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Abstract

We study the regret of optimal strategies for on-
line convex optimization games. Using von Neu-
mann’s minimax theorem, we show that the opti-
mal regret in this adversarial setting is closely re-
lated to the behavior of the empirical minimiza-
tion algorithm in a stochastic process setting: it is
equal to the maximum, over joint distributions of
the adversary’s action sequence, of the difference
between a sum of minimal expected losses and the
minimal empirical loss. We show that the optimal
regret has a natural geometric interpretation, since
it can be viewed as the gap in Jensen’s inequality
for a concave functional—the minimizer over the
player’s actions of expected loss—defined on a set
of probability distributions. We use this expression
to obtain upper and lower bounds on the regret of
an optimal strategy for a variety of online learn-
ing problems. Our method provides upper bounds
without the need to construct a learning algorithm;
the lower bounds provide explicit optimal strate-
gies for the adversary.

1 Introduction
Upon a review of the central results in adversarial online
learning—most of which can be found in the recent book
Cesa-Bianchi and Lugosi [7]—one cannot help but notice
frequent similarities between the guarantees on performance
of online algorithms and the analogous guarantees under sto-
chastic assumptions. However, discerning an explicit link
has remained elusive. Vovk [21] notices this phenomenon:
“for some important problems, the adversarial bounds of on-
line competitive learning theory are only a tiny amount worse
than the average-case bounds for some stochastic strategies
of Nature.”

In this paper, we attempt to build a bridge between ad-
versarial online learning and statistical learning. Using von
Neumann’s minimax theorem, we show that the optimal re-
gret of an algorithm for online convex optimization is exactly
the difference between a sum of minimal expected losses and
the minimal empirical loss, under an adversarial choice of a
stochastic process generating the data. This leads to upper
and lower bounds for the optimal regret that exhibit several
similarities to results from statistical learning.

The online convex optimization game proceeds in rounds.
At each of these T rounds, the player (learner) predicts a
vector in some convex set, and the adversary responds with
a convex function which determines the player’s loss at the
chosen point. In order to emphasize the relationship with the
stochastic setting, we denote the player’s choice as f ∈ F
and the adversary’s choice as z ∈ Z . Note that this differs,
for instance, from the notation in [2].

Suppose F is a convex compact class of functions, which
constitutes the set of Player’s choices. The Adversary draws
his choices from a closed compact set Z . We also define a
continuous bounded loss function ` : Z × F → R and as-
sume that ` is convex in the second argument. Denote by
`(F) = {`(·, f) : f ∈ F} the associated loss class. Let
P be the set of all probability distributions on Z . Denote a
sequence (Z1, . . . , ZT ) by ZT1 . We denote a joint distribu-
tion onZT by a bold-face p and its conditional and marginal
distributions by pt

(
·|Zt−1

1

)
and pmt , respectively.

The online convex optimization interaction is described
as follows.

Online Convex Optimization (OCO) Game

At each time step t = 1 to T ,
• Player chooses ft ∈ F
• Adversary chooses zt ∈ Z
• Player observes zt and suffers loss `(zt, ft)

The objective of the player is to minimize the regret

T∑
t=1

`(zt, ft)− inf
f∈F

T∑
t=1

`(zt, f).

It turns out that many online learning scenarios can be re-
alized as instances of OCO, including prediction with expert
advice, data compression, sequential investment, and fore-
casting with side information (see, for example, [7]).

Let us briefly mention previous work and outline our
contributions. Our starting point, Theorem 1, is similar to
Sec. 2.10 of [7], but extends it to non-oblivious adversaries
and arbitrary losses. Dealing with non-oblivious adversaries
(viz., those whose actions depend on player’s choices) entails
considering a nested sequence of inf/sup pairs, and much of
the generality and difficulty comes from this setup. The use
of minimax duality has a long history in decision theory and
Bayesian analysis. In the case of binary sequence prediction,



we refer to [9, 18] and references therein. For the log loss,
the minimax strategy is known to have a closed form, and
there is a large body of work on the subject in different com-
munities (see [18, 7]). The use of Rademacher averages in
the context of prediction first appeared in [6] for the absolute
loss.

The aim of this paper is to provide a unifying frame-
work, as well as tools for studying minimax regret in a gen-
eral setting: a non-oblivious adversary and convex loss func-
tions. One of the contributions is the upper bound in terms
of Rademacher averages (Theorem 18), which extends that
in [7] to non-linear losses. The lower bound of Theorem 19
generalizes the asymptotic bound for expert case (e.g. [7]).
We provide an important geometric viewpoint and show that
fast rates can be obtained by studying properties of the min-
imum expected risk functional. We show that strong con-
vexity implies smoothness of this functional, thus recover-
ing known results on logarithmic regret. When the func-
tional is non-differentiable, an explicit optimal strategy of
the adversary is to play the distribution that exhibits the non-
differentiability.

2 Applying von Neumann’s minimax theorem
Define the value of the OCO game—which we also call the
minimax regret—as

RT := inf
f1∈F

sup
z1∈Z

· · · inf
fT−1∈F

sup
zT−1∈Z

inf
fT∈F

sup
zT∈Z

(
T∑
t=1

`(zt, ft)− inf
f∈F

T∑
t=1

`(zt, f)

)
. (1)

The OCO game has a purely “optimization” flavor. How-
ever, applying von Neumann’s minimax theorem shows that
its value is closely related to the behavior of the empirical
minimization algorithm in a stochastic process setting.

Theorem 1 Under the assumptions on F , Z , and ` given in
the previous section,

RT = sup
p

E

[
T∑
t=1

inf
ft∈F

E
[
`(Zt, ft)|Zt−1

1

]
− inf
f∈F

T∑
t=1

`(Zt, f)

]
, (2)

where the supremum is over all joint distributions p on ZT
and the expectations are over the sequence of random vari-
ables {Z1, . . . , ZT } drawn according to p.

The proof relies on the following version of von Neu-
mann’s minimax theorem; it appears as Theorem 7.1 in [7].

Proposition 2 Let M(x, y) denote a bounded real-valued
function on X ×Y , where X and Y are convex sets and X is
compact. Suppose that M(·, y) is convex and continuous for
each fixed y ∈ Y and M(x, ·) is concave for each x ∈ X .
Then

inf
x∈X

sup
y∈Y

M(x, y) = sup
y∈Y

inf
x∈X

M(x, y).

Proof: [of Theorem 1]
Consider the last optimization choice zT in Eq. (1). If

we instead draw zT according to a probability distribution,
and compute the expected value of the quantity in the paren-
theses in Eq. (1), then maximizing this expected value over
all distributions on Z is equivalent to maximizing over zT .
Hence,

RT = inf
f1∈F

sup
z1∈Z

· · · inf
fT−1∈F

sup
zT−1∈Z

inf
fT∈F

sup
pT∈P

E ZT∼pT

[
T∑
t=1

`(zt, ft)− inf
f∈F

T∑
t=1

`(zt, f)

]
. (3)

In the last expression, it is understood that sums are over the
sequence {z1, . . . , zT−1, ZT }, that is, the first T−1 elements
are quantified in the suprema, while the last ZT is a random
variable.

We now apply Proposition 2 to the last inf/sup pair in
(3), with

M(fT , pT ) = E ZT∼pT

[
T∑
t=1

`(zt, ft)− inf
f∈F

T∑
t=1

`(zt, f)

]
,

which is convex in fT (by assumption) and linear in pT .
Moreover, the set F is compact, and both F and P are con-
vex. We conclude that

RT = inf
f1∈F

sup
z1∈Z

· · · inf
fT−1∈F

sup
zT−1∈Z

sup
pT∈P

inf
fT∈F

E

[
T∑
t=1

`(zt, ft)− inf
f∈F

T∑
t=1

`(zt, f)

]

= inf
f1∈F

sup
z1∈Z

· · · inf
fT−1∈F

sup
zT−1∈Z

sup
pT∈P

(
T−1∑
t=1

`(zt, ft)

+ inf
fT∈F

E [`(ZT , fT )]− E inf
f∈F

T∑
t=1

`(zt, f)

)
.

Note that, in the last line, the maximizing distribution pT de-
pends on the previous choices zT−1

1 , but not on any of the
ft’s. As we swap inf / sup from inside out, zt’s are taken to
be random variables and denoted by Zt. Pulling the expec-
tation on the third term outside and repeating the process T
times, we arrive at the statement of the Theorem. We refer to
[1] for more details.

We can think of Eq. (2) as a game where the adversary
goes first. At every round he “plays” a distribution and the
player responds with a function that minimizes the condi-
tional expectation.

We remark that we can allow the player to choose ft’s
non-deterministically in the original OCO game. In that case,
the original infimum should be over distributions on F . We
then do not need convexity of ` in f ∈ F’s in order to apply
von Neumann’s theorem, and the resulting expression for the
value of the game is the same.

3 First Steps
The present work focuses on analyzing the expression in
Equation (2) for a range of different choices of Z and F , as



well as for various assumptions made about the loss function
`. We are not only interested in upper- and lower-bounding
the value of the game RT , but also in determining the types
of distributions p that maximize or almost maximize the ex-
pression in (2). To that end, define p-regret as

RT (p)

= E

[
T∑
t=1

min
ft∈F

E
[
`(Zt, ft)|Zt−1

1

]
−min
f∈F

T∑
t=1

`(Zt, f)

]
(4)

for any joint distribution p of (z1, . . . , zT ) ∈ ZT . In this
section we will provide an array of analytical tools for work-
ing with RT (p).

3.1 Regret for IID and Product Distributions
It is natural to consider i.i.d. processes and product distribu-
tions p as candidates for maximizing RT (p).

Lemma 3 For any i.i.d. distribution p, RT (p) ≥ 0. Hence,
RT ≥ 0.

Proof: For an i.i.d. distribution Eq. (4) becomes

1
T

RT (p) = min
f∈F

E [`(Z, f)]− E min
f∈F

1
T

T∑
t=1

`(Zt, f)

≥ min
f∈F

E [`(Z, f)]−min
f∈F

E
1
T

T∑
t=1

`(Zt, f) = 0

where the inequality is due to the fact that E min ≤ min E .

Observe that RT (p) for an i.i.d. process is the difference
between the minimum expected loss and the expectation of
the empirical loss of an empirical minimizer.

With the goal of studying various types of distributions,
we now define the following hierarchy:

R i.i.d.
T := sup

p=pT

RT (p); R indep.
T := sup

p=p1×...×pT

RT (p),

where p, p1, . . . , pT are arbitrary distributions on Z . It is
immediately clear that

0 ≤ R i.i.d
T ≤ R indep.

T ≤ RT . (5)

We will see that, given particular assumptions on F ,Z
and `, some of the gaps in the above hierarchy are significant,
while others are not. Before continuing, however, we need
to develop some tools for analyzing the minimax regret.

3.2 Tools for a General Analysis
We now introduce two new objects that help to simplify the
expression in (2) as well as derive properties of RT (p).

Definition 4 Given sets F ,Z , we can define the minimum
expected loss functional Φ as

Φ(p) := inf
f∈F

E Z∼p [`(Z, f)] ,

where p is some distribution on Z .

Defining an inner product 〈h, p〉 =
∫
z
h(z)dp(z) for a distri-

bution p, we observe that Φ(p) = inff∈F 〈`(·, f), p〉.

Definition 5 For any Z1, . . . , ZT ∈ ZT , we denote P̂T =
1
T

∑T
t=1 1Zt(·), the empirical distribution.

With this additional notation, we can rewrite (4) as

1
T

RT (p) =
1
T

T∑
t=1

E Φ(pt
(
·|Zt−1

1

)
)− E Φ(P̂T ). (6)

Thus, the Adversary’s task is to induce a large deviation
between the average sequence of conditional distributions
{pt
(
·|Zt−1

1

)
} and an empirical sample P̂T from these con-

ditionals, where the deviation is defined by way of the func-
tional Φ.

Lemma 6 The functional Φ(·) is concave on the space of
distributions over Z and RT (·) is concave with respect to
joint distributions on ZT .

The (easy) proof of this lemma is in the full version [1]. It is
indeed concavity of Φ that is key to understanding the behav-
ior of RT . A hint of this can already be seen in the proof of
Lemma 3, where the only inequality is due to the concavity
of the min. In the next section, we show how this description
of regret can be interpreted through a Bregman divergence in
terms of Φ.

3.3 Divergences and the Gap in Jensen’s Inequality
We now show how to interpret regret through the lens of
Jensen’s Inequality by providing yet another expression for
it, now in terms of Bregman Divergences. We begin by re-
visiting the i.i.d. case p = pT = p × . . . × p, for some
distribution p on Z . Equation (6) simplifies to a very natural
quantity,

1
T

RT (pT ) = Φ(p)− E Φ(P̂T ). (7)

Notice that P̂T is a random quantity, and in particular
that E P̂T = p. As Φ(·) is concave, with an immediate ap-
plication of Jensen’s Inequality we obtain RT (pT ) ≥ 0. For
arbitrary joint distributions p, we can similarly interpret re-
gret as a “gap” in Jensen’s Inequality, albeit with some added
complexity.

Definition 7 If F is any convex differentiable1 functional on
the space of distributions on Z , we define Bregman diver-
gence with respect to F as

DF (q, p) = F (q)− F (p)− 〈∇F (p), q − p〉.
If F is non-differentiable, we can take a particular subgra-
dient vp ∈ ∂F (p) in place of ∇F (p). Note that the notion
of subgradients is well-defined even for infinite-dimensional
convex functions. Having chosen2 a mapping p 7→ vp ∈

1Here, we mean differentiable with respect to the Fréchet or
Gâteaux derivative. We refer the reader to [10] for precise defi-
nitions of functional Bregman Divergences.

2The assumption of compactness of F , together with the char-
acterization of the subgradient set in Section 4.2, allow us, for in-
stance, to define the mapping p 7→ vp by putting a uniform measure
on the subgradient set and defining vp to be the expected subgradi-
ent with respect to it. In fact, the choice of the mapping is not
important, as long as it does not depend on q.



∂F (p), we define a generalized divergence with respect to
F and vp as

DF (q, p) = F (q)− F (p)− 〈vp, q − p〉.
Throughout the paper, we focus only on the divergence

D−Φ, and thus we omit −Φ from the notation for simplicity.
Given the definition of divergence, it immediately fol-

lows that, for a random distribution q,
Φ(E q)− E Φ(q) = ED(q,E q)

since the linear term disappears under the expectation. This
simple observation is quite useful; notice we now have an
even simpler expression for i.i.d. regret (7):

1
T

R(pT ) = ED(P̂T , p).

In other words, the pT -regret is equal to the expected diver-
gence between the empirical distribution and its expectation.
This will be a starting point for obtaining lower bounds for
RT . For general joint distributions p, let us rewrite the ex-
pression in (6) as

E t∼UE Φ(pt
(
·|Zt−1

1

)
)− E Φ(P̂T ),

where we replaced the average with a uniform distribution on
the rounds. Roughly speaking, the next lemma says that one
can obtain E Φ(P̂T ) from E t∼UE Φ(pt

(
·|Zt−1

1

)
) through

three applications of Jensen’s inequality, due to various ex-
pectations being “pulled” inside or outside of Φ.

Lemma 8 Suppose p is an arbitrary joint distribution. De-
note by pt

(
·|Zt−1

1

)
and pmt the conditional and marginal

distributions, respectively. Then
1
T

R(p) = −∆0 −∆1 + ∆2, (8)

where

∆0 =
1
T

∑
t

D
(
pmt ,

1
T

∑
t′ p

m
t′

)
,

∆1 =
1
T

∑
E pD(pt

(
·|Zt−1

1

)
, pmt ),

∆2 = E pD
(
P̂T ,

1
T

∑
pmt

)
.

Proof: The marginal distribution satisfies E pt
(
·|Zt−1

1

)
=

pmt , and it is easy to see that E P̂T = 1
T

∑
t p
m
t . Given this,

we see that

1
T

R(p) = E p

[
1
T

T∑
t=1

Φ(pt
(
·|Zt−1

1

)
)− Φ(P̂T )

]

=

−∆1︷ ︸︸ ︷
E p

[
1
T

∑
t

{
Φ(pt

(
·|Zt−1

1

)
)− Φ(pmt )

}]

+

−∆0︷ ︸︸ ︷
1
T

∑
t

Φ(pmt )− Φ
(

1
T

∑
t p
m
t

)

−

−∆2︷ ︸︸ ︷
E p

[
Φ(P̂T )− Φ

(
1
T

∑
t p
m
t

)]
.

This lemma sheds some light on the influence of an i.i.d.
vs. product vs. arbitrary joint distribution on the regret. For
product distributions, every conditional distribution is iden-
tical to its marginal distributions, thus implying ∆1 = 0.
Furthermore, for any i.i.d. distribution, each marginal distri-
bution is identical to the average marginal, thus implying that
∆0 = 0. With this in mind, it is tempting to assert that the
largest regret is obtained at an i.i.d. distribution, since tran-
sitions from i.i.d to product, and from product to arbitrary
distribution, only subtract from the regret value. While ap-
pealing, this is unfortunately not the case: in many instances
the final term, ∆2, can be made larger with a non-i.i.d. (and
even non-product) distribution, even at the added cost of pos-
itive ∆0 and ∆1 terms, so that R i.i.d.

T = o(RT ) as a function
of T . In some cases, however, we show that a lower bound
on the regret can be obtained with an i.i.d. distribution at a
cost of only a constant factor.

4 Properties of Φ

In statistical learning, the rate of decay of prediction error is
known to depend on the curvature of the loss: more curva-
ture leads to faster rates (see, for example, [15, 16, 4]), and
slow (e.g. Ω(T−1/2)) rates occur when the loss is not strictly
convex, or when the minimizer of the expected loss is not
unique [15, 17]. There is a striking parallel with the behav-
ior of the regret in online convex optimization; again the cur-
vature of the loss plays a central role. Roughly speaking, if
` is strongly convex or exp-concave, second-order gradient-
descent methods ensure that the regret grows no faster than
log T (e.g. [11]); if ` is linear, the regret can grow no faster
than

√
T (e.g. [22]); intermediate rates can be achieved as

well if the curvature varies [3].
The previous section expresses regret as a sum of diver-

gences under Φ, and that suggests that the curvature of Φ
should be an important factor in determining the rates of re-
gret. We shall see that this is the case: curvature of Φ leads
to large regret, while flatness of Φ implies small regret.

We will now show how properties of the loss function
class determine the curvature of Φ. In later sections we will
show how such curvature properties lead directly to partic-
ular rates for RT . First, let us provide a fruitful geometric
picture, rooted in convex analysis. It allows us to see the
function Φ, roughly speaking, as a mirror image of the func-
tion class.

4.1 Geometric interpretation of Φ

In general, the set Z is uncountable, so care must be taken
with regard to various notions we are about to introduce. We
refer the reader to Chapter 10 of [5] for the discussion of fi-
nite vs infinite-dimensional spaces in convex analysis. Since
Z is compact by assumption, we can discretize it to a fine
enough level such that the upper and lower bounds of this
paper hold, as long as the results are non-asymptotic. In the
present Section, for simplicity of exposition, we will suppose
that the set Z is finite with cardinality d. This assumption is
required only for the geometric interpretation; our proofs are
correct as long as Z is compact.



Hence, distributions over the set Z are associated with d-
dimensional vectors. Furthermore, each f ∈ F is specified
by its d values on the points. We write `f ∈ Rd for the loss
vector of f , `(·, f). Let us denote the set of all such vectors
by `(F). We then have

−Φ(p) = − inf
f∈F

E p`(Z, f) = sup
f∈F
〈−`f , p〉 = σ−`(F)(p),

where σS(x) = sups∈S〈s, x〉 is the support function for the
set S. This function is one of the most basic objects of
convex analysis (see, for instance, [12]). It is well-known
that σS = σcoS ; in other words, the support function does
not change with respect to taking convex hull (see Proposi-
tion 2.2.1, page 137, [12]). To this end, let us denote S =
co[−`(F)] ⊂ Rd.

S

Rd

σS

Φ

1

Figure 1: Dual cone as the epigraph of the support function.
Φ is the restriction to the simplex.

It is known that the support function is sublinear and its
epigraph is a cone. To visualize the support function, con-
sider the Rd×R space. Embed the set S ⊂ Rd in Rd×{1}.
Then construct the conic hull of S×{1}. It turns out that the
cone which is dual to the constructed conic hull is the epi-
graph of the support function σS . The dual cone is the set of
vectors which form obtuse or right angles with all the vectors
in the original cone. Hence, one can visualize the surface σS
as being at right angles to the conic hull of S × {1}. Now,
the function Φ is just the restriction of σS to the simplex (see
Figure 1). We can now deduce properties of Φ from proper-
ties of the loss class.

4.2 Differentiability of Φ
Lemma 9 The subdifferential set of Φ is the set of expected
minimizers:

∂Φ(p) = {`f : f ∈ arg min
f∈F

E p`(Z, f)}.

Hence, the functional Φ is differentiable at a distribution p
iff arg minf∈F E p`(z, f) is unique.

Proof: The statement follows from Proposition 2.1.5 in [12].

In particular, for Φ to be differentiable for all distribu-
tions, the loss function class should not have a “face” ex-
posed to the origin. This geometrical picture and its implica-
tions will be studied further in Section 6.

It is easy to verify that strict convexity of `(z, f) in f
implies uniqueness of the minimizer for any p and, hence,
differentiability of Φ.

4.3 Flatness of Φ through curvature of `
In this section we show that curvature in the loss function
leads to flatness of Φ. We would indeed expect such a result
to hold since regret decaying faster than O(T−1/2) is known
to occur in the case of curved losses (e.g. [3]), and decompo-
sition (6) suggests that this should imply flatness of Φ. More
precisely, we show that if `(f, z) is strongly convex in f with
respect to some norm ‖·‖, then Φ is strongly flat with respect
to the `1 norm on the space of distributions. Before stating
the main result, we provide several definitions.

Definition 10 A convex function F is α-flat (or α-smooth)
with respect to a norm ‖ · ‖ when

F (y)− F (x) ≤ 〈∇F (x), y − x〉+ α‖x− y‖2 (9)
for all x, y. We will say that a concave function G is α-flat if
−G satisfies (9).

Let us also recall the definition of `1 (or variational) norm on
distributions.

Definition 11 For two distributions p, q on Z , we define

‖p− q‖1 =
∫
Z
|dp(z)− dq(z)|.

Theorem 12 Suppose `(z, f) is σ-strongly convex in f , that
is,

`

(
z,
f + g

2

)
≤ `(z, f) + `(z, g)

2
− σ

8
‖f − g‖2

for any z ∈ Z and f, g ∈ F . Suppose further that ` is
L− Lipschitz, that is,

|`(z, f)− `(z, g)| ≤ L‖f − g‖.

Under these conditions, the Φ-functional is 2L2

σ -flat with re-
spect to ‖ · ‖1.

The proof uses the following lemma, which shows stability
of the minimizers. Its proof is in the full version [1].

Lemma 13 Fix two distributions p, q. Let fp and fq be the
functions achieving the minimum in Φ(p) and Φ(q), respec-
tively. Under the conditions of Theorem 12,

‖fp − fq‖ ≤
2L
σ
‖p− q‖1.

Proof:[of Theorem 12] We have
Φ(p)− Φ(q) = E p`(z, fp)− E q`(z, fq)

= (E p`(z, fp)− E q`(z, fp))
+ (E q`(z, fp)− E q`(z, fq)) . (10)

Let us first study the second term in the expression above.
As fp is the minimizer of E p`(z, f), we have:

E p [`(z, fp)− `(z, fq)] ≤ 0
So

E q [`(z, fp)− `(z, fq)] ≤ E q [`(z, fp)− `(z, fq)]
− E p [`(z, fp)− `(z, fq)]

=
∫

(`(z, fp)− `(z, fq))(q(z)− p(z))dz

≤ L
∫
‖fp − fq‖|p(z)− q(z)|dz.



Using Lemma 13, we get:

E q [`(z, fp)− `(z, fq)] ≤
2L2

σ
‖p− q‖21. (11)

As for the first term in (10),

E p`(z, fp)− E q`(z, fp) =
∫
z

`(z, fp)(p(z)− q(z))dz

= 〈`(·, fp), (p− q)〉. (12)

The fact that `(·, fp) is a subdifferential of Φ at p is proved
in [1]. We conclude that the terms in (10) are the first and the
second order terms in the expansion of Φ.

We remark that we can arrive at above results by explic-
itly considering the dual function Φ∗, proving strong con-
vexity of Φ∗ with respect to ‖ · ‖∞ (which follows from our
assumption on `), and then concluding strong flatness of Φ
with respect to ‖ · ‖1. This is indeed the main intuition at the
heart of our proof.

5 Upper Bounds on RT

In this section, we exhibit two general upper bounds on RT

that hold for a wide class of OCO games. The first bound,
which holds when the functional Φ is differentiable and not
too curved, is of the form RT = O(log T ). The second,
which holds for arbitrary Φ, e.g. where the functional may
even have a non-differentiability, is stated in terms of the
Rademacher complexity of the class F . Such Rademacher
complexity results imply a regret upper bound on the order
of
√
T .

An intriguing observation is that these bounds are proved
without actually exhibiting a strategy for the Player, as is typ-
ically done. This illustrates the power of the minimax duality
approach: we can prove the existence of an optimal algo-
rithm, and determine its performance, all without providing
its construction.

5.1 Fast Rates: Exploiting the Curvature
For differentiable Φ with bounded second derivative, we can
prove that the regret grows no faster than logarithmically in
T . Of course, rates of log T have been given previously [11,
20, 21]. We build upon these results in the present work by
showing that logarithmic regret must always arise when Φ
satisfies a flatness condition.

Theorem 14 Suppose the Φ functional is differentiable and
α-flat with respect the norm ‖ · ‖1 on P . Then RT ≤
4α log T .

We immediately obtain the following corollary.

Corollary 15 Suppose functions `(z, f) are σ-strongly con-
vex and L− Lipschitz in f . Then RT ≤ 8L2

σ log T.

Furthermore, as we show in Section 7.3, the log T bound
is tight for quadratic functions; there is an explicit joint dis-
tribution for the adversary which attains this value.

The proof of Theorem 14 involves the following lemma.

Lemma 16 The p-regret can be upper-bounded as

RT (p) ≤ E

[
T∑
t=1

t · D
(
P̂t, P̄t

)]
where P̄t(·) =

(
t−1
t

)
P̂t−1(·) + 1

t pt
(
·|Zt−1

1

)
.

Proof: Consider the following difference:

δT : =
1
T

E Φ
(
pT (·|ZT−1

1 )
)
− E Φ

(
P̂T

)
=

1
T

E Φ
(
pT (·|ZT−1

1 )
)
− E Φ

(
P̄T
)

+ E Φ
(
P̄T
)
− E Φ

(
P̂T

)
For the first difference we use concavity of Φ. The second
difference can be written as a divergence because the linear
term vanishes in expectation. Indeed,

E
〈
∇Φ

(
P̄T
)
,

1
T

(1ZT
(·)− pT (·|ZT−1

1 ))
〉

= 0

because the gradient does not depend on ZT , while

E ZT

[
1ZT

(·)|ZT−1
1

]
= pT (·|ZT−1

1 ).
Hence, δT is no more than

−
(
T − 1
T

)
E Φ(P̂T−1) + ED

(
P̂T , P̄T

)
and so

RT (p) =
T∑
t=1

E Φ
(
pt(·|Zt−1

1 )
)
− TE Φ

(
P̂T

)
=
T−1∑
t=1

E Φ
(
pt(·|Zt−1

1 )
)

+ TδT

≤
T−1∑
t=1

E Φ
(
pt(·|Zt−1

1 )
)
− (T − 1)E Φ(P̂T−1)

+ TED
(
P̂T , P̄T

)
.

Before proceeding, note that we may interpret P̄t as the
conditional expectation of the uniform distribution P̂t given
Z1, . . . , Zt−1. The flatness of Φ will allow us to show that P̄t
deviates very slightly from P̂t in expectation—indeed, by no
more than O( 1

t2 ). This is crucial for obtaining fast rates: for
general Φ (which may be non-differentiable), it is natural to
expect D

(
P̂t, P̄t

)
= Ω(1/t). In this case, the regret would

be bounded by O(
∑
t t · 1/t) = O(T ), rendering the above

lemma useless.
Proof:(of Theorem 14) We have that the divergence terms
in Lemma 16 are bounded as

t · D
(
P̂t, P̄t

)
≤ tα

∥∥∥∥1
t
1Zt

(·)− 1
t
pt(·|Zt−1

1 )
∥∥∥∥2

1

≤ 4α
t

because the norm between distributions is bounded by 4:(∫
z

∣∣1Zt
(z)− pt(z|ZT−1

1 )
∣∣ dz)2

≤ 4.



5.2 General
√
T Upper Bounds

We start with the definition of Rademacher averages, one of
the central notions of complexity of a function class.

Definition 17 Denote by

R̂adT (`(F)) :=
1√
T

E εT1

(
sup
f∈F

∣∣∣∣∣
T∑
t=1

εt`(f, Zt)

∣∣∣∣∣
)

the data-dependent Rademacher averages of the class `(F).
Here, ε1 . . . εT are independent Rademacher random vari-
ables (uniform on {±1}).

We will omit the subscript T and dependence on ZT1 , for the
sake of simplicity. In statistical learning theory, Rademacher
averages often provide the tightest guarantees on the per-
formance of empirical risk minimization and other methods.
The next result shows that the Rademacher averages play a
key role in online convex optimization as well, as the mini-
max regret is upper bounded by the worst-case (over the sam-
ple) Rademacher averages. In the next section, we will also
show lower bounds in terms of Rademacher averages for cer-
tain linear games, showing that this notion of complexity is
fundamental for OCO.

Theorem 18 RT ≤ 2
√
T supZT

1 ∈ZT R̂adT (`(F)).

Proof: Let p be an arbitrary joint distribution. Let f̂ be an
empirical minimizer over ZT1 , a sequence-dependent func-
tion. Then

1
T

RT (p) = E
1
T

T∑
t=1

[
Φ(pt

(
·|Zt−1

1

)
)− Φ(P̂T )

]
≤ E

1
T

T∑
t=1

[
E pt(·|Zt−1

1 )`(Z, f̂)− 1
T

T∑
s=1

`(Zs, f̂)

]
,

as the particular choice of f̂ is (sub)optimal. Replacing the
f̂ by the supremum over F ,

1
T

RT (p) ≤ E
1
T

T∑
t=1

[
E pt(·|Zt−1

1 )`(Z, f̂)− `(Zt, f̂)
]

≤ E sup
f∈F

1
T

T∑
t=1

[
E pt(·|Zt−1

1 )`(Z, f)− `(Zt, f)
]

= E sup
f∈F

1
T

T∑
t=1

[
E pt(·|Zt−1

1 )`(Z
′
t, f)− `(Zt, f)

]
≤ E sup

f∈F

1
T

T∑
t=1

[`(Z ′t, f)− `(Zt, f)] ,

where we renamed each dummy variable Z as Z ′t. Even
though Zt and Z ′t have the same conditional expectation, we
cannot generally exchange them keeping the distribution of
the whole quantity intact. Indeed, the conditional distribu-
tions for τ > t will depend on Zt and not on Z ′t. The trick is
to exchange them one by one3, starting from t = T and go-
ing backwards, introducing an additional supremum. (One

3We thank Ambuj Tewari for pointing out a mistake in our orig-
inal proof. We refer to [19] for a similar analysis.

can view the sequence {Z ′t} as being tangent to {Zt} (see
[8]).) To this end, for any fixed εT ∈ {−1,+1},

E sup
f∈F

1
T

T∑
t=1

[`(Z ′t, f)− `(Zt, f)]

= E sup
f∈F

(
1
T

T−1∑
t=1

[`(Z ′t, f)− `(Zt, f)]

+
1
T
εT (`(Z ′T , f)− `(ZT , f))

)
because for the last step, indeed, ZT and Z ′T can be ex-
changed. Since this holds for any εT , we can take it to be
a Rademacher random variable. Thus,

E sup
f∈F

(
1
T

T−1∑
t=1

[`(Z ′t, f)− `(Zt, f)]

+
1
T
εT (`(Z ′T , f)− `(ZT , f))

)
= E εT E sup

f∈F

(
1
T

T−1∑
t=1

[`(Z ′t, f)− `(Zt, f)]

+
1
T
εT (`(Z ′T , f)− `(ZT , f))

)
≤ sup
ZT ,Z′T

E ZT−1
1

E εT sup
f∈F

(
1
T

T−1∑
t=1

[`(Z ′t, f)− `(Zt, f)]

+
1
T
εT (`(Z ′T , f)− `(ZT , f))

)
.

Repeating the process, we have that 1
T RT (p) is bounded by

sup
ZT

1 ,Z
′T
1

E εT1
sup
f∈F

(
1
T

T∑
t=1

εt (`(Z ′t, f)− `(Zt, f))

)

≤ 2 sup
ZT

1

E εT1
sup
f∈F

1
T

∣∣∣∣∣
T∑
t=1

εt`(Zt, f)

∣∣∣∣∣ = 2
1√
T

sup
ZT

1

R̂ad(`(F )).

Properties of Rademacher averages are well-known. For
instance, the Rademacher averages of a function class coin-
cide with those of its convex hull. Furthermore, if ` is Lip-
schitz, the complexity of `(F) can be upper bounded by the
complexity of F , multiplied by the Lipschitz constant. For
example, we can immediately conclude that if the loss func-
tion is Lipschitz and the function class is a convex hull of a
finite numberM of functions, the minimax value of the game
is bounded by RT ≤ C

√
T logM for some constant C.

Similarly, a class with VC-dimension d would have logM
replaced by d. Theorem 18 is, therefore, giving us the flex-
ibility to upper bound the minimax value of OCO for very
general classes of functions.

Finally, we remark that most known upper bounds on
Rademacher averages do not depend on the underlying dis-
tribution, as they hold for the worst-case empirical measure
(see [16], p. 27). Thus, the supremum over the sequences
might not be a hinderance to using known bounds for R̂ad(`(F)).



5.3 Linear Losses: Primal-Dual Ball Game
Let us examine the linear loss more closely. Of particular
interest are linear games when F = B‖·‖∗ is a ball in some
norm ‖ · ‖∗ and Z = B‖·‖, the two norms being dual. For
this case, Theorem 18 gives an upper bound of

1
T

RT ≤ 2 sup
ZT

1

E εT1
sup
f∈F

fT

(
1
T

T∑
t=1

εtZt

)

= 2 sup
ZT

1

E εT1

∥∥∥∥∥ 1
T

T∑
t=1

εtZt

∥∥∥∥∥ . (13)

Fix Z1 . . . ZT−1 and observe that the expected norm is a
convex function of ZT . Hence, the supremum over ZT is
achieved at the boundary ofZ . The same statement holds for
all Zt’s. Let z∗1 , . . . , z

∗
T be the sequence achieving the supre-

mum. Now take a distribution for round t to be p∗t (z) =
1
2

(
1z∗t (·) + 1−z∗t (·)

)
and let p∗ = p∗1 × . . . × p∗T be the

product distribution. It is easy to see that

1
T

RT ≤ 2 sup
ZT

1

E εT1

∥∥∥∥∥ 1
T

T∑
t=1

εtZt

∥∥∥∥∥ = 2E εT1

∥∥∥∥∥ 1
T

T∑
t=1

εtz
∗
t

∥∥∥∥∥
= 2E p∗E εT1

∥∥∥∥∥ 1
T

T∑
t=1

εtZt

∥∥∥∥∥ =
2√
T

E p∗R̂ad(F).

(14)

Also note that p∗t has zero mean. It will be shown in Sec-
tion 7.1 that the lower bound arising from this distribution
is

E p∗E εT1

∥∥∥∥∥ 1
T

T∑
t=1

εtZt

∥∥∥∥∥ =
1√
T

E p∗R̂ad(F),

which is only a factor of 2 away. Thus, the adversary can
play a product distribution that arises from the maximization
in (13) and achieve regret at most a factor 2 from the opti-
mum.

6 Ω(
√

T ) bounds for non-differentiable Φ

In this section, we develop lower bounds on the minimax
value RT based on the geometric view-point described in
Section 4.1.

Theorem 14 shows that the regret is upper bounded by
log T for the case of strongly convex losses, and this up-
per bound is tight if the loss functions are quadratic, as we
show later in the paper. Thus, flatness of Φ implies low re-
gret. What about the converse? It turns out that if Φ is non-
differentiable (has a point of infinite curvature), the regret is
lower-bounded by

√
T , and this rate is achieved with p =

pT , where p corresponds to a point of non-differentiability
of Φ.

The geometric viewpoint is fruitful here: vertices (points
of non-differentiability) of Φ correspond to exposed faces
in the loss class S = co[−`(F)], suggesting that the lower
bounds of Ω(

√
T ) arise from having two distinct minimizers

of expected error—a striking parallel to the analogous results
for stochastic settings [15, 17].

To be more precise, vertices of σS (and Φ) translate into
flat parts (non-singleton exposed faces) of S(co[−`(F)]) and

the other way around. Corresponding to an exposed face is
a supporting hyperplane. If `(F) is non-negative, then any
exposed face facing the origin is supported by a hyperplane
with positive co-ordinates (which can be normalized to get a
distribution). So a non-singleton face exposed to the origin
is equivalent to having at least two distinct minimizers f and
g of E p`(Z, ·) for some p, as discussed in Section 4.2.

Define the set of expected minimizers under p as

F∗ := {f ∈ F : E p`(Z, f) = inf
f∈F

E p`(Z, f)}.

Thus, −`(F∗) ⊆ FS(p) ⊆ co[−`(F)]. The lower bound we
are about to state arises from fluctuations of the empirical
process over the set F∗. To ease the presentation, we will
refer to the sample average 1

T

∑T
t=1 `(Zt, f) as Ê `(Z, f).

Theorem 19 Suppose FS(p) is a non-singleton face of
co[−`(F)], supported by p (i.e. |F∗| > 1). Fix any f∗ ∈ F∗
and let Q ⊆ `(F∗) be any subset containing `(·, f∗). Define
Q̄ = {g − `(·, f∗) : g ∈ Q}, the shifted loss class. Then for
T > T0(F),

1
T

RT ≥
1
T

RT (pT )

= E sup
f∈F∗

[
E p`(Z, f)− Ê `(Z, f)

]
≥ c√

T
sup

Q⊆`(F∗)
E sup
q∈Q̄

Gq,

where Gq is the Gaussian process indexed by the (centered)
functions in Q̄, and c is some absolute constant.

Proof: Recalling that E `(Z, f) = infg∈F E `(Z, g) = Φ(p)
for all f ∈ F∗, we have

1
T

RT ≥
1
T

RT (pT ) = Φ(p)− E pΦ(P̂T )

= Φ(p)− E inf
f∈F

1
T

T∑
t=1

`(Zt, f)

≥ Φ(p)− E inf
f∈F∗

Ê `(Z, f)

= E sup
f∈F∗

[
E p`(Z, f)− Ê `(Z, f)

]
≥ sup
Q⊆`(F∗)

E sup
f :`f∈Q

[
E p`(Z, f)− Ê `(Z, f)

]
Now, fix any f∗ ∈ F∗. The proof of Theorem 2.2 in

[14] reveals that empirical fluctuations are lower bounded by
the supremum of the Gaussian process indexed by Q̄. To be
precise, there exists T0(F) such that for T > T0(F) with
probability greater than c1,

inf
f :`f∈Q

Ê (`(Z, f)− `(Z, f∗)) ≤ −c2
E supq∈Q̄Gq√

T
,

for some absolute constants c1, c2. Rearranging and using
the fact that E `(Z, f)− E `(Z, f∗) = 0 for f ∈ F∗,

sup
f :`f∈Q

[
E `(Z, f)− Ê `(Z, f) + Ê `(Z, f∗)− E `(Z, f∗)

]
≥ c2

E supq∈Q̄Gq√
T



with probability at least c1. The supremum is non-negative
because f∗ ∈ Q and therefore

E sup
f :`f∈Q

[
E `(Z, f)− Ê `(Z, f)

]
≥ c1c2

E supq∈Q̄Gq√
T

.

We remark that in the experts case, the lower bound on
regret becomes

√
T logN , as the Gaussian process reduces

to N independent Gaussian random variables. We discuss
this and other examples in the next section.

7 Lower Bounds for Special Cases

We now provide lower bounds for particular games. Some
of the results of the section are known: we show how the
proofs follow from the general lower bounds developed in
the previous section.

7.1 Linear Loss: Primal-Dual Ball Game
Here, we develop lower bounds for the case considered in
Section 5.3. As before, to prove a lower bound it is enough to
take an i.i.d. or product distribution. In particular, the prod-
uct distribution described after Eq. (13) is of particular inter-
est. To this end, choose p = p1 × . . . × pT to be a product
of symmetric distributions on the surface of the primal ball
Z with E pt

Z = 0. We conclude that Φ(pt) = 0 and 1
T RT

is greater than

−E Φ(P̂T ) = −E inf
f∈F

f ·

(
1
T

T∑
t=1

Zt

)
= E

∥∥∥∥∥− 1
T

T∑
t=1

Zt

∥∥∥∥∥
by the definition of dual norm. Now, because of symmetry,

E

∥∥∥∥∥− 1
T

T∑
t=1

Zt

∥∥∥∥∥ =
1
T

E E ε

∥∥∥∥∥
T∑
t=1

εtZt

∥∥∥∥∥ . (15)

We conclude that RT ≥
√
TE R̂ad(F), the expected

Rademacher averages of the dual ball acting on the primal
ball. This is within a factor of 2 of the upper bound (14) of
Section 5.3.

Now, consider the particular case of F = Z = B2, the
Euclidean ball. We will consider three distributions p.

• Suppose p is such that pt
(
·|Zt−1

1

)
puts mass on the

intersection of B2 and the subspace perpendicular to∑t−1
s=1 Zs and E [Z|Zt−1

1 ] = 0. Then E
∥∥∥∑T

t=1 Zt

∥∥∥ =
√
T by unraveling the sum from the end. In fact, this is

shown to be the optimal value for this problem in [2].
We conclude that a non-product distribution achieves
the optimal regret for this problem.

• Consider any symmetric i.i.d. distribution on the surface
of the ball Z . Note that for this case we still have the
lower bound of Eq. (15). Kinchine-Kahane inequality

then implies RT ≥
√

T
2 and the constant

√
2 is optimal

(see [13]) in the absence of further assumptions.

• Consider another example of an i.i.d. distribution that
puts equal mass on two points ±z0 on each round, with
‖z0‖ = 1. It then follows that this i.i.d. distribution
achieves the regret equal to the length of the random
walk E

∣∣∣∑T
t=1 εt

∣∣∣, which is known to be asymptotically√
2T/π.

We conclude that for the Euclidean game, the best strategy of
the adversary is a sequence of dependent distributions, while
product and i.i.d. distributions come within a multiplicative
constant close to 1 from it.

7.2 Experts Setting
The experts setting provides some of the easiest examples
for linear games. We start with a simplified game, where
F = Z = ∆N , the N -simplex. The Φ function for this
case is easy to visualize. We then present the usual game,
where the set Z = [0, 1]N . In both cases, we are interested
in lower-bounding regret.

7.2.1 The simplified game
Let us look at the game when only one expert can suffer a
loss of 1 per round, i.e. the space of actions Z contains N
elements e1, . . . , eN . The probability over these choices of
the adversary is an N -dimensional simplex, just as the space
of functions F . For any p ∈ ∆N ,

Φ(p) = min
f∈∆N

E pZ · f = min
f
p · f = min

i∈[N ]
pi

and therefore the Φ has the shape of a pyramid with its max-
imum at p∗ = 1

N 1 and Φ(p∗) = 1/N . The regret is lower-
bounded by an i.i.d game with this distribution p∗ at each
round, i.e.

RT ≥ Φ(p∗)− E Φ(U) =
1
N
− E min

f∈∆N

(
1
T

∑
Zt

)
f

= E max
i∈[N ]

[
1
N
− ni
T

]
,

where ni is the number of times ei has been chosen out of
T rounds. This is the expected maximum deviation from
the mean of a multinomial distribution, i.e. 1/N minus the
smallest proportion of balls in any bin after T balls have been
distributed uniformly at random.

To obtain the lower bound on the maximum deviation, let
us turn to Section 6. The convex hull of the (negative) loss
class co[−`(F)] is the simplex itself. This is also the face
supported by the uniform distribution p∗. The lower bound
of Theorem 19 involves the Gaussian process indexed by a
setQ. Let us take f∗ = 1

N 1 and F∗ = {e1, . . . , eN}∪{f∗}.
We can verify that E eT

iZ = Φ(p∗) = 1
N , the covariance of

the process indexed by Q = `(F∗) is E (eT
iZ − 1

N )(eT
jZ −

1
N ) = − 1

N2 for i 6= j and the variance is E (eT
iZ − 1

N )2 =
N−1
N2 . Let {Yi}N1 be the Gaussian random variables with the

aforementioned covariance structure. Then ‖Yi − Yj‖2 =
E (Yi − Yj)2 = 2

N . We can now construct independent
Gaussian random variables {Xi}N1 with the same distance
by putting 2

N on the diagonal of the covariance matrix. By



Slepian’s Lemma, 1
2E supiXi ≤ E supi Yi, thus giving us

the lower bound

RT ≥ c
√
T logN
N

for this problem, for some absolute constant c and T large
enough.

7.2.2 The general case
In the more general game, any expert can suffer a 0/1 loss.
Thus, p is a distribution on 2N losses Z. To lower bound the
regret, choose a uniform distribution on 2N binary vectors
as the i.i.d. choice for the adversary. We have Φ

(
1

2N 1
)

=
minf∈∆N

f · EZ = 1/2. As for the other term, E Φ(P̂T ) =
E minf∈∆N

f ·
(

1
T

∑
Zt
)
. Thus, the regret is

1
T

RT ≥ E max
i∈[N ]

[
1
2
−
∑T
t=1 εi,t
T

]
,

where εi,t are Rademacher {±1}-valued random variables.
It is easy to show that the expected maximum is lower boun-
ded by c

√
logN/T . This coincides with a result in [7],

which shows that the asymptotic behavior is
√

logN/(2T ).

7.3 Quadratic Loss
We consider the quadratic loss, `(z, f) = ‖f − z‖2. This
loss function is 1-strongly convex, and therefore we already
have the O(log T ) bound of Corollary 15. In this section,
we present an almost matching lower bound using a partic-
ular adversarial strategy. The problem of quadratic loss was
previously addressed in [20]; we reprove their lower bound
in our framework, borrowing a number of tricks from that
work.

Following Section 6, it is tempting to use an i.i.d. dis-
tribution and compute the regret explicitly. Unfortunately,
this only leads to a constant lower bound, whereas we would
hope to match the upper bound of log T . We can show this
easily: let p := pT be some i.i.d. distribution, then

TE Φ(P̂T ) = (T − 1)E ‖Z1‖2 −
T (T − 1)

T
E 〈Z1, Z2〉

= (T − 1)
(
E ‖Z‖2 − (EZ)2

)
= (T − 1)var(Z)

= (T − 1)Φ(p).

Thus R(pT ) = TΦ(p)− TE Φ(P̂T ) = Φ(p), where we see
that the last term is independent of T .

Indeed, obtaining log T regret requires that we look fur-
ther than i.i.d. To this end, define cT := 1

T and ct−1 :=
ct+c2t for t = T, T −1, . . . , 2. We construct our distribution
p using this sequence as follows. Assume Z = F = [−1, 1]
and for convenience let Z1:s :=

∑s
t=1 Zt. Also, for this

section, we use a shorthand for the conditional expectation,
E t[·] := E [·|Z1, . . . , Zt−1]. Each conditional distribution is
chosen as

pt(Zt = z|Z1, . . . , Zt−1) :=

{
1+ctZ1:t−1

2 , for z = 1
1−ctZ1:t−1

2 , for z = −1
.

Notice that this choice ensures that E tZt = ctZ1:t−1, i.e. the
conditional expectation is identical to the observed sample

mean scaled by some shrinkage factor ct. That 1+ctZ1:t−1
2 ∈

[0, 1] follows from the statement ct ≤ 1
t which is proven by

an easy induction. We now recall a result shown in [20]:
T∑
t=1

ct = log T − log log T + o(1).

This crucial lemma leads directly to the main result of this
section.

Theorem 20 With p defined above, RT (p) =
∑T
t=1 ct and

therefore

RT (p) = log T − log log T + o(1).

The proof follows closely along the lines of [20] and can
be found in the full version [1].
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[12] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis.
Springer, 2001.

[13] R. Latala and K. Oleszkiewicz. On the best constant in the Khinchin-Kahane
inequality. Studia Math., 109(1):101–104, 1994.
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