
Inference methods for a pseudo-Boolean satisfiability solver

Heidi E. Dixon and Matthew L. Ginsberg
CIRL

1269 University of Oregon
Eugene, OR 97403-1269

{dixon, ginsberg}@cirl.uoregon.edu

Abstract

We describe two methods of doing inference during search
for a pseudo-Boolean version of theRELSAT method. One
inference method is the pseudo-Boolean equivalent of learn-
ing. A new constraint is learned in response to a contradiction
with the purpose of eliminating the set of assignments that
caused the contradiction. We show that the obvious way of
extending learning to pseudo-Boolean is inadequate and de-
scribe a better solution. We also describe a second inference
method used by the Operations Research community. The
method cannot be applied to the standard resolution-based AI
algorithms, but is useful for pseudo-Boolean versions of the
same AI algorithms. We give experimental results showing
that the pseudo-Boolean version ofRELSAT outperforms its
clausal counterpart on problems from the planning domain.

Introduction
Building boolean satisfiability solvers that implement strong
proof systems is an important goal for the field of AI. This
goal is motivated by results from the field of proof complex-
ity showing that some proof systems are more limited than
others. An inference system is limited if it is impossible to
construct short proofs of unsatisfiability for certain families
of problems. These results have significant consequences for
systematic satisfiability solvers. Because systematic solvers
can be viewed primarily as constructing proofs of unsatisfi-
ability, it follows that these solvers are subject to the limita-
tions of the proof systems they implement.

Throughout the AI community, satisfiability problems are
typically represented as a set of constraints in conjunctive
normal form (CNF) with resolution as the primary inference
step. We believe that resolution-based methods are prevalent
because of their simplicity. Unfortunately, many unsatisfi-
able problems have no short resolution proofs of unsatisfia-
bility. An example is the pigeonhole problem which states
thatn + 1 pigeons cannot be placed inn holes. The shortest
resolution proof of unsatisfiability for the pigeonhole prob-
lem is exponential in the number of pigeons (Haken 1985).
Because resolution is a weak proof system, resolution-based
methods have poor performance on a variety of easy prob-
lems like the pigeonhole problem. They may also be unnec-
essarily slow on structured problems from areas like plan-

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ning and scheduling where embedded pigeonhole problems
are common. Refining current algorithms may yield im-
provements, but can never provide polynomial time scaling
on these problems unless the underlying representation and
inference used by the solver is changed.

One approach to addressing the problem of representa-
tion is to adapt a successful resolution-based method to use
a stronger representation. The work done on resolution-
based methods has yielded successful strategies and pro-
duced significant improvements in performance. The hope
is that the progress made will carry over into new represen-
tations. The growing number of solvers taking this approach
show that such implementations are possible. This is the ap-
proach used inFDPLL (Baumgartner 2000); a version of the
Davis-Putnam-Logeman-Loveland (DPLL) procedure lifted
to solve first-order logic problems. This is also the approach
used inOPBDP(Barth 1995),PRS(Dixon & Ginsberg 2000)
and SATIRE (Whittemore, Kim, & Sakallah 2001). These
solvers borrow from the Operations Research using pseudo-
Boolean (PB) representation.

This paper discusses some of the challenges and bene-
fits of lifting the RELSAT style of learning to use pseudo-
Boolean representation. The algorithmRELSAT is an exten-
sion of theDPLL method. Both algorithms work by taking
a valid partial assignment and attempting to extend it to a
valid full assignment by incrementally assigning values to
variables. An important difference between the algorithms
is thatRELSAT infers new constraints during search by us-
ing resolution. It uses the technique of relevance-bounded
learning to keep the size of the constraint set manageable
(Bayardo & Schrag 1997; Ginsberg 1993). Learned con-
straints are removed from the constraint set when they are
less likely to be needed. These added abilities giveRELSAT
a dramatic advantage overDPLL on structured problems.

Our primary focus will be on the way inference is used
during search and how this role changes when we move from
CNF to pseudo-Boolean representation.RELSAT will infer
a new clause every time a contradiction is encountered. The
purpose of the new clause is to eliminate the set of assign-
ments that caused the contradiction. The resolution infer-
ence rule happens to be perfect for this purpose.

A comparable pseudo-Boolean version of this method
should achieve the same goals. In the pseudo-Boolean case
we have more options to consider when generating a new



constraint in response to a contradiction. The correct way
to infer new constraints is less clear. Pseudo-Boolean infer-
ence has added benefits that result directly from the more
expressive nature of pseudo-Boolean constraints. In some
cases, a new constraint may eliminate assignments corre-
sponding to parts of the search space not yet explored, in
addition to eliminating the set of assignments that caused a
contradiction. This, in a sense, eliminates mistakes before
they are made. In other cases, care must be taken to ensure
that the generated constraint actually eliminates the set of as-
signments that led to the contradiction. We will give explicit
examples showing each of these cases, and we will describe
a learning method for the pseudo-Boolean case that meets
the requirement of eliminating a specific set of assignments
in response to a contradiction. We present experimental re-
sults comparing the performance of the clausal version of
RELSAT to the pseudo-Boolean versionPRS.

Another benefit of using pseudo-Boolean representation
is that new kinds of inferences are possible that are not possi-
ble in a resolution system. A more expressive constraint can
be inferred from a set of simple disjunctive constraints. Au-
tomating these inferences present a new challenge because
they have no precedents in resolution-based methods. We
describe a technique from the field of Operations Research
that can be used to automate this kind of inference and show
how it can be used in an AI style solver.

Preliminaries
Representation and Inference
Conjunctive normal form and resolution Within the AI
community, satisfiability problems are typically represented
as a set of constraints in conjunctive normal form (CNF). A
constraint or clause is a disjunction of literals and a prob-
lem instance is the conjunction over a list of clauses. The
primary inference step is resolution.

a1 ∨ · · · ∨ ak ∨ l
b1 ∨ · · · ∨ bm ∨ l

a1 ∨ · · · ∨ ak ∨ b1 ∨ · · · ∨ bm

Two clauses resolve if there is exactly one literall that ap-
pears positively in one clause and negatively in the other.
A new clause is derived by disjoining the two clauses and
removing bothl and¬l. If a literal appears twice in the re-
sulting clause, the clause can be rewritten with the literal
appearing only once. This is known as factoring.

Linear inequalities and cutting planes Pseudo-Boolean
representation comes from the Operations Research commu-
nity and is a subset of their general representation in which
constraints are expressed as linear inequalities

∑
ajxj ≥ k

Here, thexi are non-negative integer variables and theai

andk are integers. The corresponding inference system is
called the cutting plane system (CP). There are two rules
of inference: (i) derive a new inequality by taking a linear
combination of a set of inequalities, (ii) given an inequality

∑
ajxj ≥ k derive

∑daj

d exj ≥ dk
de, whered is a positive

integer. The notationdqe denotes the least integer greater
than or equal toq. If the inequality0 ≥ 1 is derived then the
original set of inequalities is inconsistent. If the integer vari-
ables are restricted to the domain{0, 1}, then the inequal-
ity is calledpseudo-Boolean. The expressionx refers to the
negation of the variablex, so that for all literalsx, x = 1−x.

The CP inference system is properly stronger than res-
olution. The existence of a polynomial-length resolution
proof implies the existence of a polynomial-length cutting
plane proof, but the reverse does not hold (Cook, Coullard,
& Turán 1987). The pigeonhole problem which has only
exponential-length proofs in resolution has polynomial-
length proofs in CP (Cook, Coullard, & Turán 1987).

Translating between representations A disjunction of
literals x0 ∨ x1 ∨ · · · ∨ xn, can be equivalently written as
a linear pseudo-Boolean inequality.

x0 + x1 + · · ·+ xn ≥ 1

Pseudo-Boolean inequalities with a right hand side that is
equal to1 are called clausal inequalities.

We can translate a pseudo-Boolean constraint into a set of
clauses in CNF as follows. Given a constraint

n∑

i=1

aixi ≥ k (1)

Let L = {x1, x2, . . . , xn} be the set of literals in (1). For
any setS = {y1, y2, . . . , yj} such thatS ⊆ L, if

∑

xi 6∈S

ai ≤ k − 1

then the disjunctiony1 ∨ y2 ∨ · · · ∨ yj is implied by the con-
straint (1). In other words, if the sum over the coefficients
of the remaining literals cannot satisfy the constraint, then
at least one of the literals inS must be true. For example,
given the constraint

2a + b + c ≥ 2

we can derive the clausea∨ b, sincec alone is not enough to
satisfy the constraint. The constraint (1) is logically equiva-
lent to the conjunction over the set of all disjunctions gener-
ated this way (Benhamou, Sais, & Siegel 1994).

Understanding RELSAT

The algorithm RELSAT (Bayardo & Schrag 1997) is a
version of the classic Davis-Putnam-Logeman-Loveland
method (Davis & Putnam 1960; Loveland 1978) with the
addition of relevance-bounded learning. If the relevance-
bounded learning feature is disabled during execution, then
RELSAT becomes aDPLL implementation.

Davis-Putnam-Logeman-Loveland DPLL takes a valid
partial assignment and attempts to extend it to a valid full
assignment by incrementally assigning values to variables.
This creates a binary tree where each node corresponds to a
set of assignments.DPLL explores the tree using depth first



search with backtracking. A backtrack occurs when a con-
tradiction is encountered. The algorithm terminates when a
solution is found or when the entire space has been explored.

Procedure 0.1 Davis-Putnam-Logeman-LovelandGiven
a SAT problem S and a partial assignment of values to vari-
ablesP , to computesolve (C, P ):

if unit-propagate (P ) fails, then return failure
elsesetP := unit-propagate (P )
if all clauses are satisfied byP , then returnP
v := an atom not assigned a value byP
if solve (C, P ∪ (v := true )) succeeds,

then returnP ∪ (v := true ))
else return solve (C, P ∪ (v := false ))

Variables are assigned values in two ways. In the first
way, unit propagation, clauses are identified that have no sat-
isfied literals and exactly one unvalued literal. In each such
clause, the unvalued literal is valued favorably. This process
is repeated until a contradiction is encountered, a solution is
found, or no more clauses meet the necessary conditions. If
the unit propagation function terminates without reaching a
contradiction or finding a solution, then a variable is selected
and assigned a value by a branching heuristic.

Procedure 0.2 Unit propagation
to computeunit-propagate (P ):

while there is a currently unsatisfied clausec ∈ C
that contains at most one literal
unassigned a value byP do

if every atom inc is assigned a value byP ,
then return failure
elsea := the atom inc unassigned byP

augmentP by valuinga so thatc is satisfied
end if

end while
return P

Learning and relevance-bounded learning One way that
solvers use inference is through learning (Stallman & Suss-
man 1977). A drawback to simple backtracking algorithms
like DPLL is that they may end up solving the same sub-
problems repeatedly. Learning new valid constraints can
prevent this from happening. When a contradiction is en-
countered, the set of assignments that caused the contradic-
tion are identified. We will call this set theconflict set. A
new constraint is constructed that excludes the assignments
in the conflict set. The constraint is added to the constraint
database to ensure that the faulty set of assignments will
be avoided in the future. An example might look like this.
Given the partial assignment{a = true , b = false , d =
true , e = false } (which we write somewhat more com-
pactly as{a, b, d, e}), together with the two clauses

a ∨ b ∨ c ∨ e

c ∨ d

We encounter a contradiction for variablec. The first clause
requiresc, while the second requiresc. The conflict set
{a, b, d, e} is the union of the unfavorable assignments for

each clause. Before we backtrack, we construct a new clause
that is the resolvent of the preceding two clauses.

a ∨ b ∨ e ∨ d (2)

This clause has the property of being unsatisfied by the cur-
rent partial assignment. It disallows the assignments that
caused the contradiction, and we can use (2) to determine
how far we must backtrack before we can safely move for-
ward again. The derived clause “fixes” the mistake that was
made in that we are protected from repeating the mistake as
long as we keep the new clause in our constraint database.

Learning new constraints reduces the size of the search
space by eliminating parts of the space that cannot contain
solutions. Unfortunately, reducing the size of the search
space does not always correspond to a reduction is execu-
tion time. The number of constraints learned can be expo-
nential in the size of the problem. This can exhaust memory
resources. The algorithm spends more time managing its
large database of constraints and performance degrades. The
learning process must be restricted in some way to prevent
an unmanageable number of constraints from accumulating.

Relevance-bounded learning is a restricted version of
learning. Our focus is not relevance-bounded learning, so
we give only a high level description of it. Relevance-
bounded learning defines an integer measure of how rele-
vant a learned constraint is in relation to the current position
in the search space. The relevance of a constraint estimates
the likelihood that the constraint can be used to prune the
search space. Constraints with low values are more relevant
then those with higher values. As the position in the search
space changes the relevance of the clause will change in re-
sponse. Arelevance boundis established, and constraints
are discarded when their relevance exceeds the bound.

Learning with pseudo-Boolean constraints

The pseudo-Boolean case is similar to the clausal case in that
a contradiction occurs when a partial assignment together
with two constraints causes a variable to be labelled both1
and0. A good solution should generate a constraint that dis-
allows the set of assignments that caused the contradiction.
We will describe two ways of generating a new constraint in
response to a contradiction. The first way generates a com-
plex constraint that may eliminate extra sets of assignments
in addition to those in the conflict set. Unfortunately, in cer-
tain cases it may not eliminate the exact set of assignments
in the conflict set. The second way eliminates exactly the set
of assignments in the conflict set. A good learning strategy
can be built by combining the two methods.

One way of generating a new constraint is to do a pseudo-
Boolean version of resolution, taking a linear combination
of the two constraints in a way that causes the contradic-
tion variable to be canceled out of the resulting constraint.
Consider the following example. Suppose we have a partial
assignment{c = 1, e = 1, b = 0, d = 0}, and constraints

a + d + e ≥ 1 (3)

a + b + c ≥ 2 (4)



These cause the variablea to be simultaneously1 and 0.
We generate a new constraint by adding (3) and (4) to get
d + e + b + c ≥ 2.

By inspection, we can see that the conflict set is{b =
0, d = 0, e = 1}, and that the derived constraint excludes
this assignment. This constraint also eliminates some ad-
ditional bad assignments. For example, it also eliminates
the assignment{c = 0, d = 0, e = 1}. In addition to fix-
ing the current assignment error, we’ve learned something
new about a different part of the search space. In the clausal
version, learned constraints prevent us from repeating a mis-
take. Here we have the potential to prevent mistakes before
they happen.

Unfortunately it is possible to construct cases where the
constraint derived does not exclude the set of assignments
causing the contradiction. Given the partial assignment{c =
1, e = 1, b = 0, d = 0} and constraints

2a + d + e ≥ 2

2a + b + c ≥ 2
Adding givesd+e+b+c ≥ 2, which still allows the set of as-
signments in the conflict set{b = 0, d = 0}. We may make
the same bad assignment again later in the search. Also this
constraint does not give any direction to the backtrack since
it is satisfied under the current partial assignment.

We define a second method of generating a constraint in
response to a contradiction that is guaranteed to eliminate
the necessary set of assignments. We begin by constructing a
weakening of each parent constraint into a clausal inequality
using the method described earlier for generating valid CNF
clauses from a pseudo-Boolean constraint. Each constraint
will satisfy two properties: it contains the contradiction vari-
able in the same form as it appears in the parent constraint,
and all other literals are unsatisfied under the current partial
assignment. When choosing literals to add to the constraint,
priority is given to literals whose assignments occur earli-
est in the partial assignment. The two constraints generated
can be resolved together to create a new valid constraint that
is unsatisfied under the current partial assignment. The size
of the resulting backjump will be maximized because the
learned constraint contains the failed literals valued earliest
in the partial assignment. In the previous example the two
weakened constraints would bea + d ≥ 1 anda + b ≥ 1,
which we could then resolve together to getd + b ≥ 1. This
constraint correctly eliminates the assignments in the con-
flict set and gives direction to the backtrack.

It can be determined before hand by inspecting the parent
constraints if a constraint generated with the linear combina-
tion method will eliminate the conflict set. We consider the
coefficients of the contradiction variable in each constraint.
If either of these coefficients is equal to1 then the constraint
generated by the first method will subsume the constraint
generated by the second method and therefore eliminate the
conflict set. If neither coefficient is equal to1, then it is un-
determined whether the conflict set will be eliminated. In
our implementation we use the first method when it is guar-
anteed to eliminate the conflict set. In all other cases we
generate a constraint with both methods and choose the con-
straint that causes the larger backtrack.

Constraint strengthening
An advantage of using pseudo-Boolean representation is that
some interesting new inference techniques become possible.
The following method is from the Operations Research field
and is used to preprocess mixed integer programming prob-
lems (Savelsbergh 1994; Guignard & Spielberg 1981).

Suppose we make the assumption{x0 = 1} and, applying
some form of propagation to our constraint set, we discover
that under this assumption a constraint

∑
aixi ≥ r becomes

oversatisfied by an amounts in that the sum of the left hand
side is greater (bys) than the amount required by the right
hand side of the inequality. The oversatisfied constraint can
be replaced by the following:

sx0 +
∑

aixi ≥ r + s (5)

If x0 = 1, we know that
∑

aixi ≥ r + s, so (5) holds. If
x0 = 0, thensx0 = s and we still must satisfy the original
constraint

∑
aixi ≥ r, so (5) still holds. The new constraint

implies the original one, so no information is lost in the re-
placement. The OR community uses this technique during
preprocessing. A literal is fixed, propagation is applied, and
any oversatisfied constraint is strengthened. Consider the
following set of clauses:

a + b ≥ 1

a + c ≥ 1
b + c ≥ 1

If we set{a = 0}, we must then value{b = 1, c = 1} or
the first two constraints will become unsatisfied. The third
constraint is oversatisfied and can thus be replaced by

a + b + c ≥ 2.

The power of this method is that it allows us to build more
complex statements from a set of simple statements. The
strengthened constraint will often subsume some or all of
the constraints involved in generating it. In this case the new
constraint subsumes all three of the generating constraints.

This rule can be generalized as follows. Given any set of
assumptionsA = {x0, x1, . . . , xk}, if we apply some form
of propagation and discover that under these assumptions the
constraint

∑
aixi ≥ r becomes oversatisfied by an amount

s, we can add to our constraint set the constraint

s

k∑

i=1

xi +
∑

aixi ≥ r + s (6)

In the case where all the assumptions hold, we know that∑
aixi ≥ r + s, so (6) holds. If any assumptionxj fails,

thensxj ≥ s and
∑

aixi ≥ r, so (6) still holds.
In addition to use during preprocessing, this method can

be applied during search as well. When a constraint be-
comes oversatisfied under the current partial assignment, the
set of assignments that caused the constraint to be oversat-
isfied can be determined in timeO(n2). The constraint is
strengthened or a new constraint is learned. We have imple-
mented this method both as a preprocessor and as an infer-
ence method during search. We have not yet run extensive



RELSAT Pre. PRS
Instance sec nodes sec sec nodes
hole8.cnf 2 26670 0 0 11
hole9.cnf 29 270726 0 0 12
hole10.cnf 393 3049835 0 0 17
hole11.cnf 7488 37573080 0 0 15
hole12.cnf 0 0 20
hole20.cnf 0 0 34
hole30.cnf 4 0 52
hole40.cnf 25 0 75
hole50.cnf 95 0 95

Table 1: Run time (seconds) and no. of node expansions

experiments, but we suspect that for most problems attempt-
ing a strengthening for every occurrence of an oversatisfied
constraint will be far too expensive. It is unclear whether an
efficient implementation will provide benefits beyond those
gained by preprocessing alone. However, excessive prepro-
cessing can be expensive, so it may be valuable to let the
search direct the strengthening process. This would also al-
low the possibility of strengthening constraints learned in
response to contradictions.

Experimental Results
We have implemented the described learning methods in
the algorithmPRS (Pseudo-boolean RelSat) and we com-
pare its performance to its clausal counterpartRELSAT. Us-
ing pseudo-Boolean constraints has computational cost, al-
though in theory this cost is linear. In practice we find an
increase in the run time of unit propagation of a factor of2
to 5. A discussion of these costs and other implementation
details can be found elsewhere (Dixon & Ginsberg 2000).

The pigeonhole problem is an important benchmark for
evaluating pseudo-Boolean solvers because short cutting
plane proofs of unsatisfiability exist for the problem. Ex-
cellent performance on these problems should be a base
requirement for a systematic pseudo-Boolean solver. We
present some results comparing performance ofRELSAT and
PRS on the pigeonhole problem. Both algorithms used the
same CNF descriptions of the problems.PRS inputs files
in CNF and represents each clause as a clausal inequality.
The pseudo-Boolean version used the preprocessing method
described above before solving the problems. All experi-
ments were run on a 900 Mhz AMD Athlon processor. The
times shown are for optimal choices of relevance bounds.
For RELSAT this is a bound of0, and forPRSthis is a bound
of 1. The times are an average over10 trials. The first two
columns give time in seconds and number of nodes explored
for RELSAT. The next three columns show preprocessing
time in seconds, solution time in seconds, and the number of
nodes explored forPRS.

PRS with preprocessing dramatically outperformedREL-
SAT on the pigeonhole problem. This result is not surpris-
ing. There are two things to note here: first, thatPRSfulfills
the basic requirement of efficiently solving pigeonhole prob-
lems, and second that the constraint strengthening inference
is required to build the pseudo-Boolean constraints that are
needed to improve performance. Without the preprocessing

phase the performance ofPRSon the same problems is sim-
ilar to the performance forRELSAT.

A more interesting experiment considers logistics plan-
ning problems (Kautz & Selman 1996). The original prob-
lems are too easy for current solvers and are only available
in CNF. The problem domain involves using a set of planes
to move a collection of packages from their initial locations
to final locations during a given time period. These prob-
lems contain a number of constraints that are easy to encode
in pseudo-Boolean. For instance, the constraint that says a
plane can be in only one location at a time can be written as

pi1k + pi2k + · · ·+ pink ≥ n− 1 (7)

The variablepijk represents planei being in locationj at
timek, andn is the number of locations. The equivalent ex-
pression in CNF requires

(
n
2

)
binary clauses. The problems

were randomly generated with a variety of parameter values.
We discarded problems that were trivial for both solvers or
were satisfiable. Because these problems were generated by
hand, it is difficult to know how hard these problems are rel-
ative to an easy/hard phase transition.

A design goal was to focus the comparison on the effect
of learning methods. Ideally we’d like to eliminate differ-
ences in performance due to branching heuristics. Branch-
ing heuristics play an important role in reducing the size of
the search space for the clausal versions ofDPLL andREL-
SAT. We believe that they will also be important for pseudo-
Boolean versions as well. We chose to use thePROP31

heuristic (Li & Anbulagan 1997) for both algorithms. More
recent heuristics have shown better results for some prob-
lem domains, butPROP31 is a good heuristic and the im-
plementations for each algorithm were similar. It is unclear
whether this heuristic is equally good when used on pseudo-
Boolean constraints. We still felt that this choice would
bias our results less than abandoning branching heuristics
altogether, because branching heuristics are so important for
successful solvers.

For each instance we generated a CNF version and two
pseudo-Boolean versions. The first pseudo-Boolean version
was generated by using cardinality constraints like (7) to
express sets of constraints more concisely. The rest of the
constraints were written as clausal inequalities. The sec-
ond pseudo-Boolean version was generated by running the
strengthening preprocessor directly on the clausal version.

We report the average execution time over ten trials for
each instance. Removing the highest and lowest times (to
test for outliers) did not significantly affect the results.

Although PRS needs to manage a more complex repre-
sentation, the benefit on these instances of using pseudo-
Boolean representation outweighs the cost. Both pseudo-
Boolean formulations provided better overall performance.
In most cases the cost of preprocessing was made up for by
reduced solution time.

Conclusion and future work
As we begin to experiment with more complex represen-
tations in our solvers, we deepen our understanding of the
relationship between search and inference. The familiar
learning technique used byDPLL style algorithms can be



clausal PB formulation 1 PB formulation 2
Instance V C RELSAT C PRS C Pre. PRS

log8.15.6.5.2 1418 21452 6 13612 2 12772 6 1
log8.15.6.5.4 1418 21452 9 13612 1 12772 6 1
log8.15.6.5.6 1418 21452 11 13612 3 12772 6 2
log8.15.6.5.3 1418 21452 115 13612 15 12772 6 30
log10.13.7.5.5 1625 24687 52 17142 16 16142 7 17
log14.8.4.6.42 1424 15096 30 11760 19 10752 2 26
log14.8.4.6.4 1424 15096 86 11760 36 10752 2 45
log8.16.7.5.1 1616 26351 46 16626 10 15706 10 7
log9.15.7.5.2 1668 26830 139 17610 15 16602 9 16

Table 2: Number of variables (V ), clauses (C), and run time (seconds)

adapted to use pseudo-Boolean representation. However, the
role played by learning in response to a contradiction has
changed. A learned pseudo-Boolean constraint may elim-
inate assignments in parts of the search space not yet ex-
plored in addition to eliminating the set of assignments that
caused the contradiction. Further work on learning methods
is needed if we are to understand this new role. Branching
heuristics and relevance policies will also need to be revis-
ited with respect to pseudo-Boolean representation. Lazy
data structures such as the watched literal implementation
(M.Moskewiczet al. 2001) also need to be investigated. It is
encouraging that our preliminary implementation of pseudo-
BooleanRELSAT outperformed its clausal counterpart in the
planning domain despite the large number of unanswered
questions. The constraint strengthening technique is an im-
portant missing link to the puzzle. It provides a way to
construct the more expressive constraints that are needed
to improve performance. Further work is needed to under-
stand how this form of inference can be incorporated into
the search process.

Acknowledgments This work was sponsored in part by
grants from Defense Advanced Research Projects Agency
(DARPA), number F30602-98-2-0181, and DARPA and Air
Force Research Laboratory, Rome, NY, under agreement
numbered F30602-00-2-0534. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of DARPA, Rome Laboratory, or the
U.S. Government.

References
Barth, P. 1995. A Davis-Putnam based enumeration al-
gorithm for linear pseudo-boolean optimization. Techni-
cal Report MPI-I-95-2-003, Max Planck Institut für Infor-
matik, Saarbr̈ucken, Germany.

Baumgartner, P. 2000. FDPLL - a first-order Davis-
Putnam-Logeman-Loveland procedure. In P. Baumgartner,
C. Fermuller, N. P., and Zhang, H., eds.,CADE 2000.

Bayardo, R. J., and Schrag, R. C. 1997. Using CSP look-

back techniques to solve real-world SAT instances. InProc.
AAAI-97.
Benhamou, B.; Sais, L.; and Siegel, P. 1994. Two proof
procedures for a cardinality based language in proposi-
tional calculus. InProceedings of STACS94, volume 775
de Lecture Notes in Computer Science.
Cook, W.; Coullard, C.; and Turán, G. 1987. On the com-
plexity of cutting plane proofs.Journal of Discrete Applied
Math18:25–38.
Davis, M., and Putnam, H. 1960. A computing procedure
for quantification theory. Journal of the Association for
Computing Machinery7:201–215.
Dixon, H. E., and Ginsberg, M. L. 2000. Combining satis-
fiability techniques from AI and OR.The Knowledge En-
gineering Review15(1).
Ginsberg, M. L. 1993. Dynamic backtracking.Journal of
Artificial Intelligence Research1:25–46.
Guignard, M., and Spielberg, K. 1981. Logical reduction
methods in zero-one programming.Operations Research
29.
Haken, A. 1985. The intractability of resolution.Theoret-
ical Computer Science39:297–308.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proc. AAAI-96.
Li, C. M., and Anbulagan. 1997. Heuristics based on unit
propagation for satisfiability problems. InProc. IJCAI-97.
Loveland, D. W. 1978.Automated Theorem Proving: A
Logical Basis. North Holland.
M.Moskewicz; C.Madigan; Zhao, Y.; Zhang, L.; and Ma-
lik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proc. of the Design Automation Conference.
Savelsbergh, M. W. P. 1994. Preprocessing and probing
for mixed integer programming problems.ORSA Journal
on Computing6:445–454.
Stallman, R. M., and Sussman, G. J. 1977. Forward rea-
soning and dependency directed backtracking in a system
for computer aided circuit analysis.Artificial Intelligence
9(2):135–196.
Whittemore, J.; Kim, J.; and Sakallah, K. 2001. SATIRE:
A new incremental satisfiability engine. InProc. of the
Design Automation Conference.


