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ABSTRACT

Motivation: Several computational methods have been
proposed for inference of protein-protein interactions.
Most of the existing methods assume that protein-protein
interaction data are given as binary data (i.e. whether
or not each protein pair interacts). However, multiple
biological experiments are performed for the same protein
pairs and thus the ratio (strength) of the number of
observed interactions to the number of experiments is
available for each protein pair.

Results: We propose a new method for inference of
protein-protein interactions from such experimental data.
This method tries to minimize the errors between the ratios
of observed interactions and the predicted probabilities in
training data, where this problem is formalized as a linear
program based on a probabilistic model. We compared
the proposed method with the association method, the EM
method and the SVM-based method using real interaction
data. It is shown that a variant of the method is comparable
to existing methods for binary data. It is also shown that the
method outperforms existing methods for numerical data.
Availability: Programs transforming input data into LP
format files are available upon request.

Supplementary information:  http://sunflower.kuicr.
kyoto-u.ac.jp/~morihiro/protint/supplement.html

Contact: takutsu@kuicr.kyoto-u.ac.jp

INTRODUCTION

Due to rapid progress of the genome sequencing projects,
whole genomic sequences of more than several tens of
organisms were already determined. As a next step of the
genome projects, many researchers focus on understand-
ing of functions of genes and/or proteins. Information
about protein-protein interaction is important for under-
standing of protein functions because protein-protein
interaction plays a key role in many cellular processes.
Recently, large-scale two-hybrid systems were developed
for comprehensive analysis of protein-protein interactions
in Saccharomyces cerevisiae (budding yeast) (Ito et al.,
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2000, 2001; Uetz et al., 2000). Though these experiments
revealed many unknown interactions, there were a large
gap between the results by Ito et al. (2000, 2001) and Uetz
et al. (2000). These suggest that current experimental
techniques are not complete. Therefore, computational
methods should be developed for inferring protein-protein
interactions.

Several computational methods have been proposed
for inference of protein-protein interactions. Enright et
al. (1999) and Marcotte et al. (1999) proposed the
gene fusion/Rosetta stone method. Marcotte et al. (1999)
also proposed a method combining multiple sources
of data. Wojcik et al. (2001) proposed the interaction
domain pair profile method. Gomez et al. (2001) proposed
probabilistic models for protein-protein interactions. Bock
et al. (2001) applied the SVM (support vector machine)
(Cortes et al., 1995) to inference of protein-protein
interactions.

Recently, some methods were proposed for inferring
domain-domain interactions (and/or signature-signature
interactions) from protein-protein interaction data.
Domain-domain interaction data are useful not only for
more detailed understanding of protein-protein interac-
tions but also for inferring protein-protein interactions:
two proteins are expected to interact if these proteins
contain an interacting domain pair(s). Sprinzak and
Margalit proposed the association method for computing
the score for each domain pair (Sprinzak et al., 2001).
Kim et al. (2002) proposed similar scores and applied the
scores to inference of protein-protein interactions. Deng
et al. (2002) proposed an EM (expectation-maximization)
algorithm for estimating the probability of interaction for
each domain pair. They compared the EM method with
the association method using protein-protein interaction
data by Uetz et al. (2000) and Ito et al. (2000, 2001),
and showed that the EM method was better than the
association method.

Although most of the existing methods assume that
protein-protein interaction data are given as binary data
(i.e. whether or not each protein pair interact is given),
multiple experiments are performed for the same protein
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pairs in practice and thus the ratio of the number of
observed interactions to the number of experiments is
available for each protein pair. For example, Ito et al.
(2000, 2001) performed multiple experiments for each of
protein-protein pairs. But, the results are not always the
same for the same pair. Therefore, it is reasonable to use
the ratio of the number of observed interactions to the
number of experiments as input data, where the ratio is
also referred to as the strength in this paper.

In this paper, we propose a new method for inferring
domain-domain interactions from strength data of protein-
protein interactions. This method tries to minimize the
errors between the ratios of observed interactions and the
predicted probabilities in training data. We formulate this
minimization problem as a linear program based on a
probabilistic model of protein-protein interaction, where
the model was proposed by Deng et al. (2002). In order to
minimize the errors, we use a technique similar to robust
linear programming (Bennet et al., 1992) and soft margin
(Cortes et al., 1995). Though we used the probabilistic
model proposed by Deng et al. (2002), the proposed
method is completely different from their method: their
method uses an EM algorithm whereas our method uses
linear programming, and their method assumes binary
interaction data as input whereas our method assumes
numerical interaction data as input. The proposed method
has another advantage: several kinds of constraints can be
easily put on and thus it is easy to combine the method
with other methods.

The method is compared with the association method,
the EM method and the SVM-based method using real
protein-protein interaction data. It is shown that the
method is comparable to existing methods when it is
applied to binary data and outperforms existing methods
when it is applied to numerical data (i.e. strength data).

ALGORITHMS

In this section, we describe the association method (Sprin-
zak et al., 2001), the EM method (Deng et al., 2002), and
the proposing LP-based method along with its variants.
We also describe a simple SVM-based method.

Association method (Sprinzak et al., 2001)

Let Py, ..., Py denote the proteins in the training data set.
We also use P; to denote the set of domains contained in
P;.Let Dy, ..., Dy denote the domains. Let P;; and Dy,
be the protein pair (P;, P;) and the domain pair (Dy,, D,),
respectively. We also use P;; to denote the set of domain
pairs between P; and P; (i.e. P;j = {Dyn|Dy € Pi, Dy €
P;}).

The association method assigns a simple score to each
domain pair (D,,, D,). Let Np,,, be the number of protein
pairs (in the training data set) containing domain pairs
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Fig. 1. Inference of protein-protein interactions through domain-
domain interactions. In this case, we infer that proteins P; and P,
interact with each other since domains D; and Dy interact with each
other.

(D, Dy). Let I, be the number of interacting protein
pairs (in the training data set) containing domain pairs
(D, Dy). The score (probability of interactions) for
(D, Dy) is simply defined by

Imn

A(Dm7 Dn) = N

mn

EM method (Deng et al., 2002)

We use the probabilistic model proposed in Deng et al.
(2002). We treat protein-protein interactions and domain-
domain interactions as random variable: P;; = 1 if P;
and P; interact with each other, and D;,, = 1 if D,
and D,, interact with each other. We assume that domain-
domain interactions are independent and two proteins
interact if and only if at least one domain pairs from the
two proteins interact (see Fig. 1). Under this assumption,
the probability that P; and P; interact with each other is
given by

PI‘(Pij = 1) =1- l—[ (1 - )bmn)a
Dmnepij

where A, denotes the probability that D,, and D, interact
with each other (i.e. A, = Pr(Dyy,, = 1)).

Deng et al. (2002) considered two types of experimental
errors: false positives, in which two proteins do not
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interact in reality but were observed to be interacting in
the experiments, and false negatives, in which two proteins
interact in reality but were not observed to be interacting in
the experiments. Let fp and fn denote the false positive
rate and the false negative rate, respectively. Letting O;;
be the variable for the observed interaction result for P;
and P; (O;; = 1 if the interaction is observed), we have:

fp=Pr(0;; =1|P;j; =0),
fn =Pr(0,~_i = 0|P,'j =1).

Then, Pr(0;;) is given by

PI‘(OZ'J' = 1)
=Pr(0;j =1, Pj=1)+Pr(0;; =1, P;; =0)
= Pr(Pj = 1)(1 — fn) + (1 — Pr(Pij = D) fp.

Deng et al. (2002) defined the likelihood function (the
probability of the observed whole proteome interaction
data) by

L= H(Pr(Oij = 1))01'_/'(1 — Pr(Oij — 1))1—0,-_,-’

where O;; = 1 if the interaction between P; and P; is
observed. The likelihood L is a function of (A, fp, fn).
Since it is difficult to directly compute (Ap,, fp, fn)
which maximize L, they developed an EM algorithm,
where fp and fn were fixed to certain values.

LPBN: LP-based method for binary interaction
data

In this subsection, we describe a basic version (called
LPBN) of the proposing LP-based method.

Using the probabilistic model for the EM method
and some threshold ®, we can predict protein-protein
interactions by the following rule:

P; and P; interact <= 1 — 1—[ (I = Amn) = ©.
Dpn€Pij

The condition can be transformed as follows:
1= [ a=mm=o0,
Dmnepij

[] ad=rm<1-0,

Dmnepij

| [T (=2 | <In(t-0),
Dmnepij

Y I —dyy) <In(l - ©),

Dmn€Pij

where ‘In’ denotes the natural logarithm. Let y,,,, = In(1—
Amn) and B = In(1 — ®). Then, the above condition can

be written as

Z Ymn =< B.

DmnEP[j

This is a linear inequality. Therefore, if we can find v,
(Vmn < 0) satisfying

Oij=1 > Y =p
DmnEPij

for all observed data (i.e. all training data) O;;, we can
obtain the parameters consistent with all training data.

However, it is usually impossible to satisfy all con-
straints. In such a case, it is reasonable to try to minimize
the classification error. Though it is quite difficult to
minimize the number of unsatisfied constraints (Amaldi et
al., 1998), it is possible to minimize the sum of distances
(Bennet et al., 1992; Cortes et al., 1995). Therefore, we
use the following linear program:

minimize &ij,
Pij
subject to
Z Ymn < B — const +§ij
Dyp€Pij

for Pl'j such that Oij =1,
Z Ymn > P+ const —§&;;

Diyn€Pij
for Pij such that Ol'j =0,
Vn <0 forall y,,,
§; >0 for all §;;,
B <0,

where const is an appropriate small constant (we currently
use const = 0.01). Once y,,, and B are determined,
we can obtain A, and ® by A,, = 1 — exp(Vmn) and
® =1 — exp(pB), respectively.

LPNM: LP-based method for numerical interaction
data

Here we describe an LP-based method for numerical in-
teraction data (called LPNM), which is the most important
variant of the LP-based method.

In LPBN, we used some threshold ® to predict protein-
protein interactions. On the other hand, in LPNM, we set
®;; to be the ratio of interactions between proteins P; and
P; in a series of experiments, that is,

)
V4

where N(O;;) is the number of times an interaction
between proteins P; and P; is observed in the experiments,
and Z is the total number of experiments.

Since ©;; is the ratio of interactions between P; and
Pj, we consider here to minimize the difference between
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Pr(P;; = 1) and ®;;, in other words, between the
probability of observing an interaction in the above
probabilistic model and the ratio of the interactions
observed in the experiments.

When Pr(P;; = 1) and ®;; are equivalent, the following
holds:

> In(l = App) =In(1 — ©;)).

D ePij

From the above equation, we have a linear equation

Z Ymn = ﬂij

DmHGP,'j

for any P; ; by setting y,,, = In(1—24,,,) and B;; = In(1—
©;;). If we have y;;,,, for any m and n satisfying the above
equations, we can obtain parameters for domain-domain
interactions consistent with a numerical interaction data
set.

These equations, however, do not always hold. It is
hence reasonable to try to minimize the sum of the
difference > p 1>_p,,ep; Ymn — Bijl. We therefore use
the following linear program to minimize the difference:

minimize E ajj

subject to
Z Ymn — Bij < @ij,
Dpn€Pij
Bij — Ymn = Qij,
D,,,,,EP,'_,‘

Ymn < 0 for all y,,
ojj = 0 forall oj,
ﬁij < 0.

Combination of LPBN and EM

Due to the relation of A, = 1 — exp(¥mn) (equivalently,
VYmn = In(1 — Xy,)), we can combine the LPBN
method with the EM method. We examine two kinds of
combinations: LPEM and EMLP.

The LPEM method first computes y;,, using LPBN.
Then, it converts ¥, into A,,, and applies the EM method
using these A, as the initial values.

The EMLP method first computes A, using the EM
method. Next, the following constraints are added to the
linear program:

In((1 4+ 8)(1 — Xmn)) < VYmn < In((1 = 8)(1 — Apn)),

where § is an appropriate fixed constant (we currently use
8 = 0.05 and 6 = 0.2). Then, y,,, are obtained by solving
the linear program.

SVM-based method

It is reasonable to apply SVM to inference of protein-
protein interactions because LPBN is similar to SVM
(Cortes et al., 1995). Although SVM was already applied
to inference of protein-protein interactions by Bock et
al. (2001), they did not compute scores or probabilities
of domain-domain interactions. In oder to apply SVM
to inference of domain-domain interactions, we treat
observed interacting pairs as positive examples and non-
observed pairs as negative examples. For each protein pair
(P;, Pj), we define the feature vector f; j by

(fij)mn =1 ifDmn € Pijv

(fi))"™" = 0 otherwise,

where (f;;)"™" denotes the mnth element of the vector
fij- If we use the linear kernel and the soft margin in
SVM, it will be quite similar to LPBN. But, there is a big
difference. In the SVM formulation, we can not guarantee
VYmn < 0 (recall that y,,,;, = In(1 — A,;;,)). This condition is
very important to give the probabilistic interpretation for
the obtained parameters.

RESULTS
Data and implementation

We compared the LP-based methods (LPBN, LPNM,
LPEM, EMLP) with the association method (ASSOC),
the EM method (EM) and the SVM-based method
(SVM). For the training and test data of protein-protein
interactions, we used two data sets, the core data set
of Saccharomyces cerevisiae (core20020404.1st) of the
DIP database (Xenarios et al., 2002) and the full data
of Ito’s Yeast Interacting Proteins (YIP) database (Ito et
al., 2000, 2001). We used the DIP database and the YIP
database as for binary interaction data and for numerical
interaction data, respectively. The main reason is that
the DIP database seems to consist of the most reliable
interaction data, and the YIP database provides numerical
interaction data for pairs of proteins as the number of
IST (Interaction Sequence Tags) hits. For each protein in
these databases, we obtained its sequence data from the
Swissprot/TTEMBL database (Bairoch et al., 2000). In
order to derive domains from the sequences, we used In-
terProScan (version 3.1) (Zdobnov et al., 2001) as in Kim
et al. (2002); Sprinzak et al. (2001). Though InterProScan
identified not only protein domains but also protein
signatures such as functional sites and sequence motives,
we used all the hits because signatures may also play an
important role in protein-protein interaction. As in Kim
et al. (2002); Sprinzak et al. (2001), InterPro signatures
in the same parent-child relationship were also merged
into one signature. The sequence and signature pairs
we used can be found at http://sunflower.kuicr.kyoto-u.
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ac.jp/~morihiro/protint/supplement.html. We also used
PFAM (Bateman et al., 2002) to find protein domains,
and obtained results similar to those with InterPro. These
supplementary data are also provided from the above web
page.

We used SVM/8" (Joachims et al., 1999) for SVM
learning, and used LOQO (version 1.08) on SUN UNIX
(Vanderbei et al., 1996) and Ip_solve (version 4.0) on
LINUX (ftp://ftp.es.ele.tue.nl/Ip_solve) for solving linear
programs. The experiments were mostly performed on
a PC cluster with 8 Pentium Xeon 2.8 GHz processors,
where only one CPU was used in all experiments. In each
case, both training and test could be done in a few minutes.

The scores obtained by ASSOC were used as the initial
values of A,,, for EM since it was much better to use these
scores than to use random initial values. EM steps were
repeated until the difference of log-likelihood between
two consecutive steps became less than 0.01 or until the
number of repeats exceeded 200. Following to (Deng et
al., 2002), fp = 2.5E-4 and fn = 0.80 were used for
EM. Though we examined several other parameter sets
for EM, the results did not change significantly. We used
the linear kernel for SVM with the default value of the
trade-off parameter. Though we examined other kernels
and parameters, the results did not change significantly.

For binary interaction data set, we evaluated the methods
using the relationship between sensitivity and specificity.
We call a protein pair a true positive if it is both predicted
and observed, a false positive if it is predicted but is not
observed, a true negative if it is neither predicted nor
observed, and a false negative if it is not predicted but is
observed. The sensitivity is defined to be the ratio of the
number of true positives to the number of true positives
and false negatives. The specificity is defined to be the
ratio of the number of true negatives to the number of true
negatives and false positives.

For numerical interaction data, we evaluated the meth-
ods by root mean squared error (RMSE) between the pre-
dicted probability Pr(P;; = 1) and the observed ratio ©;;
from the YIP database. In precise, for a set of proteins P,

1

RMSE = | —
Pl

> (Pr(Pj =1) — ©;)2

P,’j eP

Results on binary training data

In order to evaluate the classification abilities of the
methods for binary data, we first used the same data set for
both training and test. Among 3003 pairs in the DIP core
data set, we used 1767 pairs as positive data (POS), for
each of which at least one hit was found by InterProScan.
The other protein pairs were used as negative data (NEG),
where we only considered the proteins that appeared
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Fig. 2. Comparison of specificity and sensitivity for several methods
on training data. It is seen that EM is the best, LPBN and ASSOC
are comparable, and SVM is poor.

in POS. Because of the limit of memory space, only
(randomly selected) 40% of NEG were given for LPBN
and SVM.

The result is shown in Figure 2. Since performances of
LPEM and EMLP were almost the same as EM, the curve
for LPEM or EMLP is not drawn in Figure 2. It is seen
that EM is the best, LPBN and ASSOC are comparable,
and SVM is poor. It is suggested from the figure that
the probabilistic model proposed by Deng et al. (2002)
is appropriate because SVM is not based on the model
whereas the other methods are based on the model.

Results on binary test data

Next, we compared the methods for binary data using a
standard evaluation procedure: parameters were learned
using the training data set and then the relationship
between sensitivity and specificity was measured using the
test data set. We randomly select 2/3 of POS as positive
training data and the remaining 1/3 of POS as positive
test data. We randomly selected about 100000 pairs not
contained in POS as negative training data. It should be
noted that about 28 000 pairs among 100000 pairs were
really used for training since we only used pairs each
of which contained at least one domain pair appearing
in positive training data. We used the remaining set of
the pairs as negative test data. We repeated the above
procedure 10 times and took the average over 10 trials.

The relationship between sensitivity and specificity for
the test data set is shown in Figure 3. It should be noted
that we removed protein pairs in the test data set which did
not have domain pairs appearing in the positive training
data set because the scores of such pairs are always 0.
If such pairs are included, the sensitivity will decrease
significantly. For example, the sensitivity decreases to
50 ~ 60% at the specificity = 80% in each method.
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Fig. 3. Comparison of specificity and sensitivity for SVM, EMLP,
LPEM, ASSOC and EM on test data.
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Fig. 4. Detailed comparison of specificity and sensitivity for EMLP,
ASSOC and EM on test data.

It is seen from Figure 3 that performance of SVM was
poor. As in the case of training data, performance of
LPEM is similar to that of EM. We did not examine LPBN
because its performance for training data was similar
to that of ASSOC. Since the differences among EMLP,
ASSOC and EM are unclear from Figure 3, the details of
a part of Figure 3 are shown in Figure 4 for these three
methods. It is seen that EMLP is slightly better than EM,
and EM is slightly better than ASSOC. Though EM is
better than EMLP in the region of specificity <50%, the
region of specificity >50% is much more important.

Results on numerical interaction data

Lastly, we show results on numerical interaction data. We
evaluated LPNM, EM and ASSOC. We did not evaluate
LPEM, EMLP or SVM, because parameters obtained by
LPEM and EMLP were similar to those by EM for binary

Table 1. Root mean squared errors and average elapsed time for numerical
interaction data

LPNM EM ASSOC
Error Ist 0.0244429 0.300659 0.284627
2nd 0.0325133 0.31521 0.287918
3rd 0.030796 0.299403 0.287875
4th 0.0346763 0.292925 0.268931
Sth 0.0317004 0.276053 0.271517
Average 0.03082580 0.2968499 0.2801738
Time (sec) 1.295985 1.379543 0.0064746

data and the performance of SVM was poor even for
binary data. We evaluated the methods by 5-fold cross
validation. We used 1586 interaction pairs of proteins and
the numbers of their IST hits as a whole data set.

In numerical interaction data, the ratio of the number
of IST hits to the number of experiments is given for
each pair of proteins. On the other hand, EM and ASSOC
require labels (positive (interact) or negative (not interact))
to find appropriate parameters. We then have to set some
threshold to divide the set of protein pairs into positive and
negative data. We set here the threshold for IST hits to be
3, that is, interaction pairs whose IST hits are less than 3
are regarded as negative data, and the others as positive
data. This threshold might seem to be too small compared
with the total number of experiments (192 = 96 x 2). But,
the numbers of IST hits for most protein pairs are very
low and thus we use this threshold. We examined several
other threshold values, but the results did not change
significantly.

Table 1 shows root mean squared errors and average
elapsed time for test data sets using LPNM, EM and
ASSOC. It should be noted that we employed 5-fold cross
validation and the kth row means that the kth block among
five blocks of the data is used as a test data set.

It is seen from the table that the errors for LPNM are
much smaller than those for ASSOC and EM. Since the
strength (i.e. the ratio of the number of IST hits to the
number of experiments) takes a value between 0.0 and
1.0, the errors for LPNM are considerably small whereas
the errors for EM and ASSOC are large. These results
suggest that, in the sense of minimizing RMSE, LPNM
was able to find much better parameters (i.e. probabilities
of domain-domain interactions) than existing methods. It
is reasonable because LPNM tries to minimize the error,
whereas EM or ASSOC does not try to minimize the error.
It is also seen that RMSE for EM is always greater than
that for ASSOC. This is reasonable because EM tries to
make the probabilities for interacting pairs in the training
data close to 1.0 whereas strengths of most interacting
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Fig. 5. Distributions of probability errors for LPNM, EM and
ASSOC. Y-axis shows the number of interacting protein pairs
for which the errors (between the predicted probabilities and the
observed probabilities) are within the specified range. The average
numbers over 5 test data sets are shown.

pairs are much lower than 1.0. As for the elapsed time,
LPNM and EM are comparable, but ASSOC is much
faster than them.

Figure 5 shows the average frequencies of probability
errors of protein-protein interactions for the test data
during the cross validation by LPNM, ASSOC and EM
respectively. Note that distributions of errors for EM (and
ASSOC) are large around 1.0 whereas these are small for
LPNM. It is reasonable because EM tries to maximize
the probabilities for interacting protein pairs, but the real
probabilities are small.

For training data sets, the errors for LPNM are much
smaller than those for EM and ASSOC (See our supple-
mental web pages). But, in EM and ASSOC, the errors for
the training data are larger than those for the test data. It is
also reasonable because EM or ASSOC was not designed
for inference of strengths of interactions.

Table 2 shows examples of inferred strengths (the
number of IST hits) of protein-protein interactions for
LPNM, EM and ASSOC. In this table, data are shown for
protein pairs (in one test data set) for which the numbers
of IST hits in the YIP database are greater than 5 and
at least one method output non-zero probabilities. It can
be seen that inferred numbers of IST hits by LPNM are
much closer to the numbers in the YIP database than those
by EM and ASSOC. It is also seen that in most cases,
the inferred numbers by EM and ASSOC are close to the
maximum number of IST hits (i.e. 192 = 96 x 2).

DISCUSSION

We proposed an LP-based method (along with several
variants) for inferring strengths of protein-protein interac-

Table 2. Examples of inferred number of IST hits by LPNM, EM and
ASSOC

Protein pair YIP LPNM EM ASSOC
Q06178 P53204 36 19 192 192
Q12518 Q99210 23 14 192 192
P53949 P50946 23 5 192 192
P32458 P32468 11 1 0 0
P27472 P47011 11 11 192 192
P07278 P05986 10 4 192 192
Q04739 P12904 9 3 192 192
P40054 P40054 9 3 191 187
P40917 P32366 7 15 192 192
P36017 P50079 7 2 0 0
P25383 Q99303 7 1 192 87
P23291 P39010 7 5 192 192
Q12084 Q12084 6 0 192 192
Q06169 Q12402 6 6 192 192
Q02821 P40892 6 1 0 0
P38697 Q02821 6 2 186 144

tions from experimental data. We compared the proposed
method with existing methods such as the association
method and the EM method. For numerical interaction
data, the LPNM method outperformed existing methods.

The most important feature of the proposed method is
that strengths of protein-protein interactions are taken into
account for both training and test data. Although most of
existing methods (e.g. ASSOC, EM, SVM) output scores

~ strengths) of protein-protein interactions, training data
should be given as binary data. It seems difficult to modify
existing methods so that numerical interaction data can be
given as training data.

Another feature of the proposed method is that several
kinds of constraints can be put on. In this paper, we used
the following two types of constraints: constraints on the
strengths of interactions (LPNM), and constraints on the
ranges of the parameter values (EMLP). The former was
quite useful as mentioned above. The latter was useful to
combine the LP-based method with the EM method. It
would be interesting to seek other types of constraints.

Though the LPNM method outperformed existing meth-
ods for numerical interaction data, its performance is not
satisfactory as seen from Table 2. Therefore, improved
methods for numerical data should be developed.

For the binary training data set, the EM method was
better than LP-based methods and the association method.
But, the differences for the test data set were small. In fact,
the EM method was worse than the association method for
several cases in which a lot of negative training data were
given. It is probably due to overfitting. Thus, we might be
able to improve the prediction accuracy for the test data set
if some technique for avoiding overfit can be incorporated
to the EM method and/or the LP-based method.
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As mentioned before, all examined methods except the
SVM-based method are based on the probabilistic model
proposed by Deng et al. (2002) and are better than the
SVM-based method. This suggests that the probabilistic
model by Deng et al. (2002) is adequate and might capture
some features of the relationship between domain-domain
interactions and protein-protein interactions.

Though the LPBN method was better the SVM-based
method, it is similar to the SVM-based method in the sense
that both methods use a hyperplane to separate positive
examples from negative examples, and try to minimize
the sum of classification errors. If SVM can be modified
for cooperating with constraints that the parameters must
be negative, better results might be obtained. It would
be interesting to study such modifications since SVMs
have been successfully applied to many problems in
Bioinformatics. It would also be interesting to modify
SVM so that it can cooperate with numerical training data.
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