
Optimal Algorithms for the
Coin Weighing Problem with a Spring Scale

Nader H. Bshouty∗
Technion, Israel

bshouty@cs.technion.ac.il

Abstract

Suppose we are givenn coins out of a collec-
tion of coins of two distinct weightsw0 andw1,
true and counterfeit coins, respectively, whered
of them are counterfeit coins. Assume we are al-
lowed to weigh subsets of coins in a spring scale.
Determine the counterfeit coins in a minimal num-
ber of weighing.

This problem is equivalent to the following learn-
ing problem: Given a linear functionf = xi1 +
xi2 + · · ·+ xid

, where1 ≤ i1 < i2 < · · · < id ≤
n and a substitution oracle of values in the do-
main{0, 1}n to f . Find f with minimal number
of substitution queries.

In this paper we give the first optimal1. (in the
number of weighing or substitutions)polynomial
timeadaptive algorithm that determines the coun-
terfeit coins.

We then extend our algorithm to the following
more general coin weighing problems with a spring
scale: Suppose we are givenn coins out of a col-
lection of coins of unknown integer weights. De-
termine the weight of each coin in a minimal num-
ber of weighing. We give an optimal adaptive
polynomial time algorithm for this problem. This
algorithm is based on a new optimal adaptive al-
gorithm for reconstructing bounded weight vec-
tors in polynomial time. This solves the general
problem of learninganylinear function with bounded
integer coefficient in polynomial time with opti-
mal number of substitution queries.

To the best of our knowledge all the algorithms
in this paper are the first optimal polynomial time
adaptive algorithms for the problem of coin weigh-
ing in a spring scale.

Keywords: Computational Learning, Combinatorial Search
Problem.

∗This research was done while the author was visiting Google
in Mountain View, California

1In this paper optimal will mean≤ 2× (lower bound). In very
few cases it means≤ 5× (lower bound)

1 Introduction

Thecoin weighing problem with a spring scaleis the follow-
ing [S60]: Suppose we are givenn coins out of a collection
of coins of two distinct weightsw0 andw1, true and coun-
terfeit coins, respectively.2 Assume we are allowed to weigh
subsets of coins in a spring scale. Determine the weight of
each coin in a minimal number of weighing.

This problem has many applications and is also known
as the detection problem [SS63], determining collection [CM66],
counterfeit coins problem, distinguishing family problem [LV91]
and rigidity of then-dimensional Hamming space problem
[KLT00] and is equivalent to the uniquely decodable codes
for noiselessn-user adder channel [CW79, MK87] and the
Mastermind game with two colors [K76]. See also [CK08]
for other applications for this problem.

A non-adaptive algorithm for the coin weighing problem
is equivalent to finding ak×n (0,1)-matrix,M such that for
everyu, v ∈ {0, 1}n whereu 6= v we haveMv 6= Mu.
The weighing complexity isk, the number of rows ofM .
Such a matrix is called a search matrix. For the non-adaptive
algorithm to run in polynomial time we need that a search
matrix be built in polynomial time and givenMv wherev ∈
{0, 1}, one can findv in polynomial time.

This problem was first introduced by Shapiro in 1960
for n = 5 [S60] and was solved (forn = 5) by Fine and
many others [F60]. It was then studied for anyn by Can-
tor [C62], Soderberg and Shapiro [SS63], Erdös and Ŕenyi
[ER63], Lindstr̈om [L65, L66, L71, L75] and Cantor and
Mills [CM66]. See also [A88, MK87, DH93]. The infor-
mation theoretic lower bound for the number of weighing is
(asymptoticly)3

n

log n

that applies even for adaptive algorithms. Erdös and Ŕenyi
[ER63] and independently, Moser [M70] (see [L65]) proved
the lower bound

k ≥ 2n

log n

2Whenw1 andw2 are not known, we can find them adaptively
in 1 + dlog ne weighings [CH84]. Whenw1 andw2 are known the
problem can be reduced to the casew0 = 0 andw1 = 1.

3Here and throughout the paper we will only write the asymp-
totic weighing complexity of the problem. So by asymptotic bound
C we meanC(1± o(1)).



for any k × n search matrix. See also [CM66, L66, M70,
L75, P77, A88, LV91]. This shows that any non-adaptive
algorithm for the coin weighing problem must make at least
2n/ log n weighing.

Lindström [L64, L65] and, independently, Cantor and
Mills [CM66] presented a construction of a search matrix of
sizek × n wherek is

2n

log n
.

Then using the theory of M̈obius functions, Lindstr̈om [L71]
gave another construction with the same asymptotic bound.
See also a simple construction in [L75, A88] and a simple
recursive construction in [CM66, MK87]. Although not ex-
plicitly indicated by the above papers, the search matrixM
in Lindström construction and Cantor and Mills construc-
tion can be constructed in polynomial time. In Lindström
constructions [L64, L65, L71] and in Cantor and Mills con-
struction [CM66, MK87],v can be extracted fromMv in
polynomial time.

We give a new simple construction that is based on Fourier
transform. The advantage of this construction is that we can
use Fourier transform to extractv from Mv. Another ad-
vantage is that our construction can be easily generalized to
many other search matrices that can handle other coin weigh-
ing problems.

When one allows adaptiveness, one can find the number
of counterfeit coinsd (by findingw0 andw1 and then weigh-
ing all the coins) and then solves the following problem.

Thed-coin weighing problem with a spring scaleis the
following [D75, L75, C80, AS85, A86, A88]: Suppose we
are givenn coins out of a collection of coins of two distinct
weightsw0 andw1, true and counterfeit coins, respectively,
whered of them are counterfeit coins. Assume we are al-
lowed to weigh subsets of coins in a spring scale. Determine
the weight of each coin in a minimal number of weighing.

The information theoretic lower bound for this problem
gives4

d log n
d

log d

weighing for any adaptive algorithm. For non-adaptive al-
gorithms, Djackov [D75] and Lindström, [L75] showed that
any non-adaptive algorithm must make at least

2d log n
d

log d

weighings. Then using the Kronecker product of matrices he
gave an optimal non-adaptive algorithm that runs in polyno-
mial time for the case when we haved sets of coins each of
sizen/d and each set contains exactly one counterfeit coin.
Grebinski and Kucherov [GK00] showed non-constructively
that a non-adaptive algorithm exists that asks

4d log n
d

log d

weighings5. They show that a randomized 0-1 matrix of such
size is a search matrix for this problem with non-zero prob-

4Again here we remind the reader that all the weighing com-
plexities in this paper are multiplied by1± o(1)

5In [D75] Djackov mention this bound without a proof.

ability. Their algorithm does not lead to a randomized poly-
nomial time algorithm since it is not clear how to find the
counterfeit coins from the results of the weighings.

The best polynomial time non-adaptive algorithm known
for thed-coin weighting problem makes

d log n

weighings [L72, L75]. See also [H99] for anyd and [A88]
for d = 2 that can be extended to anyd. The best polynomial
time adaptive algorithm known makes

d log
n

d

weighings [C79, Ca79, TM78, M81, UTW00] and chapter
10 in [DH93] . Those algorithms are asymptotically optimal
only whend is constant. Many papers in the literature stud-
ied the problem ford = 2 [L71, L72, L75, C80, C83, A86,
A88, H90, CLZ01].

In this paper we give an adaptive polynomial time algo-
rithm that makes

2d log n
d

log d
+ O

(
d

log d
+

d(log log d) log n
d

(log d)2

)
.

weighings. To the best of our knowledge this is the first poly-
nomial time optimal algorithm for this problem.

Our algorithm makes use of the following extension of
search matrices. A(d1, d2, . . . , dn)-detecting matrixM is a
(0, 1)-matrix such that for everyv, u ∈ ∏

i{0, 1, . . . , di−1},
v 6= u we haveMv 6= Mu. Detecting matrices are known
from the literature only whendi = d for all i [L71]. We
extend our construction to build an optimal(d1, d2, . . . , dn)-
detecting matrix in polynomial time. We then use this con-
struction to show a new divide and conquer approach. We
divide the problem intot disjoint sub-problems and using
the above construction solve all the problems inO(t/ log t)
times the average weighing complexity of the sub-problems.

We then extend our algorithm to the following more gen-
eral coin weighing problems with a spring scale: Suppose we
are givenn coins out of a collection of coins of unknown in-
teger weights. Assume we are allowed to weigh subsets of
coins in a spring scale. Determine the weight of each coin in
a minimal number of weighing.

An information-theoretic argument gives the lower bound

k(n, W ) =





W log( n
W +1)

log W W ≤ n
n log(W

n +1)
log n n < W ≤ n2

n W > n2

(1)

for the number of weighing whereW is the sum of the weights.
This problem was studied forW ≤ n in [P81, RV97,

GK00] and forW > n in [GK00]. Pippenger [P81] showed
nonconstructively that forW = n there is a non-adaptive
algorithm that makesO(W/ log W ) weighings. Grebinski
and Kucherov [GK00] extend this upper bound to anyW ≤
n. They gave a non-constructive non-adaptive algorithm that
asks

4W log
(

n
W + 1

)

log W



weighings. Ruszinḱo and Vanroose [RV97] gave the first
adaptive polynomial time algorithm that solves the problem
whenW = n in O(W (log log W )/ log W ) weighings.6

In this paper we give a polynomial time adaptive algo-
rithm that makes

cW log
(

n
W + 1

)

log W

weighings wherec = 2 for W = o(n) andc = 5 for W =
O(n).

WhenW > n the information theoretic lower bound for
this problem gives

W log
(

W
n + 1

)

log n
,

when W < n2 and n when W > n2. So for W > n2

the optimal algorithm is to weigh each one of the coins.
Whenn < W < n2, Ruszinḱo and Vanroose [RV97] al-
gorithm can be extended to anyW > n and is optimal for
W > n(log n)α for any constantα. Grebinski and Kucherov
[GK00] gave a non-constructive non-adaptive algorithm that
makes

4n log
(

W
n + 1

)

log n

weighings.
In this paper we give an adaptive algorithm that finds all

the weights in polynomial time in

cn log
(

W
n + 1

)

log n

weighings wherec = 2 whenn = o(W ) and5 whenn =
O(W ).

To the best of our knowledge this is the first polynomial
time optimal algorithm for this problem.

Our paper is organized as follows: In section 2 we give
the new construction of search matrix and detecting matrix.
In section 3 we give an optimal polynomial time algorithm
for the d-coin weighing problem and in section 4 we give
other coin weighing problems with a spring scale that can be
solved using our new technique.

2 Search Matrix and Detecting Matrix

In this section we use Fourier representation to build optimal
size search and detecting matrices.

2.1 Fourier Representation

Let f(x1, . . . , xν) : {−1, +1}ν → R be a real function.
Define the basis

B =

{
χa(x) =

∏
ai=1

xi

∣∣∣∣∣ a ∈ {0, 1}ν

}

6Ruszinḱo and Vanroose [RV97] claim, mistakenly, that Lind-
strom algorithm runs in exponential time. Lindstrom algorithm runs
in polynomial time and therefore their algorithm (that uses Lind-
strom algorithm) runs in polynomial time.

for R{−1,+1}ν

. It is known thatB is orthonormal basis.
Therefore, any function inf ∈ R{−1,+1}ν

can be uniquely
represented as

f(x) =
∑

a∈{0,1}ν

f̂(a)χa(x).

The coefficientf̂(a) ∈ R is called the Fourier coefficient of
χa and is equal to

f̂(a) =
1
2ν

∑

x∈{−1,+1}
f(x)χa(x).

Using the fast Fourier transform all the coefficientsf̂(a)
can be found from the values off(x), x ∈ {−1, +1} and
can be ordered according to the lexicographic order ofa ∈
{0, 1}ν in timeO(ν2ν).

2.2 Search Matrix

A k × n (0,1)-matrix,M is calledsearch matrixif for every
u, v ∈ {0, 1}n whereu 6= v we haveMv 6= Mu.

For a ∈ {0, 1}ν we denote by|a| the Hamming weight
of a. We say thata ∈ S ⊂ {0, 1}ν is maximal elementin
S if there is nob ∈ S such thatb > a (in the usual lattice
order).

Let a ∈ {0, 1}ν and supposeaj1 , aj2 , . . . , aj|a| are the
entries ofa that are one where1 ≤ j1 < j2 < · · · < j|a| ≤
ν. For1 ≤ k ≤ |a| we define the function

f̂a,k(x) =

(
2

k∏

i=1

xji + 1
2

− 1

)
xjk+1xjk+2 · · ·xj|a|

and

fa,k(x) =
f̂a,k(x) + 1

2
.

Let Fν be the set of all functionsfa,k(x), 1 ≤ k ≤ |a|.
The following properties are easy to prove

Lemma 1 We have

1. fa,k(x) : {−1, +1}ν → {0, 1}.
2. |Fν | = ν2ν−1.

3. The Fourier coefficient ofχa in fa,k(x) is 2−k.

4. For any b 6< a the Fourier coefficient ofχb in fa,k(x)
is 0.

The following lemma is the key for our construction

Lemma 2 LetS = {(a(1), k1), . . . , (a(`), k`)} ⊂ {0, 1}ν ×
N and

f =
∑̀

i=1

fa(i),ki
(x).

Then, the following are equivalent

1. a(j1) = a(j2) = · · · = a(jt) = a and a(i) 6= a for
all i 6∈ {j1, j2, . . . , jt} and a is maximal element in
S′ = {a(1), . . . , a(`)}.



2. The Fourier coefficient ofχa in f is 2−kj1 + 2−kj2 +
· · ·+ 2−kjt and for everyb > a the Fourier coefficient
of χb in f is 0.

Proof. (1) ⇒ (2) If a is maximal element inS′ then for any
elementb > a we haveb 6< c for all c ∈ S′. Therefore, by
(4) in Lemma 1 the Fourier coefficient ofχb in all fa(i),ki

(x)
is 0. This implies that the Fourier coefficient ofχb in f is
0. Now sincea is maximal element inS′, for everyb ∈ S,
b 6= a we havea 6< b. Therefore, the only functions that
contribute to the coefficientχa arefa(ji),kji

(x), i ≤ t. Now

by (3) in Lemma 1 this coefficient is equal to2−kj1 +2−kj2 +
· · ·+ 2−kjt .

(2) ⇒ (1) Supposea is not maximal. Then there isb >
a that is maximal inS. By the above argument the coefficient
of χb is not zero and we get a contradiction. Now sincea is
maximal, then as above, the only functions that contribute to
the coefficientχa are allfa(ji),kji

(x) wherea(ji) = a. By
(3) in Lemma 1 the result follows.

Now to build the search matrix. DefineM a2ν × ν2ν−1

matrix where for everyx ∈ {−1, 1}ν andfa,k ∈ Fν , M [x, fa,k]
= fa,k(x). Here the matrix row are labeled with the elements
of {−1, +1}ν and the columns are labeled with the elements
of Fν . We now prove

Theorem 3 We have

1. For any n there is a search matrixM of sizek × n
where

k =
2n

log n
.

2. GivenMv for v ∈ {0, 1}n the vectorv can be found in
timeO(n + d(n/ log n)) whered is the weight ofv.

Proof Sketch.Consider the minimalν such thatν2ν−1 ≥ n.
Build the matrixM as above. Letv ∈ {0, 1}ν2ν−1

. As we
did for the columns ofM , we will label the entries ofv with
fa,` and writevfa,`

for the value of this entry. The vector
Mv ∈ N2ν

, though, will be labeled with{−1, 1}ν . Notice
thatMv gives a column vector which is the sum of thefa,`th
columns inM wherevfa,`

= 1. So this sum is equal to

f(x) = (Mv)[x] =
∑

vfa,`
=1

fa,`(x)

for all x ∈ {−1,+1}ν . Using Fourier transform we can find
all Fourier coefficientsf̂(z) ordered in lexicographic order
according toz ∈ {0, 1}2ν

in time ν2ν = O(n). We search
for a maximalz wheref̂(z) 6= 0. By Lemma 2, at least one
fa,r can be detected. Thenvfa,r = 1. We then recursively
do the above for the Fourier representation off − fa,r.

This construction givesk = 4n/ log n. In the full paper
we use a similar technique as in [L65, L75] to improve the
bound by a factor of2.

2.3 Detecting Matrix

A (d1, d2, . . . , dn)-detecting matrixM is a(0, 1)-matrix such
that for everyv, u ∈ ∏

i{0, 1, . . . , di − 1}, v 6= u we have
Mv 6= Mu. We extend the above construction to build
an optimal(d1, d2, . . . , dn)-detecting matrix in polynomial

time. To findv from Mv we use the same algorithm as in
the previous subsection.

Fora, b ∈ {0, 1}ν , b < a define the following function

fa,b(x) =
∏

ai=1

(−1)bixi + 1
2

.

Notice thatfa,b : {−1, +1}ν → {0, 1} and the Fourier co-
efficient ofχa in fa,b is 2−|a| when |b| is even and−2−|a|
when|b| is odd. Define

Gν = {fa,b(x) | b < a, |b| = even}.
It is easy to see that|Gν | = (3ν − 1)/2.

We now prove

Theorem 4 Let 1 < d1 ≤ d2 ≤ · · · ≤ dn be integers and
let ν be the maximal integer where

(ν − 2)2ν−1 ≤ log

(
d2ν

n−2ν

n−2ν∏

i=1

di

)
.

There is a(d1, d2, · · · , dn)-detecting matrix of size2ν × n.

Proof Sketch. We construct a2ν × n (0, 1)-matrix M as
follows. The matrixM will be [M1|M2] whereM1 contains
n−2ν columns andM2 contains2ν columns. For each vector
a ∈ {0, 1}ν we construct̀ a (specified below) columns in
M1 and one column inM2. We now show thèa+1 columns
that correspond toa ∈ {0, 1}ν .

For anya ∈ {0, 1}ν suppose we have already constructed
columns1 to r in M1 and columns1 to s in M2. Let `a

be such thatdr+1dr+2 · · · dr+`a ≤ 2|a|−1 anddr+1dr+2 · · ·
dr+`a+1 > 2|a|−1. ConsiderGa = {fa,b(x) : b < a, |b| =
even} ⊂ Gν . We have|Ga| = 2|a|−1. We take any subsets
Ga,0, Ga,1, · · · , Ga,`a ⊆ Ga where|Ga,0| = 1 and|Ga,i| =
dr+1dr+2 · · · dr+i for i = 1, 2, . . . , `a. We construct̀ a

columns that will be the functions7 ga,i =
∑

h∈Ga,i
h for i =

0, . . . , `a−1. Those will be columnsr+1, r+2, . . . , r+ `a

of M1 and therefore ofM . Then we put the columnga,`a =∑
h∈G`a

h in M2. This will be columns + 1 of M2 and
therefore it will be columnn− 2ν + s + 1 of M .

It is easy to see thatga,i : {−1, +1}ν → {0, 1}, the
Fourier coefficient ofχa in ga,i is dr+1dr+2 · · · dr+i/2|a|
and for everyb > a, the Fourier coefficient ofχb in ga,i

is 0.
We do the above for all the vectorsa ∈ {0, 1}ν\{0}.

Since
dr+1dr+2 · · · dr+`adn−2ν ≥

dr+1dr+2 · · · dr+`a+1 ≥ 2|a|−1

we have

d2ν

n−2ν

n−2ν∏

i=1

di ≥
∏

a∈{0,1}ν\{0}
2|a|−1 =

2(ν−1)+( ν
ν−1)(ν−2)+( ν

ν−2)(ν−3)+···+(ν
2)1 ≥ 2(ν−2)2ν−1

which implies the bound.

7As before, the rows are labeled with{−1, +1}ν . Row x ∈
{−1, +1}ν in this column is equal toga,`a(x).



NowM is (d1, d2, · · · , dn)-detecting matrix follows from
the fact that givenλr+i < dr+i for 1 ≤ i ≤ `a and any
λr+`a+1. Givenλr+1 +λr+2dr+1 +λr+3dr+1dr+2 + · · ·+
λr+`a+1dr+1dr+2 · · · dr+`a

one can uniquely determines all
λr+i.
Note: In the full paper we will use techniques from [L65,
L75] and show that ak×n, (d1, d2, · · · , dn)-detecting matrix

exists where(log k − 4)(k/2) ≤ log
(
dk

n−k

∏n−k
i=1 di

)
for

anyk (not onlyk that is a power of two). This improves the
above bound by a factor of2.

We now show

Corollary 5 Let1 < d1 ≤ d2 ≤ · · · ≤ dn whered1 + d2 +
. . . + dn = d. There is a(d1, d2, . . . , dn)-detecting matrix
of sizek × n where

(log k − 4)k ≤ 2n log
d

n
.

Proof. By Theorem 4 and using the fact that the geometric
mean is less than or equal the arithmetic mean, there is a
(d1, d2, . . . , dn)-detecting matrix of sizek × n where

(log k − 4)k
2

≤ log

(
dk

n−k

n−k∏

i=1

di

)
≤ log

(
d

n

)n

= n log
d

n
.

This implies the result.

3 Thed-Coin Weighing Problem

In this section we give a polynomial time optimal adaptive
algorithm for thed-coin weighing problem. As mentioned
above the problem can be reduced to the following problem:
Suppose we are givenn coins out of a collection of coins
of two distinct weights,0 and1, true and counterfeit coins,
respectively, whered of them are counterfeit coins. Assume
we are allowed to weigh subsets of coins in a spring scale.
Determine the weight of each coin in a minimal number of
weighing.

Let v ∈ {0, 1}n be the vector of the weights of the coins.
We will assume thatn is a power of2, otherwise taken the
smallest power of2 that is greater or equal to the number
of coins. In the full paper we handle anyn to get the best
number of weighing possible. When we weigh coinsS =
{i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} we get the valueδ(S) =
vi1+· · ·+vik

. Notice that for a partitionS = S1∪S2∪· · ·∪St

we have

δ(S) = δ(S1) + δ(S2) + · · ·+ δ(St). (2)

Our first (non-optimal) algorithm will define a sequence of
1 + log n sets of disjoint setsS0,S1, . . . ,Slog n. The initial
set isS0 = {{1, 2, . . . , n}}. At stage`, the algorithm takes
each setS ∈ S`−1 splits it into two equal size disjoint sets
S = S1 ∪ S2 and weigh to findδ(S1). By (2) δ(S2) =
δ(S)− δ(S1). If δ(Si) 6= 0 then it addsSi toS`−1. It is easy
to see that the complexity of this algorithm is [UTW00]

d log
n

d
.

This is not optimal for non-constantd.
Our (optimal) algorithm will exploit Corollary 5 to find

all δ(S) for all S ∈ S`.

We run the above algorithm as long as the number of
sets inS` is less than

√
d. When |S`| >

√
d let S` =

{S1, S2, . . . , Sq} anddi = |Si| for i = 1, . . . , q. We split
each setSi into two equal size disjoint setsSi = Si,1 ∪ Si,2.
We construct a(d1 +1, d2 +1, . . . , dq +1)-detecting matrix
M of sizek × q. Then for every rowi, Mi in M we weigh
to find

δ


 ⋃

Mi,j=1

Sj,1


 =

q∑

j=1

Mi,jδ(Sj,1).

We then use the algorithm in the previous section to find all
δ(Sj,1). Then allδ(Sj,2) = dj − δ(Sj,1) can be found. We
put inS`+1 the nonempty setsSj,1, Sj,2 and recursively run
the above.

The reader may jump into conclusion that since we save
a factor oflog d weighing at each stage the complexity will
be (d/ log d) log n/d. Well, this is not quite true. When
|S`| =

√
d the number of weighing isO(

√
d), so no sav-

ing achieved at this level.
In the next section we give some inequalities that will

be used in the analysis of the algorithm and then we give the
analysis of the algorithm

3.1 Some Inequalities

In this section we give some inequalities that will be used in
the paper.

We first give the following trivial inequalities

Lemma 6 1. For anyσ > 1 and0 < x ≤ σ−1
σ we have

1 + x <
1

1− x
≤ 1 + x + σx2.

We now would like to boundk whenk log k ≤ x where
x > 1. The following simple bound

k ≤ 2x

log x
(3)

can be derived as follows: Letk0 be a real number such that
k0 log k0 = x. Thenk ≤ k0. Sincek2

0 ≥ k0 log k0 = x we
havek0 ≥ x1/2 and

k ≤ k0 =
x

log k0
≤ 2x

log x
.

To get a better bound we prove the following

Lemma 7 Letx ≥ 8 be a real number. Ifk is an integer and

k log k ≤ x

then

k ≤ x

log x

(
1 +

log log x

log x
+

c

log x

)

=
x

log x

(
1 + O

(
log log x

log x

))
,

for some constantc < 5.



3.2 Analysis of the Algorithm

In this subsection we show that the weighing complexity of
the algorithm is

2d log n
d

log d
+ O

(
d

log d
+

d(log log d) log n
d

(log d)2

)
.

This complexity is

2d log n
d

log d

(
1 + O

(
log log d

log d

))

for d = o(n).
We first prove

Lemma 8 For ` ∈ R+,

B` =





(`− 4)2` ` ≤ log d
2

2`+1 log
(

d
2` + 1

)
log d

2 < ` ≤ log d
2d ` > log d

.

The number of weighingsC` at level` of the algorithm sat-
isfies:

(log C` − 4)C` ≤ B`.

Proof. First, it is easy to see thatB` is monotone non-
decreasing function iǹ.

Since the algorithm splits the sets into two almost equal
size disjoint sets the size of the sets inS` is at mostdn/2`e
and the number of sets inS` is at most2`.

Supposè ≤ (log d)/2. Since for` ≤ (log d)/2, 2` ≤√
d the algorithm makes at most2` weighings at stagè ≤

(log d)/2 and therefore(log C` − 4)C` ≤ (` − 4)2` = B`

for ` ≤ (log d)/2.
At stages(log d)/2 < ` ≤ log d we have two cases. If

the number of sets inS` is less that
√

d then the number of
weighingsC` is at most

√
d and sinceB` is monotone non-

decreasing function we have

(log C` − 4)C` ≤
(

log d

2
− 4

)
2

log d
2 = B log d

2
≤ B`.

The other case is when the number of setsn in S` is greater
than

√
d then sinceS` contains at most2` sets, by Corollary

5 the number of weighings isC` where

(log C` − 4)C` ≤ 2n log
(

d + n

n

)

≤ 2`+1 log
(

d + 2`

2`

)

= 2`+1 log
(

d

2`
+ 1

)
= B`.

Now when` > log d then, as above, sinceB` is mono-
tone non-decreasing function in` it is enough to consider the
case where|S`| ≥

√
d. Since the number of counterfeit coins

is bounded byd we haven = |S`| ≤ d and by Corollary 5
the number of weighings is at mostC` where

(log C` − 4)C` ≤ 2n log
(

d + n

d

)

≤ 2d log
(

d + d

d

)
= 2d.

This completes the proof.
We now count the total number of weighings.
For ` ≤ (log d)/2 we haveC` ≤ 2` and therefore the

total number of weighings in the firstb(log d)/2c stages is at
most

b log d
2 c∑

`=1

2` ≤ 2
log d

2 +1 = 2
√

d. (4)

For log d
2 < ` ≤ log d we have(log C` − 4)C` ≤ B`. Since

(C`/16) log(C`/16) ≤ (B`/16) andB log d
2
≥
√

d, by (3)

C` ≤ 2B`

log(B`/16)
≤ 2B`

log B log d
2
− 4

≤ 4B`

log d− 8
. (5)

Now

blog dc∑

`=d(log d)/2e
B` =

blog dc∑

`=d(log d)/2e
2`+1 log

(
d

2`
+ 1

)

≤
∑

` = log d, log d− 1
, · · · ,

log d− d(log d)/2e

2`+1 log
(

d

2`
+ 1

)

≤
d(log d)/2e∑

i=0

d
log(2i + 1)

2i−1

≤ d

∞∑

i=0

log(2i + 1)
2i−1

≤ 8d.

Therefore, by (5),

blog dc∑

`=d(log d)/2e
C` ≤

4
∑blog dc

`=d(log d)/2eB`

log d− 8

≤ 32d

log d− 8

=
32d

log d
+ O

(
d

(log d)2

)
. (6)

Now for ` > log d we have(log C` − 4)C` ≤ 2d and there-
fore by Lemma 7

C` ≤ 2d

log d
+ O

(
d log log d

(log d)2

)
.

Since the number of stages isdlog ne we get

dlog ne∑

`=dlog de
C` ≤ 2d log n

d

log d
+ (7)

2d

log d
+ O

(
d(log log d) log n

d

(log d)2

)
. (8)

By (4), (6) and (7) the result follows.



4 A General Coin Weighing Problems

In this section we give an optimal polynomial time algorithm
for the following general coin weighing problem:

Suppose we are givenn coins out of a collection of coins
of distinct unknown non-negative integer weightsw1, w2, · · · , wn

where
n∑

i=1

wi = W.

Assume we are allowed to weigh subsets of coins in a spring
scale. Determine the weight of each coin in a minimal num-
ber of weighings.

An information-theoretic argument gives the lower bound

k(n,W ) =





W log( n
W +1)

log W W ≤ n
n log(W

n +1)
log n n < W ≤ n2

n W > n2

(9)

This problem was studied forW ≤ n in [P81, RV97,
GK00] and forW > n in [GK00]. Pippenger [P81] showed
nonconstructively that forW = n there is a non-adaptive
algorithm that makesO(W/ log W ) weighings. Grebinski
and Kucherov [GK00] extend this upper bound to anyW ≤
n. They gave a non-constructive non-adaptive algorithm that
asks

4W log
(

n
W + 1

)

log W
weighings. Ruszinḱo and Vanroose [RV97] gave the first
adaptive polynomial time algorithm that solves the problem
whenW = n in O(W (log log W )/ log W ) weighings.

For W ≤ n we give a polynomial time adaptive algo-
rithm that makes

2W log
(

n
W + 1

)

log W

weighings whenW = o(n) and

cβW log
(

n
W + 1

)

log W

weighings whenW = βn where for any constantβ

cβ ≤ c1 =
∞∑

j=1

log(2j + 1)
2j−1

= 4.803048.

See the table at the end of this section for diferent values of
cβ .

WhenW > n the information theoretic lower bound for
this problem gives

W log
(

W
n + 1

)

log n
,

when W < n2 and n when W > n2. So for W > n2

the optimal algorithm is to weigh each one of the coins.
Whenn < W < n2, Ruszinḱo and Vanroose [RV97] al-
gorithm can be extended to anyW > n and is optimal for
W > n(log n)α for any constantα. Grebinski and Kucherov
[GK00] gave a non-constructive non-adaptive algorithm that
makes

4n log
(

W
n + 1

)

log n

weighings.
Here we give an adaptive algorithm that finds all the

weights in polynomial time in

2n log
(

W
n + 1

)

log n

weighings forW = ω(n) and

c′βn log
(

W
n + 1

)

log n

weighings forW = βn wherec′β < c1 = 4.803048.

4.1 The Algorithm

Let w ∈ Nn be the vector of the weights of the coins where
N is the set of non-negative integers where

n∑

i=1

wi = W.

When we weigh coinsS = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}
we get the valuew(S) = wi1 + · · ·+ wik

.
The algorithm is similar to the one in section 3.
We start with an initial setS0 = {S1, S2, . . . , Sq} of `

disjoint subsets of{1, 2, . . . , n} where

1. For every1 ≤ i, j ≤ q, ||Si| − |Sj || ≤ 1.

2. S1 ∪ S2 ∪ · · · ∪ Sq = {1, 2, . . . , n}.
The constantq depends onn and will be determined later in
the analysis of the algorithm.

We findw(Si) for all i = 1, . . . , q and then run the non-
optimal algorithm in section 3 as long as the number of sets
in S` is less thand/ log3 d whered = min(n,W ). When
|S`| > d/ log3 d let S` = {S1, S2, . . . , Sq} andwi = w(Si)
for i = 1, . . . , q. We split each setSi into two almost equal
size disjoint setsSi = Si,1 ∪ Si,2. We construct a(w1 +
1, w2 + 1, . . . , wq + 1)-detecting matrixM of sizek × q.
Then for every rowi, Mi in M we weigh to find

w


 ⋃

Mi,j=1

Sj,1


 =

q∑

j=1

Mi,jw(Sj,1).

We then use the algorithm in section 3 to find allw(Sj,1).
Then allw(Sj,2) = wj − w(Sj,1) can be found. We put
in S`+1 the nonempty setsSj,1, Sj,2 and recursively run the
above.

For the analysis of the algorithm we will consider the
two case whereW ≥ n andn ≥ W . In this abstract we will
only give the analysis for the caseW ≥ n. The other case is
very similar and will be given in the full paper.

4.2 Analysis of the Algorithm whenW ≥ n

In this subsection we give the analysis of the algorithm when
W ≥ n. We will first assume thatq = 1 and then show how
to chooseq to achieve a better weighing complexity.

Consider a binary treeT where each of its nodes is la-
beled with a subset ofS0 = {1, 2, . . . , n}. The root of the
tree is labeled withS0 = {1, 2, . . . , n} and when a node is



labeled withSi = {j, j + 1, . . . , j + p}, then this node is
a leaf if p = 0 and, otherwise, it is an internal node with
two children where the left child is labeled withS2i+1 =
{j, j + 1, . . . , j + bp/2c} and the right child is labeled with
S2i+2 = {j + bp/2c+ 1, . . . , p}.

We can regard algorithmA in the previous section (with
q = 1) as an algorithm that at stage` finds the weightw(Si)
for all Si at level` in the treeT . The above algorithm do not
consider a node that is labeled withSi whenw(Si) = 0. We
change the above algorithm to an algorithmA′ that considers
also those nodes. Obviously, the complexity ofA′ is greater
or equal to the complexity ofA.

Let n = 2t + n′ wheren′ < 2t. Then the number
of nodes in levels̀ = 1, 2, 3, . . . , t + 2 of the treeT are
d` = 1, 2, 22, · · · , 2t, 2n′, respectively. AlgorithmA′ finds
the weights of half of the sets in each level. Therefore, by
Corollary 5, the number of weighings for level` is k` where
k` = d`/2 if d` < n/ log3 n and

k`(log k` − 4) ≤ d` log
(

2W

d`
+ 1

)
,

otherwise. Let
W = βn

where1 ≤ β ≤ n. Let 2t = αn where1 ≥ α > 1/2. Then
n′ = n− 2t = (1− α)n.

If dt+2 = 2n′ < 2n/ log3 n thenkt+2 = n′ < n/ log3 n.
Otherwise, by Lemma 7,

kt+2 ≤ 2n′ log
(

2W
n′ + 1

)

log
(
2n′ log

(
2W
n′ + 1

)) (1 + o(1))

= 2(1− α) log
(

β

1− α
+ 1

)
n

log n
(1 + o(1))

= 2ᾱ log
(

β

ᾱ
+ 1

)
n

log n
(1 + o(1)),

whereᾱ = 1− α.
Now at levelt+2− j, j = 1, 2, . . . we have ifdt+2−j <

2n/ log3 n thenkt+2−j < n/ log3 n. Otherwise, by Lemma 7

kt+2−j ≤
dt+2−j log

(
2W

dt+2−j
+ 1

)

log
(
dt+2−j log

(
2W

dt+2−j
+ 1

)) (1 + o(1))

=
2t+1−j log

(
W

2t−j + 1
)

log n
(1 + o(1))

=
α

2j−1
log

(
2jβ

α
+ 1

)
n

log n
(1 + o(1)).

Therefore in the worst case the number of weighings is

t+2∑

i=1

ki ≤

2ᾱ log

(
β

ᾱ
+ 1

)
+

∞∑

j=1

α

2j−1
log

(
2jβ

α
+ 1

)


× n

log n
(1 + o(1))

=

(
2ᾱ log

(
β
ᾱ + 1

)
+

∑∞
j=1

α
2j−1 log

(
2jβ
α + 1

))

log(β + 1)

× n

log n
log

(
W

n
+ 1

)
(1 + o(1)).

It is easy to see that

φ(α, β) =

(
2ᾱ log

(
β
ᾱ + 1

)
+

∑∞
j=1

α
2j−1 log

(
2jβ
α + 1

))

log(β + 1)

→ 2
whenβ →∞ and therefore forW = ω(n) the bound is

2n

log n
log

(
W

n
+ 1

)
(1 + o(1)).

This bound give the worst case constant

φ(0.825, 1) = 5.28133.

We will now show how to get rid of the first term inφ
and makeα = 1 and then the constant will be

φ(1, β) =

∑∞
j=1

1
2j−1 log

(
2jβ + 1

)

log(β + 1)
.

The idea is to chooseq =
⌊
n/2k

⌋
wherek = d3 log log ne .

Then the first setS0 contains

q =
⌊
n/2k

⌋
= O

(
n

log3 n

)
.

Now we can write

n = 2k
⌊
n/2k

⌋
+ n′

where
n′ < 2k = 2d3 log log ne ≤ 2 log3 n.

Then the number nodes in levels` = 1, 2, 3, . . . , k + 2 of
the treeT ared` = 1, q, 2q, 22q, · · · , 2kq, 2n′, respectively.
Therefore for this case the first term will go into theo(1) of
the complexity and using the same analysis as above we get
the bound on the number of weighings.

The following table show diferent values ofcβ

β c

1 4.803048
1.5 4.338263
2 4.060772

2.143311 4.000000
13.56659 3.000000

100 2.597891
1000000 2.200687

ω(1) 2
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