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Abstract

We generalise the classical Pinsker inequality
which relates variational divergence to Kullback-
Liebler divergence in two ways: we consider
arbitrary f -divergences in place of KL diver-
gence, and we assume knowledge of a sequence
of values of generalised variational divergences.
We then develop a best possible inequality for
this doubly generalised situation. Specialising
our result to the classical case provides a new
and tight explicit bound relating KL to varia-
tional divergence (solving a problem posed by
Vajda some 40 years ago). The solution re-
lies on exploiting a connection between diver-
gences and the Bayes risk of a learning problem
via an integral representation.

1 Introduction

Divergences such as the Kullback-Liebler and variational
divergence arise pervasively. They are a means of defin-
ing a notion of distance between two probability distri-
butions. The question often arises: given knowledge
of one, what can be said of the other? For all dis-
tributions P and Q on an arbitrary set, the classical
Pinsker inequality relates the Kullback-Liebler diver-
gence KL(P,Q) and variational divergence V (P,Q) by
KL(P,Q) ≥ 1

2 [V (P,Q)]2. This simple classical bound is
known not to be tight. Over the past several decades a
number of refinements have been given (see Appendix A
for a summary of past work).

Vajda [31] posed the question of determining a tight
lower bound on KL-divergence in terms of variational di-
vergence. This “best possible Pinsker inequality” takes
the form

L(V ) := inf
V (P,Q)=V

KL(P,Q), V ∈ [0, 2). (1)

Recently Fedotov et al. [7] presented an implicit para-
metric solution of the form of the graph of the bound
as (V (t), L(t))t∈R+ where

V (t) = t
(
1−

(
coth(t)− 1

t

)2
)

, (2)

L(t) = log
(

t

sinh(t)

)
+ t coth(t)− t2

sinh2(t)
.

One can generalise the notion of a Pinsker inequal-
ity in at least two ways: 1) replace KL divergence by
a general f -divergence; and 2) bound the f -divergence
in terms of the known values of a sequence of gener-
alised variational divergences (defined later in this pa-
per) (Vπi)n

i=1, πi ∈ (0, 1). In this paper we study this
doubly generalised problem and provide a complete so-
lution in terms of explicit, best possible bounds.

The main result is given below as Theorem 6. Ap-
plying it to specific f -divergences gives the following
corollary1.
Corollary 1 Let V = V (P,Q) denote the variational
divergence between the distributions P and Q and sim-
ilarly for the other divergences in Table 1 below. Then
the following bounds for the divergences hold and are
tight:

h2 ≥ 2−
√

4− V 2; J ≥ 2V ln
(

2+V
2−V

)
; Ψ ≥ 8V 2

4−V 2

I ≥
(

1
2
− V

4

)
ln(2−V )+

(
1
2

+
V

4

)
ln(2+V )−ln(2)

T ≥ ln
(

4√
4−V 2

)
− ln(2)

χ2 ≥ !V < 1"V 2 + !V ≥ 1" V
(2−V ) (3)

KL ≥ min
β∈[V−2,2−V ]

(
V +2−β

4

)
ln

(
β−2−V
β−2+V

)
+

(
β+2−V

4

)
ln

(
β+2−V
β+2+V

)
. (4)

The proof of the main result depends in an essen-
tial way on a learning theory perspective. We make use
of an integral representation of f -divergences in terms
of DeGroot’s statistical information—the difference be-
tween a prior and posterior Bayes risk[4]. By using the
relationships between the generalised variational diver-
gence and the 0-1 misclassification loss we are able to
use an elementary but somewhat intricate geometrical
argument to obtain the result.

The rest of the paper is organised as follows. Sec-
tion 2 collects background results upon which we rely.
The main result of the paper is stated in Section 3 and
its proof presented in in Section 4. Appendix A sum-
marises previous work.

1The terms !V < 1" and !V ≥ 1" are indicator functions
and are defined below.



2 Background Results and Notation

In this section we collect notation and background con-
cepts and results we need for the main result.

2.1 Notational Conventions
The substantive objects are defined within the body of
the paper. Here we collect elementary notation and the
conventions we adopt throughout. We write x ∧ y :=
min(x, y), x ∨ y := max(x, y) and !p" = 1 if p is true
and !p" = 0 otherwise. The generalised function δ(·) is
defined by

∫ b
a δ(x)f(x)dx = f(0) when f is continuous

at 0 and a < 0 < b. For convenience, we will define
δc(x) := δ(x − c). The real numbers are denoted R,
the non-negative reals R+; Sets are in calligraphic font:
X. Vectors are written in bold font: a,α,x ∈ Rm. We
will often have cause to take expectations (E) over ran-
dom variables. We write such quantities in blackboard
bold: I, L, etc. The lower bound on quantities with
an intrinsic lower bound (e.g. the Bayes optimal loss)
are written with an underbar: L, L. Quantities related
by double integration recur in this paper and we notate
the starting point in lower case, the first integral with
upper case, and the second integral in upper case with
an overbar: γ, Γ, Γ̄.

2.2 Csiszár f-divergences
The class of f-divergences [1, 3] provide a rich set of
relations that can be used to measure the separation of
the distributions. An f -divergence is a function that
measures the “distance” between a pair of distributions
P and Q defined over a space X of observations. Tra-
ditionally, the f -divergence of P from Q is defined for
any convex f : (0,∞) → R such that f(1) = 0. In this
case, the f -divergence is

If (P,Q) = EQ

[
f

(
dP

dQ

)]
=

∫

X
f

(
dP

dQ

)
dQ (5)

when P is absolutely continuous with respect to Q and
equal ∞ otherwise.2

All f -divergences are non-negative and zero when
P = Q, that is, If (P,Q) ≥ 0 and If (P, P ) = 0 for all
distributions P,Q. In general, however, they are not
metrics, since they are not necessarily symmetric (i.e.,
for all distributions P and Q, If (P,Q) = If (Q, P )) and
do not necessarily satisfy the triangle inequality.

Several well-known divergences correspond to spe-
cific choices of the function f [1, §5]. One divergence
central to this paper is the variational divergence V (P,Q)
which is obtained by setting f(t) = |t−1| in Equation 5.
It is the only f -divergence that is a true metric on the
space of distributions over X [13] and gets its name from
its equivalent definition in the variational form

V (P,Q) = 2‖P −Q‖∞ := 2 sup
A⊆X

|P (A)−Q(A)|. (6)

(Some authors define V without the 2 above.) Further-
more, the variational divergence is one of a family of

2Liese and Miescke [18, pg. 34] give a definition that does
not require absolute continuity.

“primitive” or “simple” f -divergences discussed in Sec-
tion 2.3. These are primitive in the sense that all other
f -divergences can be expressed as a weighted sum of
members from this family.

Another well known f -divergence is the Kullback-
Leibler (KL) divergence KL(P,Q), obtained by setting
f(t) = t ln(t) in Equation 5. Others are given in Table 1.

As already mentioned in the introduction, the KL
and variational divergences satisfy the classical Pinsker’s
inequality which states that for all distributions P and
Q over some common space X

KL(P,Q) ≥ 1
2 [V (P,Q)]2. (7)

2.3 Integral Representations of f-divergences
The main tool in our proof of Theorem 6 is the in-
tegral representation of f -divergences, first articulated
by Österreicher and Vajda [20] and Gutenbrunner [12].
They show that an f -divergence can be represented as
a weighted integral of the “simple” divergence measures

Vπ(P,Q) = Ifπ (P,Q), (8)

where fπ(t) := min{π, 1 − π} −min{1 − π, πt} for π ∈
[0, 1].

Theorem 2 For any convex f such that f(1) = 0, the
f-divergence If can be expressed, for all distributions P
and Q, as

If (P,Q) =
∫ 1

0
Vπ(P,Q) γf (π) dπ (9)

where the (generalised) function

γf (π) :=
1
π3

f ′′
(

1− π

π

)
. (10)

Recently, this theorem has been shown to be a direct
consequence of a generalised Taylor’s expansion for con-
vex functions [17, 22].

Even when f is not twice differentiable, the con-
vexity of f implies its continuity and so its right-hand
derivative f ′+ exists. In this case, γ is interpreted distri-
butionally in terms of df ′+. For example, when f(t) =
|t− 1| then f ′′(t) = 2δ(t− 1) and so γf (π) = 2 1

π3 δ(1−
2π) = 16δ 1

2
(π).

The divergences Vπ for π ∈ [0, 1] can be seen as a
family of generalised variational divergences since, df ′+(t)
for any member of this family is πδ(t − 1−π

π ) and so
γfπ = 1

π2 δ 1−π
π

. Thus, for π = 1
2 we have γf 1

2
= 4δ 1

2
,

that is, four times the γ function for variational diver-
gence and so by (9) we see that

V (P,Q) = 4V 1
2
(P,Q). (11)

Theorem 2 shows that knowledge of the values of
Vπ(P,Q) for all π ∈ [0, 1] is sufficient to compute the
value of If (P,Q) for any f -divergence, since the weight
function γ is dependent only on f , not P and Q. All of
the generalised Pinsker bounds we derive are found by
asking how knowledge of a the value of a finite number
of Vπ(P,Q) constrains the overall value of If (P,Q).



Symbol Divergence Name f(t) γ(π)

V (P,Q) Variational |t− 1| 16δ
(
π − 1

2

)

KL(P,Q) Kullback-Liebler t ln t 1
π2(1−π)

∆(P,Q) Triangular Discrimination (t− 1)2/(t + 1) 8
I(P,Q) Jensen-Shannon t

2 ln t− (t+1)
2 ln(t + 1) + ln 2 1

2π(1−π)

T(P,Q) Arithmetic-Geometric Mean
(

t+1
2

)
ln

(
t+1
2
√

t

)
(2π− 1

2 )2+ 1
2

4π2(π−1)2

J(P,Q) Jeffreys (t− 1) ln(t) 1
π2(1−π)2

h2(P,Q) Hellinger (
√

t− 1)2 1
2[π(1−π)]3/2

χ2(P,Q) Pearson χ-squared (t− 1)2 2
π3

Ψ(P,Q) Symmetric χ-squared (t−1)2(t+1)
t

2
π3 + 2

(1−π)3

Table 1: Divergences and their corresponding functions f and weights γ; confer [25, 17]. Topsøe [27] calls C(P,Q) =
2I(P,Q) and C̃(P,Q) = 2T(P,Q) the Capacitory and Dual Capacitory discrimination respectively. Several of the
above divergences are “symmetrised” versions of others. For example, T (P,Q) = 1

2 [KL(P+Q
2 , P ) + KL(P+Q

2 , Q)],
I(P,Q) = 1

2 [KL(P, P+Q
2 ) + KL(Q, P+Q

2 )], J(P,Q) = KL(P,Q) + KL(Q, P ), and Ψ(P,Q) = χ2(P,Q) + χ2(Q, P ).

Table 1 summarises the weight functions γ for a
number of f -divergences that appear in the literature.
These are used in the proof of specific bounds in Corol-
lary 1.

Before we can prove the main result, we need to
establish some properties of the general variational di-
vergences. In particular, we will make use of their rela-
tionship to Bayes risks for 0-1 loss.

2.4 Divergence and Risk
Let L(π, P, Q) denote the 0-1 Bayes risk for a classifi-
cation problem in which observations are drawn from X
using the mixture distribution M = πP +(1−π)Q, and
each observation x ∈ X is assigned a positive label with
probability η(x) := π dP

dM (x). If r = r(x) ∈ {0, 1} is a
label prediction for a particular x ∈ X, the 0-1 expected
loss for that observation is

L(r, π, p, q) = (1− π)q!r = 1" + πp!r = 0".

where q = dQ
dM (x) and p = dP

dM (x) are densities. Thus,
the full expected 0-1 loss of a predictor r : X → {0, 1} is
given by L(r, π, P, Q) := EM [L(r(x), π, p(x), q(x))] and
it is well known (e.g., [5]) that its Bayes risk is obtained
by the Bayes optimal predictor r∗(x) := !η(x) ≥ 1

2".
That is,

L(π, P, Q) := inf
r

L(r, π, P, Q) = L(r∗, π, P, Q), (12)

where the infimum is taken over all (M -measurable) pre-
dictors r : X → {0, 1}. So, by the definition of η(x) and
noting that η ≥ 1

2 iff πp ≥ 1
2 (πp+(1−π)q) which holds

iff πp ≥ (1 − π)q we see that the 0-1 Bayes risk can be
expressed as

L(π, P, Q) (13)
= EM [(1− π)q!η ≥ 1

2" + πp!η < 1
2"]

= (1− π)EQ[!πp ≥ (1− π)q"] + πEP [!πp < (1− π)q"].

We now observe that

qfπ

(
p

q

)
= ((1− π)∧ π)q−

{
(1− π)q, q(1− π) ≤ πp
πp, q(1− π) > πp

and so by noting that EQ

[
fπ

(
dP
dQ

)]
= EM

[
qfπ

(
p
q

)]

we have established the following lemma.

Lemma 3 For all π ∈ [0, 1] and all distributions P and
Q, the generalised variational divergence satisfies

Vπ(P,Q) = (1− π) ∧ π − L(π, P, Q). (14)

Thus, the value of Vπ(P,Q) can be understood via the
0-1 Bayes risk for a classification problem with label-
conditional distributions P and Q and prior probability
π for the positive class. This relationship between f -
divergence and Bayes risk is not new. It was established
in a more general setting by Österreicher and Vajda
[20] (who note that the term in (14) is the statistical
information for 0-1 loss) and later by Nguyen et al. [19].

2.5 Concavity of 0-1 Bayes Risk Curves
For a given pair of distributions P and Q the set of val-
ues for L(π, P, Q) as π varies over [0, 1] can be visualised
as a curve as in Figure 2.

Lemma 4 For all distributions P and Q, the function
π +→ L(π, P, Q) is concave.

Proof: By (12) we have that
L(π, P, Q) = EM [L(r∗, π, p, q)].

Observe that
L(r∗, π, p, q) = (1− π)q!η ≥ 1

2" + πp!η < 1
2"

=
{

(1− π)q, q(1− π) ≤ πp
πp, q(1− π) > πp

= min{(1− π)q, πp}



and so for any p, q is the minimum of two linear func-
tions and thus concave in π. The full Bayes risk is the
expectation of these functions and thus simply a linear
combination of concave functions and thus concave.

The tightness of the bounds in the main result of the
next section depend on the following corollary of a result
due to Torgersen [28]. It asserts that any appropriate
concave function can be viewed as the 0-1 risk curve for
some pair of distributions P and Q. A proof can be
found in [22, §6.3].

Corollary 5 Suppose X has a connected component.
Let ψ : [0, 1] → [0, 1] be an arbitrary concave function
such that for all π ∈ [0, 1], 0 ≤ ψ(π) ≤ π ∧ (1 − π).
Then there exists P and Q such that L(π, P, Q) = ψ(π)
for all π ∈ [0, 1].

3 Main Result

We will now show how viewing f -divergences in terms
of their weighted integral representation simplifies the
problem of understanding the relationship between dif-
ferent divergences and leads, amongst other things, to
an explicit formula for (1).

Fix a positive integer n. Consider a sequence 0 <
π1 < π2 < · · · < πn < 1. Suppose we “sampled” the
value of Vπ(P,Q) at these discrete values of π. Since
π +→ Vπ(P,Q) is concave, the piece-wise linear concave
function passing through points

{(πi, Vπi(P,Q))}n
i=1

is guaranteed to be an upper bound on the variational
curve (π, Vπ(P,Q))π∈(0,1). This therefore gives a lower
bound on the f -divergence given by a weight function γ.
This observation forms the basis of the theorem stated
below.

Theorem 6 For a positive integer n consider a sequence
0 < π1 < π2 < · · · < πn < 1. Let π0 := 0 and πn+1 := 1
and for i = 0, . . . , n + 1 let

ψi := (1− πi) ∧ πi − Vπi(P,Q)

(observe that consequently ψ0 = ψn+1 = 0). Let

An :=
{
a = (a1, . . . , an) ∈ Rn : (15)

ψi+1 − ψi

πi+1 − πi
≤ ai ≤

ψi − ψi−1

πi − πi−1
, i = 1, . . . , n

}
.

The set An defines the allowable slopes of a piecewise
linear function majorizing π +→ Vπ(P,Q) at each of
π1, . . . ,πn. For a = (a1, . . . , an) ∈ An, let

π̃i :=
ψi−ψi+1+ai+1πi+1−aiπi

ai+1 − ai
, i = 0, . . . , n, (16)

j :={k ∈ {1, . . . , n} : π̃k < 1
2 ≤ π̃k+1}. (17)

π̄i := !i < j"π̃i + !i = j" 1
2 + !j < i"π̃i−1, (18)

αa,i := !i ≤ j"(1− ai) + !i > j"(−1− ai−1), (19)
βa,i := !i≤j"(ψi−aiπi)+!i>j"(ψi−1−ai−1πi−1) (20)

for i = 0, . . . , n+1 and let γf be the weight corresponding
to f given by (10).

For arbitrary If and for all distributions P and Q
the following bound holds. If in addition X contains a
connected component, it is tight.

If (P,Q) (21)

≥ min
a∈An

n∑

i=0

∫ π̄i+1

π̄i

(αa,iπ + βa,i)γf (π)dπ (22)

= min
a∈An

n∑

i=0

[
(αa,iπ̄i+1 + βa,i) Γf (π̄i+1)− αa,iΓ̄f (π̄i+1)

− (αa,iπ̄i + βa,i) Γf (π̄i) + αa,iΓ̄f (π̄i)
]
, (23)

where Γf (π) :=
∫ π

γf (t)dt and Γ̄f (π) :=
∫ π Γf (t)dt.

Equation 23 follows from (22) by integration by parts.
The remainder of the proof is in Section 4. Although
(23) looks daunting, we observe: (1) the constraints on
a are convex (in fact they are a box constraint); and (2)
the objective is a relatively benign function of a.

When n = 1 the result simplifies considerably. If
in addition π1 = 1

2 then by (11) we have V 1
2
(P,Q) =

1
4V (P,Q). It is then a straightforward exercise to ex-
plicitly evaluate (22), especially when γf is symmetric.
The following theorem expresses the result in terms of
V (P,Q) for comparability with previous results. The
result for KL(P,Q) is a (best-possible) improvement on
the classical Pinsker inequality.

Theorem 7 For any distributions P,Q on X, let V :=
V (P,Q). Then the following bounds hold and, if in ad-
dition X has a connected component, are tight.

When γ is symmetric about 1
2 and convex,

If (P,Q) ≥ 2
[
Γ̄f

(
1
2 −

V
4

)
+ V

4 Γf

(
1
2

)
− Γ̄f

(
1
2

)]
(24)

and Γf and Γ̄f are as in Theorem 6.

This theorem gives the first explicit representation of
the optimal Pinsker bound.3 By plotting both (2) and
(4) one can confirm that the two bounds (implicit and
explicit) coincide; see Figure 1.

4 Proof of Main Result

Proof: (Theorem 6) This proof is driven by the dual-
ity between the family of variational divergences Vπ(P,Q)
and the 0-1 Bayes risk L(π, P, Q) given in Lemma 3.
Given distributions P and Q let

φ(π) = Vπ(P,Q) = π ∧ (1− π)− ψ(π),

where ψ(π) = L(π, P, Q). We know that ψ is non-
negative and concave and satisfies ψ(π) ≤ π ∧ (1 − π)
and thus ψ(0) = ψ(1) = 0.

Since

If (P,Q) =
∫ 1

0
φ(π)γf (π)dπ, (25)

3A summary of existing results and their relationship to
those presented here is given in appendix A.
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Figure 1: Lower bound on KL(P,Q) as a function of
the variational divergence V (P,Q). Both the explicit
bound (4) and Fedotorev et al.’s implicit bound (2) are
plotted.

If (P,Q) is minimised by minimising φ over all (P,Q)
such that

φ(πi) = φi = πi ∧ (1− πi)− ψ(πi).

Since ψi := (1 − πi) ∧ πi − Vπi(P,Q) = ψ(πi) the min-
imisation problem for φ can be expressed in terms of ψ
as:

Given (πi, ψi)n
i=1 find the maximal ψ: [0, 1] → [0, 1

2 ](26)
such that ψ(πi) = ψi, i = 0, . . . , n + 1, (27)

ψ(π) ≤ π ∧ (1− π), π ∈ [0, 1], (28)
ψ is concave. (29)

This will tell us the optimal φ to use since optimising
over ψ is equivalent to optimising over L(·, P, Q). Un-
der the additional assumption on X, Corollary 5 implies
that for any ψ satisfying (27), (28) and (29) there exists
P,Q such that L(·, P, Q) = ψ(·). This establishes the
tightness of our bounds.

Let Ψ be the set of piece-wise linear concave func-
tions on [0, 1] having n+1 segments such that ψ ∈ Ψ ⇒
ψ satisfies (27) and (28). We now show that in order to
solve (26) it suffices to consider ψ ∈ Ψ.

If g is a concave function on R, then let

ðg(x) := {s ∈ R : g(y) ≤ g(x) + 〈s, y − x〉, y ∈ R}

denote the sup-differential of g at x. (This is the obvi-
ous analogue of the sub-differential for convex functions
[23].) Suppose ψ̃ is a general concave function satisfying

(27) and (28). For i = 1, . . . , n, let

Gψ̃
i :=

{
[0, 1] / gψ̃

i : πi +→ ψi ∈ R is linear and

∂
∂π gψ̃

i (π)
∣∣∣
π=πi

∈ ðψ̃(πi)
}

.

Observe that by concavity, for all concave ψ̃ satisfying
(27) and (28), for all g ∈

⋃n
i=1 Gψ̃

i , g(π) ≥ ψ(π), for
π ∈ [0, 1].

Thus given any such ψ̃, one can always construct

ψ∗(π) = min(gψ̃
1 (π), . . . , gψ̃

n (π)) (30)

such that ψ∗ is concave, satisfies (27) and ψ∗(π) ≥ ψ̃(π),
for all π ∈ [0, 1]. It remains to take account of (28).
That is trivially done by setting

ψ(π) = min(ψ∗(π), π ∧ (1− π)) (31)

which remains concave and piecewise linear (although
with potentially one additional linear segment). Fi-
nally, the pointwise smallest concave ψ satisfying (27)
and (28) is the piecewise linear function connecting the
points (0, 0), (π1, ψ1), (π2, ψ2), . . . , (πm, ψm), (1, 0).

Let g : [0, 1] → [0, 1
2 ] be this function which can be

written explicitly as

g(π) =
(

ψi +
(ψi+1 − ψ)(π − πi)

πi+1 − πi

)
· !π ∈ [πi, πi+1]",

where we have defined π0 := 0, ψ0 := 0, πn+1 := 1 and
ψn+1 := 0.

We now explicitly parametrize this family of func-
tions. Let pi : [0, 1] → R denote the affine segment the
graph of which passes through (πi, ψi), i = 0, . . . , n + 1.
Write pi(π) = aiπ + bi. We know that pi(πi) = ψi and
thus

bi = ψi − aiπi, i = 0, . . . , n + 1. (32)
In order to determine the constraints on ai, since g is
concave and minorizes ψ, it suffices to only consider
(πi−1, g(πi−1)) and (πi+1, g(πi+1)) for i = 1, . . . , n. We
have (for i = 1, . . . , n)

pi(πi−1) ≥ g(πi−1)
⇒ aiπi−1 + bi ≥ ψi−1

⇒ aiπi−1 + ψi − aiπi ≥ ψi−1

⇒ ai (πi−1 − πi)︸ ︷︷ ︸
<0

≥ ψi−1 − ψi

⇒ ai ≤ ψi−1 − ψi

πi−1 − πi
. (33)

Similarly we have (for i = 1, . . . , n)

pi(πi+1) ≥ g(πi+1)
⇒ aiπi+1 + bi ≥ ψi+1

⇒ aiπi+1 + ψi − aiπi ≥ ψi+1

⇒ ai (πi+1 − πi)︸ ︷︷ ︸
>0

≥ ψi+1 − ψi

⇒ ai ≥ ψi+1 − ψi

πi+1 − πi
. (34)
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Figure 2: Illustration of construction of optimal ψ(π) = L(π, P, Q) in the proof of Theorem 6. The optimal ψ is
piece-wise linear such that ψ(πi) = ψi, i = 0, . . . , n + 1.

We now determine the points at which ψ defined by
(30) and (31) change slope. That occurs at the points
π when

pi(π) = pi+1(π)
⇒ aiπ + ψi − aiπi = ai+1π + ψi+1 − ai+1πi+1

⇒ (ai+1 − ai)π = ψi − ψi+1 + ai+1πi+1 − aiπi

⇒ π =
ψi − ψi+1 + ai+1πi+1

ai+1 − ai

=: π̃i

for i = 0, . . . , n. Thus
ψ(π) = pi(π), π ∈ [π̃i−1, π̃i], i = 1, . . . , n.

Let a = (a1, . . . , an). We explicitly denote the depen-
dence of ψ on a by writing ψa. Let

φa(π) :=π ∧ (1− π)− ψa(π)
= αa,iπ + βa,i, π ∈ [π̄i−1, π̄i], i = 1, . . . , n + 1,

where a ∈ An (see (15)), π̄i, αa,i and βa,i are defined
by (18), (19) and (20) respectively. The extra segment
induced at index j (see (17)) is needed since π +→ π ∧
(1−π) has a slope change at π = 1

2 . Thus in general, φa

is piece-wise linear with n + 2 segments (recall i ranges
from 0 to n + 2); if π̃k+1 = 1

2 for some k ∈ {1, . . . , n},
then there will be only n + 1 non-trivial segments.

Thus{
π +→

n∑

i=0

φa(π) · !π ∈ [π̄i, π̄i+1]" : a ∈ An

}

is the set of φ consistent with the constraints and An

is defined in (15). Thus substituting into (25), inter-
changing the order of summation and integration and
optimizing we have shown (22). The tightness has al-
ready been argued: under the additional assumption on
X, since there is no slop in the argument above since
every ψ satisfying the constraints in (26) is the Bayes
risk function for some (P,Q).
Proof: (Theorem 7) In this case n = 1 and the op-
timal ψ function will be piecewise linear, concave, and
its graph will pass through (π1, ψ1). Thus the optimal
φ will be of the form

φ(π) =






0, π ∈ [0, L] ∪ [U, 1]
π − (aπ + b), π ∈ [L, 1

2 ]
(1− π)− (aπ + b), π ∈ [ 12 , U ].

where aπ1 +b = ψ1 ⇒ b = ψ1−aπ1 and a ∈ [−2ψ1, 2ψ1]
(see Figure 3). For variational divergence, π1 = 1

2 and
thus by (11)

ψ1 = π1 ∧ (1− π1)−
V

4
=

1
2
− V

4
(35)

and so φ1 = V/4. We can thus determine L and U :
aL + b = L

⇒ aL + ψ1 − aπ1 = L

⇒ L =
aπ1 − ψ1

a− 1
.
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Figure 3: The optimisation problem when n = 1. Given
ψ1, there are many risk curves consistent with it. The
optimisation problem involves finding the piece-wise lin-
ear concave risk curve ψ ∈ Ψ and the corresponding
φ = π ∧ (1 − π) − ψ that maximises If . L and U are
defined in the text.

Similarly aU + b = 1− U ⇒ U = 1−ψ1+aπ1
a+1 and thus

If (P,Q) ≥ min
a∈[−2ψ1,2ψ1]

1
2∫

aπ1−ψ1
a−1

[(1− a)π − ψ1 + aπ1]γf (π)dπ

+

1−ψ1+aπ1
a+1∫

1
2

[(−a− 1)π − ψ1 + aπ1 + 1]γf (π)dπ. (36)

If γf is symmetric about π = 1
2 and convex and π1 = 1

2 ,
then the optimal a = 0. Thus in that case,

If (P,Q) ≥ 2
∫ 1

2

ψ1

(π − ψ1)γf (π)dπ (37)

= 2
[
( 1
2 − ψ1)Γf ( 1

2 ) + Γ̄f (ψ1)− Γ̄f ( 1
2 )

]

= 2
[

V
4 Γf ( 1

2 ) + Γ̄f

(
1
2 −

V
4

)
− Γ̄f ( 1

2 )
]
.(38)

Combining the above with (35) leads to a range of Pinsker
style bounds for symmetric If :
Jeffrey’s Divergence Since J(P,Q) = KL(P,Q) +
KL(Q, P ) we have γ(π) = 1

π2(1−π)2 . (As a check, f(t) =
(t− 1) ln(t), f ′′(t) = t+1

t2 and so γf (π) = 1
π3 f ′′

(
1−π

π

)
=

1
π2(1−π)2 .) Thus

J(P,Q) ≥ 2
∫ 1/2

ψ1

(π − ψ1)
π2(1− π)2

dπ

= (4ψ1 − 2)(ln(ψ1)− ln(1− ψ1)).

Substituting ψ1 = 1
2 −

V
4 gives

J(P,Q) ≥ V ln
(

2 + V

2− V

)
.

Observe that the above bound behaves like V 2 for
small V , and V ln

(
2+V
2−V

)
≥ V 2 for V ∈ [0, 2]. Using

the traditional Pinkser inequality (KL(P,Q) ≥ V 2/2)
we have

J(P,Q) = KL(P,Q) + KL(Q, P )

≥ V 2

2
+

V 2

2
= V 2.

Jensen-Shannon Divergence Here f(t) = t
2 ln t −

(t+1)
2 ln(t + 1) + ln 2 and thus γf (π) = 1

π3 f ′′
(

1−π
π

)
=

1
2π(1−π) . Thus

I(P,Q)=2
∫ 1

2

ψ1

π − ψ1

2π(1− π)
dπ

=ln(1−ψ1)− ψ1 ln(1−ψ1) + ψ1 lnψ1 + ln(2).

Substituting ψ1 = 1
2 −

V
4 leads to

I(P,Q) ≥
(

1
2 −

V
4

)
ln(2−V )+

(
1
2 + V

4

)
ln(2+V )−ln(2).

Hellinger Divergence Here f(t) = (
√

t− 1)2. Con-
sequently γf (π) = 1

π3 f ′′
(

1−π
π

)
= 1

π3
1

2((1−π)/π)3/2 =
1

2[π(1−π)]3/2 and thus

h2(P,Q) ≥ 2
∫ 1

2

ψ1

π − ψ1

2[π(1− π)]3/2
dπ

=
4
√

ψ1(ψ1 − 1) + 2
√

1− ψ1√
1− ψ1

=
4
√

1
2 −

V
4

(
1
2 −

V
4 − 1

)
+ 2

√
1− 1

2 + V
4√

1− 1
2 + V

4

= 2− (2 + V )
√

2− V√
2 + V

= 2−
√

4− V 2.

For small V , 2−
√

4− V 2 ≈ V 2/4.
Arithmetic-Geometric Mean Divergence In this
case, f(t) = t+1

2 ln
(

t+1
2
√

t

)
. Thus f ′′(t) = t2+1

4t2(t+1) and

hence γf (π) = 1
π3 f ′′

(
1−π

π

)
= γf (π) = 2π2−2π+1

π2(π−1)2 and
thus

T (P,Q) ≥ 2
∫ 1

2

ψ1

(π − ψ1)
2π2 − 2π + 1
π2(π − 1)2

dπ

= −1
2

ln(1− ψ)− 1
2

ln(ψ)− ln(2).

Substituting ψ1 = 1
2 −

V
4 gives

T (P,Q) ≥ −1
2

ln
(

1
2

+
V

4

)
− 1

2
ln

(
1
2
− V

4

)
− ln(2)

= ln
(

4√
4− V 2

)
− ln(2).



Symmetric χ2-Divergence In this case Ψ(P,Q) =
χ2(P,Q)+χ2(Q, P ) and thus (see below) γf (π) = 2

π3 +
2

(1−π)3 . (As a check, from f(t) = (t−1)2(t+1)
t we have

f ′′(t) = 2(t3+1)
t3 and thus γf (π) = 1

π3 f ′′
(

1−π
π

)
gives the

same result.)

Ψ(P,Q) ≥ 2
∫ 1

2

ψ1

(π − ψ1)
(

2
π3

+
2

(1− π)3

)
dπ

=
2(1 + 4ψ2

1 − 4ψ1)
ψ1(ψ1 − 1)

.

Substituting ψ1 = 1
2 −

V
4 gives Ψ(P,Q) ≥ 8V 2

4−V 2 .
When γf is not symmetric, one needs to use (36)

instead of the simpler (38). We consider two cases.
χ2-Divergence Here f(t) = (t − 1)2 and so f ′′(t) =
2 and hence γ(π) = f ′′

(
1−π

π

)
/π3 = 2

π3 which is not
symmetric. Upon substituting 2/π3 for γ(π) in (36)
and evaluating the integrals we obtain

χ2(P,Q) ≥ 2 min
a∈[−2ψ1,2ψ1]

1+4ψ2
1−4ψ1

2ψ1−a − 1+4ψ2
1−4ψ1

2ψ1−a−2︸ ︷︷ ︸
=:J(a,ψ1)

.

One can then solve ∂
∂aJ(a, ψ1) = 0 for a and one obtains

a∗ = 2ψ1 − 1. Now a∗ > −2ψ1 only if ψ1 > 1
4 . One

can check that when ψ1 ≤ 1
4 , then a +→ J(a, ψ1) is

monotonically increasing for a ∈ [−2ψ1, 2ψ1] and hence
the minimum occurs at a∗ = −2ψ1. Thus the value of
a minimising J(a, ψ1) is

a∗ = !ψ1 > 1/4"(2ψ1 − 1) + !ψ1 ≤ 1/4"(−2ψ1).
Substituting the optimal value of a∗ into J(a, ψ1) we
obtain
J(a∗, ψ1) = !ψ1 > 1/4"(2 + 8ψ2

1 − 8ψ1)

+!ψ1 ≤ 1/4"
(

1 + 4ψ2
1 − 4ψ

4ψ
− 1 + 4ψ2

1 − 4ψ

4ψ1 − 2

)
.

Substituting ψ1 = 1
2 −

V
4 and observing that V < 1 ⇒

ψ1 > 1/4 we obtain

χ2(P,Q) ≥ !V < 1"V 2 + !V ≥ 1" V

(2− V )
.

Observe that the bound diverges to ∞ as V → 2.
Kullback-Leibler Divergence In this case we have
f(t) = t ln t and thus f ′′(t) = 1/t and consequently
γf (π) = 1

π3 f ′′
(

1−π
π

)
= 1

π2(1−π) which is clearly not
symmetric. From (36) we obtain

KL(P,Q) ≥ min
[−2ψ1,2ψ1]

(
1− a

2 − ψ1

)
ln

(
a+2ψ1−2

a−2ψ1

)

+
(

a
2 + ψ1

)
ln

(
a+2ψ1

a−2ψ1+2

)
.

Substituting ψ1 = 1
2 −

V
4 gives

KL(P,Q) ≥ min
a∈[V −2

2 , 2−V
2 ]

δa(V ),

where
δa(V )=

(
V +2−2a

4

)
ln

(
2a−2−V
2a−2+V

)
+

(
2a+2−V

4

)
ln

(
2a+2−V
2a+2+V

)
.

Set β := 2a and we have (4).

5 Conclusion

We have generalised the classical Pinsker inequality and
developed best possible bounds for the general situation.
A special case of the result gives an explicit bound relat-
ing Kullback-Liebler divergence and variational diver-
gence. The proof relied on an integral representation of
f -divergences in terms of statistical information. Such
representations are a powerful device as they identify
the primitives underpinning general learning problems.
These representations are further studied in [22].

A History of Pinsker Inequalities

Pinsker [21] presented the first bound relating KL(P,Q)
to V (P,Q): KL ≥ V 2/2 and it is now known by his
name or sometimes as the Pinsker-Csiszár-Kullback in-
equality since Csiszar [3] presented another version and
Kullback [14] showed KL ≥ V 2/2 + V 4/36. Much later
Topsøe [26] showed KL ≥ V 2/2 + V 4/36 + V 6/270.
Non-polynomial bounds are due to Vajda [31]: KL ≥
LVajda(V ) := log

(
2+V
2−V

)
− 2V

2+V and Toussaint [29] who
showed KL ≥ LVajda(V ) ∨ (V 2/2 + V 4/36 + V 8/288).

Care needs to be taken when comparing results from
the literature as different definitions for the divergences
exist. For example Gibbs and Su [8] used a definition of
V that differs by a factor of 2 from ours. There are some
isolated bounds relating V to some other divergences,
analogous to the classical Pinkser bound; Kumar [15]
has presented a summary as well as new bounds for
a wide range of symmetric f -divergences by making as-
sumptions on the likelihood ratio: r ≤ p(x)/q(x) ≤ R <
∞ for all x ∈ X. This line of reasoning has also been
developed by Dragomir et al. [6] and Taneja [25, 24].
Topsøe [27] has presented some infinite series represen-
tations for capacitory discrimination in terms of trian-
gular discrimination which lead to inequalities between
those two divergences. Liese and Miescke [18, p.48] give
the inequality V ≤ h

√
4− h2 (which seems to be origi-

nally due to LeCam [16]) which when rearranged corre-
sponds exactly to the bound for h2 in theorem 7. With-
ers [32] has also presented some inequalities between
other (particular) pairs of divergences; his reasoning is
also in terms of infinite series expansions.

Arnold et al. [30] considered the case of n = 1 but ar-
bitrary If (that is they bound an arbitrary f -divergence
in terms of the variational divergence). Their argument
is similar to the geometric proof of Theorem 6. They
do not compute any of the explicit bounds in theorem
7 except they state (page 243) χ2(P,Q) ≥ V 2 which is
looser than (3).

Gilardoni [9] showed (via an intricate argument) that
if f ′′′(1) exists, then If ≥ f ′′(1)V 2

2 . He also showed
some fourth order inequalities of the form If ≥ c2,fV 2+
c4,fV 4 where the constants depend on the behaviour of
f at 1 in a complex way. Gilardoni [10, 11] presented
a completely different approach which obtains many of
the results of theorem 7.4 Gilardoni [11] improved Va-

4We were unaware of these two papers until completing



jda’s bound slightly to KL(P,Q) ≥ ln 2
2−V −

2−V
2 ln 2+V

2 .
Gilardoni [10, 11] presented a general tight lower

bound for If = If (P,Q) in terms of V = V (P,Q) which
is difficult to evaluate explicitly in general:

If ≥
V

2

(
f [g−1

R (k(1/V ))]
g−1

R (k(1/V ))− 1
+

f [g−1
L (k(1/V ))]

1− g−1
L (k(1/V ))

)
,

where k−1(t) = 1
2

(
1

1−g−1
L (t)

+ 1
g−1

R (t)−1

)
and of course

k(u) = (k−1)−1(u); and g(u) = (u − 1)f ′(u) − f(u),
g−1

R [g(u)] = u for u ≥ 1 and g−1
L [g(u)] = u for u ≤ 1.

He presented a new parametric form for If = KL in
terms of Lambert’s W function. In general, the result
is analogous to that of Fedotov et al. [7] in that it is
in a parametric form which, if one wishes to evaluate
for a particular V , one needs to do a one dimensional
numerical search — as complex as (4). However, when f
is such that If is symmetric, this simplifies to the elegant
form If ≥ 2−V

2 f
(

2+V
2−V

)
−f ′(1)V . He presented explicit

special cases for h2, J ,∆ and I identical to the results
in Theorem 7. It is not apparent how the approach of
Gilardoni [10, 11] could be extended to more general
situations such as that in Theorem 6 (i.e. n > 1).

Bolley and Villani [2] considered weighted versions of
the Pinsker inequalities (for a weighted generalisation of
Variational divergence) in terms of KL-divergence that
are related to transportation inequalities.
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