of
the hyperplane only depends on 5hf(x, h) · dh and not on
dh more generally. Thus, for each neighborhood the contri-
bution to the error can be written as |ax · dh|, which is linear
in dh, for some constant ax. By adding all these together, we
see that for small dh,

d(c(h∗), c(h∗ + dh)) =
∑

x∈XP

|axḋh|+ o(||dh||).

First consider the case where m = 1. In this case we can
write

d(c(h∗), c(h∗ + dh)) =
∑

x∈XP

|ax| |dh|+ o(||dh||) = a|dh|,

where a =
∑

x∈XP
|ax|. Thus, the ball Br(c(h∗)) corre-

sponds to to the parameters arising from |dh| < r/a. Next,
we note that

DIS(Ax

⋃
Br(c(h∗)))

is just the measure between the tangent planes in Ax. Adding
all of these up we see that

P [DIS(Ax

⋃
Br(c(h∗)))] = 2r

which implies that θc∗ = 2r/r = 2.
When m > 1 the analysis is more complicated due to the

absolute values. Consider the approximation to the distance
function,

d̂(dh) =
∑

x∈XP

|ax · dh|.

This function is convex, as it is a sum of convex functions. It
is also symmetric as d̂(dh) = d̂(−dh). This implies that

B̂r = {dh ∈ <n | c(h∗ + dh) ∈ Br(c∗)}
is convex and symmetric about the origin.

Now, for any such convex set, Lemma 12, in the ap-
pendix, shows that there exists a set of vectors

v1, v2, . . . , vm ∈ B̂r

such that for any b ∈ B̂r we can write b =
∑

i βivi where
|βi| ≤ m1/2. Now consider a cell Ax. The intersection
of the disagreement region and that cell is simply the area
between the two extreme values of the tangent surfaces over
b ∈ B̂r which arise from some bx on the boundary of B̂r and
its reflection −bx. The measure of this region is simply

2|ax · bx| = 2|ax · (
∑

i

βivi)| ≤ 2
∑

i

|βi| |ax · vi|,

so we have the following bound

P [DIS(Br(c∗))] ≤ 2m1/2
∑

x∈XP

∑

i

|ax · vi|.

Now, by the definitions of vi and Br(c∗), we have

r ≥
∑

x∈XP

|ax · vi|,

for all i. Summing over all i yields

2mr ≥
∑

x∈XP

∑

i

|ax · vi| ≥ m−1/2P [DIS(Br(c∗))].

Thus we see that
θc∗ = P [DIS(Br(c∗))]/r ≤ 2m3/2r/r = 2m3/2

proving the theorem when ε → 0, which corresponds to the
case when r → 0, since all the error terms are o(ε)/ε and
vanish in the limit.

In addition, the theorem is almost tight. Let X = [0, 1],
D be the uniform distribution,

H = {h ∈ <m | 0 < hi < 1/(2m + 1)}
and c(h) =

⋃
i ci(hi) where ci(hi) is the interval of length

hi centered at i/(m + 1). Let c = c(h) where hi = 1/4m.
It is easy to see that for small r the ball of radius r centered
at c(h), Br(c(h)) corresponds to the region in H where∑

i

|h′i − h| < r.

The disagreement region,
DIS(Br(c(h)))

corresponds to the region in H where |h′i − hi| < r. Thus,
P [DIS(Br(c(h)))] = 2rm,

so the disagreement coefficient is 2rm/r = m and taking
the limit as r → 0 yields θc = 2m.

Now, for general problems, since X is full dimensional,
we can consider some open ball, B contained in X . By the
assumptions on D we can choose B small enough so that the
distribution is essentially constant, up to small error terms
that can be made arbitrarily small.

Now we consider a small line segment contained in B
and a cylindrical neighborhood of that line segment which is
also contained in B. Then we can use this same construction
by replacing intervals of the line ci(hi) by “intervals” of the
cylinder which leads to the same result. We state this in a
Theorem.

Theorem 5 For any X, D there exist a parameter space H ∈
<m and function f(x, h) which satisfies the assumptions of
Theorem 4 such that θc = 2m for the induced set of hypothe-
ses.

While the example used to prove this theorem is quite
specialized, we claim that the result is common – θc = 2m
will commonly arise. For example, it can be shown that if
we take C to be the set of axis oriented ellipsoids in <m

where the parameter space is a subset of <m (the length of
the axes) then a (tedious) calculation shows that in this case
θc = 2m. Similarly for generalized hypercubes centered
at the origin one gets θc = 2m. In some sense it appears
that θc will be equal to the number of “relevant” parameters,
although the formal definition of “relevance” appears to be
technically complex and we do not pursue it further here.

In fact, we conjecture that θc = 2m is the true upper
bound too, as opposed to our result of 2m3/2. This can be
seen in the proof of Lemma 12 in which one could tighten the
constraints on the βi’s significantly, a result which should be
usable to tighten our upper bound.



3.1.1 Example: Circles and Ellipsoids
An interesting hypothesis class that satisfies these assump-
tions are hyperspheres in <n. Let

X = {x ∈ <n |
n∑

i=1

x2
i ≤ 1}

and

H = {h ∈ <n+1 |
n∑

i=1

h2
i < 1− h2

n+1, 0 < hn+1 < 1}.

Now define

f(x, h) =
n∑

i=1

(xi − hi)2 − h2
n+1.

Then c(h) is the hypersphere centered at (h1, . . . , hn) of ra-
dius hn+1. Our analysis above showed that this class is ac-
tively learnable at an exponential rate. In fact, one can extend
this result to other interesting hypothesis classes. For exam-
ple, one can easily modify this example to allow for axis
oriented ellipsoids and, more generally, arbitrary ellipsoids.

3.2 Piecewise Smoothness and Clones
Note that our proof of Theorem 4 only relies on properties of
small neighborhoods of ∂c(h). Thus, as long as our function
f(x, h) is locally smooth, our analysis extends directly.

An important motivating example in active learning the-
ory is that of axis oriented rectangles. The general version of
this hypothesis class is defined by X = [0, 1]n, H ⊂ [0, 1]2n

and
c(h) = {x ∈ X | hi ≤ xi ≤ hn+i ∀i}.

However, for this hypothesis class there is no function f(x, h)
which generates it and is C1 everywhere. One can find such
a function which is C0 everywhere and C1 a.e.; however,
this does not appear to be sufficient, since the accuracy of
the approximations might not hold uniformly on the whole
surface of a hypothesis. Thus, we consider the following re-
quirements on f(x, h) to avoid these difficulties.

First we define a smooth open partition of ∂c(h) to be a
finite collection of connected co-dimension 1 open sets such
that the closure of their union is ∂c(h) and the boundary of
each set is C1.

For example it is easy to see that one can partition the
boundary of any axis oriented rectangle into 2n open subsets
of the defining hyperplanes.

It is clear that our proof can be applied to each element of
the partition separately. Since there are only a finite number
of elements of the partition one can easily guarantee unifor-
mity of the approximations. In addition, since all of our anal-
ysis is local, we only need to require that the function f(x, h)
is C1 on a neighborhood of the surface on each element of
the partition.

For example, for the axis oriented rectangles we can de-
fine f(x, h) to be the (oriented) distance of x to the nearest
edge of the rectangle.

In addition, note that our restriction on clones is stronger
than necessary as we can allow a finite number of clones.
The only change in our analysis would be that the analysis
would have to be carried out for each clone, but once again,

if there are only a finite number of clones then the approxi-
mations will hold uniformly.

Thus, we have the following theorem:

Theorem 6 Assume the following:

1. X is a compact full dimensional subset of <n.

2. H is an open subset of <m.

3. D is a non-atomic measure with C0 density function
p(x) > 0 on X .

4. C is generated by a continuously differentiable func-
tion, f(x, h).

5. C is generated by f(x, h) where
(a) f is C0.
(b) There exists a smooth open partition of ∂c(h) such

that on the relative interior of each element of the
partition, f is C1.

(c) f has a bounded number of clones and satisfies the
non-degeneracy and transversality conditions.

Then for any c ∈ C,

θc ≤ 2m3/2

and thus this learning problem is actively learnable at an
exponential rate.

Thus, axis oriented rectangles as well as direct general-
izations to many classes of polytopes are all actively learn-
able at an exponential rate.

3.3 Smooth Manifolds
Recall that a manifold is a space which is locally Euclidean
[War83]. For example, the surface of sphere, Sn, and the
set of rotations, SO(n), are both manifolds. For any point
m ∈ M of a manifold there is a chart, g, which is a function
from a neighborhood of m to a Euclidean space. The set of
charts is known as the atlas. We will consider only compact
manifolds, in which case there is a finite set of charts which
cover the manifold. A manifold is C1 if the composition of
charts is continuously differentiable and on such a manifold,
differentiation is well defined.

Given a manifold and a finite atlas we can decompose the
manifold into a finite set of pieces and then analyze them lo-
cally using the charts using the standard tools from multivari-
ate calculus. Following from our decomposition approach in
the previous section, it is easy to see that this corresponds to
a partition and our analysis can be applied directly to each
element of the partition, i.e., each chart in a finite atlas. Thus
we get the following useful extension of our main theorem.

Theorem 7 Assume the following:
Assume the following:

1. X is a compact full dimensional subset of a C1 mani-
fold.

2. H is a C1 manifold without a boundary of dimension
m.

3. D is a non-atomic measure with C0 density function
p(x) > 0 on X .



4. There exists a finite set of charts on X ×H such that C
is generated by f(x, h) where (in local coordinates on
each chart)

(a) f is C0 everywhere.
(b) For every h ∈ H there exists an open partition of

∂c(h) such that f is C1.
(c) f has a finite number of clones and satisfies the

non-degeneracy and transversality conditions.

Then for any c ∈ C,

θc ≤ 2m3/2

and thus this learning problem is actively learnable at an
exponential rate.

Proof: In order to prove this it suffices to construct a finite
partition of ∂c∗, as in the proof of Theorem 4, such that each
element of the partition is contained in a single chart and
then apply essentially the identical proof. To do this we take
a finite covering of H by open charts, which exists since ∂c∗
is compact. Then we can choose ε > 0 sufficiently small
such that the fraction of partition elements which are not con-
tained in a single chart are sufficiently small that they can be
ignored with only a small loss of accuracy.

Note that we do not require that H be open, only that it
not contain a boundary. This is useful since many manifolds
are closed but do not have a boundary, such as the boundary
of an n-dimensional hypersphere, such as the circle.

We have presented the coordinate representation of the
theorem; however, one could present it in a “coordinate free”
manner. For a good introduction to these methods see [AM94].

Example: Linear Separators and Sn

An important set of hypothesis classes arise from lin-
ear separators, as in SVMs e.g., [Joa02]. In this case the
hypothesis class is typically generated by linear separators,
btx + c ≥ 0, or their unions and/or intersections. These can
be easily shown to be smooth by letting H ⊂ Sn×<n where
h = (b, c) where b ∈ Sn is an element from the surface of
the unit n-sphere and c ∈ <n.

Thus, for any smooth distribution over say [0, 1]n the
class of linear separators will be actively learnable at an ex-
ponential rate.

Another important case, the analysis of linear separators
over the uniform distribution on the surface of the unit sphere
[BBL06, BBZ07, Das05b, DHM07, DKM05] appears, at first,
to be problematic, since if we take X to be [0, 1]n then the
distribution is not smooth, as it is concentrated on the sur-
face of the unit sphere. In fact, in this case the detailed re-
lationship between linear separators and spheres is crucial to
the analysis. For example, if the hypothesis class contained
separators with “spherical pieces” then problems could arise.
The problems are avoided with linear separators, but small
perturbations of this hypothesis class could be problematic.

Nonetheless, the analysis of this problem is straightfor-
ward when we set X to be the surface of the unit sphere, a
smooth manifold. In this space, the projection of linear sep-
arators onto the surface are codimension 1 spheres and thus

it is easy to show that this class is actively learnable at an ex-
ponential rate for any smooth non-vanishing distribution on
the sphere.2

In fact, this analysis shows that linear separators are ac-
tively learnable at an exponential rate over any smooth distri-
bution on any smooth, convex, nowhere flat, sub-manifold of
<n, such as ellipses. More generally, one can take the union
of multiple ellipses as the direct product of several smooth
manifolds (which is also a smooth manifold). In addition,
one can often reduce the requirement of convexity, as long
as the hyperplanes are never tangent to a “flat” piece of the
surface.

One can even generalize these arguments to show that
even in cases where results don’t imply that a class/distribution
pair is actively learnable at an exponential rate, small per-
turbations of either the distribution of the hypothesis class
restore the exponential learnability.

3.4 Countable Unions of Hypothesis Classes
Note that our theorem does not include the case where the
hypothesis class is a finite union of smooth classes which are
actively learnable at an exponential rate. One could mod-
ify the proof to cover finite collections, but the extension to
countably infinite collections appears to be technically com-
plex. Fortunately, [BHW08] has shown that the extension to
countable unions of hypothesis classes is straightforward.

Theorem 8 (Balcan et. al.) If C1, C2, . . . are all hypothesis
classes for X, D which are all actively learnable at an expo-
nential rate then C =

⋃
i Ci is also actively learnable at an

exponential rate.

Thus, one can combine arbitrary finite collections of hy-
pothesis classes which are individually actively learnable at
an exponential rate into a single large class which is actively
learnable at an exponential rate.

4 Tools for Constructing Smooth Hypothesis
Classes

In this section we present two powerful methods for con-
structing smooth hypothesis classes.

4.1 Semi-Algebraic Sets
Semi-algebraic sets can be used for constructing many inter-
esting hypothesis classes. (See, e.g. [BDL98].) In order to

2To see the problem when X has flat pieces, let X be the surface
of the unit square, X = ∂S where

S = {x ∈ <2 | ∀i : 0 ≤ xi ≤ 1}
with the uniform distribution. Then the halfspace given by

HS(h1) = {x ∈ <2 | x1 ≤ h1}
generates the hypothesis

c(h1) = HS(h1)
⋃

X,

and it is easy to see that c(h1) is discontinuous at h1 = 0; how-
ever, if we deformed X slightly so that it was strictly convex, the
hypotheses would be continuous for all values of h1.



construct a semi-algebraic hypothesis class we allow there
to be a finite number of defining functions fi(x, h) and then
allow finite unions or intersections of the hypotheses gener-
ated.

For example, one can define the class of axis oriented
rectangles in <2 by considering the intersection of the sets
created by the following four functions for H ⊂ <4 :

f1(x, h) = h1 − x1,

f2(x, h) = x1 − h2,

f3(x, h) = h3 − x2,

f1(x, h) = x2 − h4.

In a semi-algebraic set we additionally require X and H
be subsets of a Euclidean space (as in Theorem 1) and that
each of the functions be a polynomial in x, h. In addition,
we require that the functions be non-degenerate; that is, for
any h ∈ H all the fi’s are distinct.

The key issue is whether we can find a smooth parti-
tion of the resulting hypothesis class which only relies on
a single function in each element of the partition. How-
ever, when the functions are polynomials, Bezout’s theorem
bounds the number of intersections among the surfaces gen-
erated by each function which guarantees that such a smooth
partition exists and is finite. Thus under very mild conditions
semi-algebraic sets of hypotheses can be actively learned at
an exponential rate.3

Clearly semi-algebraic hypothesis classes are very gen-
eral. These include most of the previous (non manifold) ex-
amples as well as many generalizations.

4.2 Transformations and Lie Groups
Next, we consider a simple, but powerful, method for con-
structing hypothesis classes. Let Th(x) be a C1 mapping
from X (or its containing manifold) to itself, whose gradient
is Lipschitz continuous. Then given some initial hypothesis
defined by g(x) ≤ 0 where g(x) is also C1, define

f(x, h) = g(Th(x)).

It is easy to see that f(x, h) will be C1. Thus it can be used
to define a hypothesis class which is actively learnable at an
exponential rate.

Note that this construction also works if the functions are
only smooth on the elements of a smooth partition, so our
analysis also applies in that case.

For example, if X ⊂ <n and H ⊂ <n, Th could be the
set of translations on X ,

Th(x) = x + h.

Then if g(x) defines a set in X we can use Th to generate all
translations of that set, such as all balls of unit radius or unit
hyperspheres.

Another useful set of transformations are the dilations, in
which case H ′ ⊂ <n and T ′h′ is defined by

T ′h′(x)i = xi/h′i.

In this case, starting with a hypersphere centered at x0 ∈ X
one can generate all axis oriented ellipsoids centered at x0.

3The formal analysis parallels that for sign patterns of polyno-
mials as discussed in [War68, Alo96].

Similarly, starting with a hypercube centered at x0 one can
generate all axis oriented parallelepipeds centered at x0.

In addition, one can combine two transformations to cre-
ate their combination. For example define

T̂h,h′(x) = Th(T ′h′(x)).

Then beginning with a hypersphere, one can generate all el-
lipsoids.

A generalization of these two examples is the set of all
affine transformations: X ⊂ <n and H ⊂ <n2+n where the
first n2 elements of h are the elements of a matrix Ah and
the last n elements are the elements of a vector bh. Then

Th(x) = Ahx + bh

which is an affine transformation, which can be used to gen-
erate many interesting hypothesis classes.

However, this approach runs into difficulties for certain
important classes of transformations. For example, consider
the set of rotations in <2. This can be implemented by the
matrix

Mh =
(

h1 h2

h3 h4

)

but then the set H ⊂ <4 is not open. One can also try con-
structing this as

Mh =
(

h1 h2

−h2 h1

)

but still the set H ⊂ <2 is not open. The resolution of this
issue (and its generalization to more complicated problems)
is to realize that the correct representation of H is as a Lie
Group.

A Lie Group is a group that is also a smooth manifold.
A useful Lie group is the simple orthogonal group SO(n)
which is the group of all orthogonal n×n matrices with unit
determinant and it is manifold of dimension n(n−1)/2. The
action of this group, through matrix multiplication, is that of
arbitrary n-dimensional rotations. Locally, one can find n−1
coordinates to represent this group, but globally one must use
a manifold. Thus if we let H be the Lie Group SO(n) and
Ah be the rotation matrix corresponding to h ∈ H then our
results apply directly.

5 Agnostic Active Learning
In some cases, our results extend naturally to the agnostic
setting, where the true hypothesis may not be contained in
C. Let c∗ 6∈ C be the true hypothesis and c′ ∈ C be the best
hypothesis, i.e. the one which minimizes err(c; c∗) over C.
Let ν = err(c′; c∗).

As Hanneke has shown, a key parameter in the number
of label requests by the A2 algorithm [BBL06] for agnostic
active learning can be bounded in terms of the maximum
disagreement coefficient:

θ(C) = max
c∈C

θc.

Theorem 9 (Hanneke, 2008) If θ(C) is the disagreement co-
efficient for C, then with probability at least 1− δ, given the
inputs C, ε, and δ, A2 outputs c′ ∈ C with

err(h′, h∗) ≤ ν + ε



and the number of label requests made by A2 is at most

O

(
θ(C)2(

ν2

ε2
+ 1)(m log(1/ε) + log(1/δ)) log(1/ε)

)
.

Thus, if we show that θ(C) is finite for some hypoth-
esis class and distribution on the instance space, then that
problem is agnostically actively learnable at an exponential
rate, assuming that ν/ε = O(1), an assumption we maintain
throughout this section.4 For example, Hanneke [Han07a]
has shown that for the hypothesis space which consists of all
linear separators through the origin where the instances are
given by a uniform distribution over the unit sphere, θ(C) ≤
πm1/2, thus they are, in certain limits, agnostically actively
learnable at an exponential rate. We will show how our tech-
niques can extend these results to arbitrary distributions, with
non-vanishing densities over arbitrary convex surfaces which
don’t intersect the origin.

First we note that the extension is a bit more subtle than
it might appear at first glance. Although θc ≤ m3/2 for all
c ∈ C, subject to our smoothness assumptions, this does
not immediately imply that θ(C) is finite. This is because
the divergence of disagreement coefficients can occur over a
sequence of finite r’s, but for different c’s. In the case where
C is open, the value of r in which the linear approximation
is valid, while finite for every c ∈ C, could be infinite over
the entire C.

One way to avoid this problem is to take a compact subset
of C and assume some additional differentiability of f(x, h).
For example in the example which looks at subintervals of
the unit interval, this might correspond to setting a lower
limit on the length of a hypothesis interval. An alternative
approach relies on the properties of manifolds which can
be compact but without a boundary. This is the case that
arises for linear separators through the origin as they are
completely specified by a point on the surface of the unit
hypersphere, a compact manifold without boundary.

First we state a theorem:

Theorem 10 Let H, X, D, f satisfy the assumptions of The-
orem 4 or Theorem 7 and in addition assume that f(x, h) is
twice continuously differentiable (on each chart). Let C ′ ⊆
C(H) be compact. Then θ(C ′) < ∞ and C ′ is agnostically
actively learnable at an exponential rate, if ν/ε = O(1).

Proof: (Sketch:) Let

θr(C) = max
c∈C

P [DIS(B(c, r))]
r

.

Our goal is to show that

sup
r>0

θr(C) < ∞.

First we note that for any finite r, θr(C) ≤ 1/r, so all we
need to show is that

lim sup
r→0

θr(C) < ∞.

4Without this assumption, the ν/ε term will dominate the
log(1/ε) term, leading to polynomial convergence.

This does not follow immediately from our result that θc ≤
m3/2, since the limiting behavior could vary by c ∈ C. How-
ever, one can see from the proof of Theorem 4 that for any
level of approximation, there is some ε(c) such that the linear
approximation is valid and if f(x, h) is C2 then this function
ε(c(h)) is continuous in h and by compactness there exists a
uniform bound which completes the proof.

Thus, we can extend many of our previous results to the
agnostic case and extend some of Hanneke’s results.

6 Conclusions
Our results imply that many, and perhaps most, learning prob-
lems of interest are actively learnable at an exponential rate;
however, these results are asymptotic and it would be im-
portant to understand how quickly the asymptotic region is
reached.

More broadly, we expect that the idea that small pertur-
bations of “bad” problems can make them “good” merits
further studies. For example, does this imply that in some
stronger sense that for “geometric learning problems” expo-
nential improvements are “generic.”

Next, our results for agnostic learning are very prelimi-
nary. We conjecture that one does not need to restrict to com-
pact sets of hypotheses for similar agnostic active learning
results as smoothness should allow one to provide straight-
forward conditions, such as bounds on the Lipschitz con-
stants of the function f(·, ·), which allow one to consider
open sets of hypotheses. A more comprehensive study of
agnostic active learning remains to be done.

Lastly, while the CAL algorithm provides exponential
convergence we expect that active learning problems which
take direct advantage of geometry and smoothness (such as
in [BHW08]) could be simpler and more efficient in practice
and expect that a geometric analysis of these problems may
lead to improved active learning algorithms.
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A Lemma
The key to proving Lemma 12 is the following result by John
[Joh48].

Theorem 11 (John, 1948) Let B ⊂ <m be a convex set
which is symmetric about the origin. Then there exists an
ellipsoid, the Löwner-John Ellipsoid, E ∈ <n such that

m−1/2E ⊆ B ⊆ E

where
m−1/2E = {m−1/2x | x ∈ E}.

Lemma 12 Let B ⊂ <n be a convex set which is symmetric
about the origin, i.e, if b ∈ B then −b ∈ B. Then there exist
a set of m orthogonal vectors, v1, v2, . . . , vm ∈ B, such that
any b ∈ B can be written

∑
i βivi for

|βi| ≤ m1/2.



Proof: Proof: By John’s lemma, we consider the enclosed
ellipsoid, m−1/2E. Let vi be one of the vectors defining the
i’th axis of E. Then vi ∈ B by John’s lemma. Then note
that

∑
i αivi for |αi| ≤ m1/2 must contain E, completing

the proof.
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