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Computational Variants of the Lanczos Method for the Eigenproblem

C. C. PAIGE *

London University, Institute of Computer Science,
44 Gordon Square, London WC1H OPD

[Received 28 October 1971 and in revised form 27 January 1972]

The Lanczos process is theoretically ideal for finding several extreme eigenvalues of large
sparse symmetric matrices, but because of loss of orthogonality in practice it has largely
been ignored, or used with re-orthogonalization. Here it is shown that it can still be an
extremely efficient and accurate algorithm if used in an iterative manner. An error analysis
is given showing the most accurate algorithms, and the conclusions are supported by
computational results. '

1. Introduction

ALTHOUGH the problem of computing eigensystems of symmetric matrices that fit
easily into the fast store of a computer has been satisfactorily solved (see Wilkinson,
1965; Wilkinson & Reinsch, 1971), the same cannot be said for very large matrices.
If a large matrix is sparse then the advantages of methods which only use the matrix
in matrix-vector multiplications are obvious as the matrix A need not be stored
explicitly, all that is needed is a procedure for computing Av from a given vector v.
At present the most popular of such methods is that of simultaneous iterations (see
for example Rutishauser’s algorithm in Wilkinson & Reinsch, 1971), which computes
k extreme eigenvalues and their eigenvectors of an # x» matrix A, usually 1 < k < n.
Unfortunately this algorithm requires at least k+1 vectors of length n throughout
the computation, and usually more, with consequent problems of time and storage.
Compared to this the far more simple method suggested by Lanczos (1950) for
reducing a symmetric matrix to tri-diagonal form appears initially more attractive
as it is very fast and only space for two vectors of length # need be used at each step
if only the eigenvalues are required; storage problems increase if some eigenvectors
are also needed, but sometimes none and often only one or two are required.

The Lanczos process is as follows (see for example Wilkinson, 1965: 388). Choose
a non-zero vector v, and take f, = 0, then with arbitrary normalizing factors y;,
formforj=1,2,...

o0 = VAV, VjerVier = AV ==Y,
Biv1 = VEAVjH/V]jij =Y+ 1V;'r+ 1Y+ 1/"}-",“

This ensures that v,, v,, ... are orthogonal so that for some value of j < n, say s,
Yer1Ver: = 0. Thus if V = [v,, ..., v,] it follows that AV = VT where T is tri-diagonal
and every eigenvalue of T is also an eigenvalue of A. If s < # it is possible to continue
the process to find the remaining eigenvalues of A, but this is not of interest here.

A very significant feature of the algorithm is that several of the extreme eigenvalues
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of T,, the leading & by k part of T, are likely to be very good approximations to some
of the extreme eigenvalues of A even when k& < s. Lanczos was well aware of this and
Kaniel (1966) has given some theoretical results on the rate of convergence. These
results suggest an iterative use of the Lanczos process for finding several extreme
eigenvalues of large sparse symmetric matrices to some required accuracy. Good
approximations to the corresponding eigenvectors are also available in this way using
¥4, ..., Yy, which may be held in some large backing store, or may be recomputed when
needed.

Unfortunately in an actual computation of the Lanczos process, cancellation in
the vector subtraction step leads to loss of orthogonality in the vectors vy, ¥, ... and
the process usually never terminates. This practical behaviour led Lanczos to suggest
re-orthogonalization, and to the widespread disregard of the method in its natural
state. Nevertheless it is possible to obtain accurate eigenvalues and eigenvectors by
using the method in an iterative manner using no re-orthogonalization at all, even in
the face of total loss of orthogonality. This was realized by the author in the work for
his doctoral thesis, which was then largely devoted to explaining this unexpected
result and finding the most accurate algorithms. The excellent properties of the method
can be partly understood when it is realized that partial cancellation corresponds to
partial convergence of the eigenvalues of T, that is, loss of orthogonality and con-
vergence go hand in hand. This has been shown by Paige (1971), where for certain
algorithms it is also shown that eigenvalues of T, must necessarily converge as k
increases, and that when they do they only differ from the eigenvalues of A by amounts
depending on the computer precision. It is also shown that accurate eigenvectors
can be computed by these algorithms. Unfortunately the proofs are extremely long
and complicated and the proven rate of convergence does not begin to approach the
remarkably fast rate found in practice. For these reasons the proofs will not be
published until the above inadequacies have been remedied.

Although others have suspected that the Lanczos process could still be useful,
no-one seemed to be aware that the most popular algorithm does not necessarily
converge, and that even when it does, it gives poor results for close eigenvalues. It is
the purpose of this paper to show why this is so, and to give other algorithms which
do not suffer from such shortcomings. The error analyses will be supported by com-
putational results exhibiting the significant differences in the various algorithms.

2. Possible Algorithms

It will be assumed that a floating point computer with precision ¢ is used. It can
easily be shown that any normalization has a negligible effect on the rounding errors
produced with the Lanczos process, although some normalization is usually necessary
to avoid numbers that are too large or too small for the computer. For simplicity
then, the y; will be chosen non-negative to give [|v;] = 1 (this notation will always
represent the 2-norm). Four important algorithms can now be described as follows.
Choose v, such that viv, = 1 and form u; = Av,, thenforj = 1,2, ...

a; = VA, 6))
or
o = viu, (2)
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these being essentially different when j > 1, since u;,, is defined by (8);

Wy o= 0=V, (3)
Vier = +/(WW) 4)
Vier = WYy (5)
Bj+1 = VEAV_,'H (6)

or
Biv1 = Vi1 )]
Uy = AV ~BjuqY; (8)

The choices here are between (1) and (2) and between (6) and (7). Let A(l, 6) denote
the algorithm using equations (1) and (6). Similarly there are algorithms A(l1, 7),
A(2, 6), and A(2, 7). Now A(1, 6) and A(2, 6) use the natural and the modified Schmidt
orthogonalization coefficients respectively, and if for these v; is orthogonal to v;_4,
then v;,, will theoretically be orthogonal to both these vectors. But for A(1, 7) and
A(2, 7) this orthogonality depends on the orthogonality of v; to v;_, as well as v;_;,
which is known in practice to be poor; thus the previous two algorithms are under-
standably more popular despite requiring small amounts of extra computation. Note
that A(1, 7) and A(2, 7) can be implemented using only two vectors, but A(2, 7) can
also be used with a fast double-length accumulation of inner-products routine, while
A(1, 7) requires a third vector to make this possible; these two are the best algorithms
if only speed and storage are considered.

In the analysis the results given by Wilkinson (1965, Ch. 3) will be assumed, and for
simplicity the # by #n symmetric matrix A will be such that [[A]| = 1. The equivalents
of equations (1) to (8) for the computed values when rounding errors are present are
then

o; = ViAV;+0(e) (1IR)
or
o; = vju;+0(s) (2R)
w; = u;—ao;¥;+0() (3R)
Yi+1 = [1+0(a)] . ”wj” (4R)
Vier = Wilvje1+0(e) (5R)
Biv1 = ViAV; 4 +0(e) (6R)
4 or
Bivt = Vi+1 (7R)
Uy = AV — By V+ 0e). (8R)

Note that factors such as # have been omitted from the error terms for simplicity,
so that these results hold for ordinary as well as double-length accumulation of inner-
products. Anyone wishing to check these results closely should do so for (4)(8), then
(1)~(3), showing on the way that vT,,v;,; = 14 O(e), and that for (1R) and (6R)

Jotl, Iﬁj+1| < 14+ 0()
25
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while for (2R)
loy| < T+1f;1+ OCe),
and certainly by a very simple induction, for (7R)
B < 2j+0(e),
whether (1R) or (2R) is used. In fact by carrying out a very long and tedious induction
proof it is possible to show that both |«;] and |8,| are less than 1+ O(e) for all four
methods (see Paige, 1971), but such a refinement is not necessary here.

Loss of orthogonality can occur as follows. If w; in (3R) is small as a result of
cancellation then y;,, will be small in (4R) and the O(g) error in w; will be greatly
magnified in (5R), causing v;,, to be very different from the desired value. It is clear
that this loss of orthogonality is unavoidable in any of the algorithms, but nevertheless
important relations involving vJv,,, still hold. First if (IR) is used it follows from
(3R), (5R), and (8R) that

Vit1Vier = AV;—a¥;— B, +0(e) 9)
)’j+1V§Vj+1 = ““‘ﬂjvf—ﬂj‘*‘o(’g)
I B B.
=Y éﬁ./il...ﬁ’.O(aHO(s). (10)
r=2 Yj yj—l r

In fact the more precise analysis given by Paige (1971) shows that each O(g) in (10)

is bounded in modulus by 2(n+4)¢||A || for ordinary accumulation of inner-products.

If instead double length accumulation is used, n may effectively be replaced by 1.
Next if (2R) is used then from (3R) and (5SR)

Vi+1Vier = 0;—a;¥V;+0(e) (11)
Vi+1Vi¥je1 = O() (12)

and here O(e) has as good a bound as each O(g) in (10). Clearly (12) holds for both
A(2, 6) and A(2, 7), and since §; = y; in A(1, 7), (10) has the same form as (12) for
this algorithm too, thus if in this step there has been very little cancellation so that
741 = O(1), it follows that the orthogonality of v; and v;,, is quite satisfactory,
regardless of any previous cancellation. This does not follow for A(1, 6), for although
f; and y; are theoretically equal they can be orders of magnitude different if (6R) is
used, leading to unnecessary loss of orthogonality in (10). To understand this, suppose
that everything up to and including Av, ,, «; 4, f;_; is known accurately, and then
rounding errors occur in the subtractions (8R) or (3R), but not in the normalization.
If 7;, v, are the computed values and y;, v, the true values, then

TV = Av,_ —o; Vi —B; 1V, +0(8) = y;v,+ O(e). (13)
Now even if no errors occur in (6)
B; = vj_ 1AV,
71'5,' = ?jﬁj+0(8) = 7}"'0(3) (14)
and since 7 = y?4y,0(e) + O(?) it follows that
B 1+0()/y;

7, 150G, + 0 (1)
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Now if y; < O(e), this would give a satisfactory conclusion to the algorithm, so it
can be seen that the denominator here will always be O(1) when it matters. However
it is only necessary for y? to be much less then O(¢) and the numerator could be far
in excess of 1, and so no respectable a priori bound on orthogonality can follow
from (10).

Note that the factor (15) appears in all subsequent expressions (10) for orthogonality,
and so orthogonality having once been lost in this sense is unlikely to be regained.
This is observed in practice, for example if a computer has a precision of ¢ = 2-*
and a cancellation of more than #/2 binary figures occurs with A(l, 6), then ortho-
gonality between consecutive vectors is usually lost and stays lost, the eigenvalues
which have not already converged then do not converge properly, up to #/2 of their
last figures wandering about aimlessly with each further step.

In applying the Lanczos algorithm it is often found that a cancellation of #/2 or
more figures never occurs, and in such cases it might be hoped that A(1, 6) would
perform satisfactorily. Such is not the case, as there is a further significant fault of
A(1, 6) that is also shared by A(2, 6). The situation represented in (14) is a result of
(6), and so applies to both the above algorithms. The matrix T in this case is not likely
to be symmetric, but has the same eigenvalues as the symmetric matrix with the same
diagonal but next-to-diagonal elements (7;8,)!. Theoretically these should be y;, but
from (14) if y2 > O(e)

GB)F = v, lL+0()y;] = 7;+ 0y,

while if y7 < O(e) the right hand side becomes O(eg?). Thus if there are s figures of
cancellation, i.e.y; = O(27), an extra s figures are lostin the nexi-to-diagonal elements
of the equivalent tri-diagonal matrix, up to a maximum of about ¢/2. This has no
deleterious effect on well separated eigenvalues of T (see Wilkinson, 1965: 312), but
close eigenvalues are likely to be in error by up to O(e!) if either A(1, 6) or A(2, 6) is
used. This conclusion is supported by the computational results at the end of this paper
where it is seen that close eigenvalues of A are given inaccurately by A(l, 6) and
A(2, 6).

Thus A(l, 6), which appears to be the most popular algorithm in the literature,
turns out to have two very significant deficiencies: occasional failure to converge, and
poor separation of close eigenvalues. The modified Schmidt orthogonalization
equivalent of this, A(2, 6), is not so bad but still suffers the second of these deficiencies.
It now only remains to show that A(l, 7) and A(2, 7) do not suffer from this second
loss of accuracy. This follows immediately, for if (7R) is used on the case represented
by (13) then 7;[[¥;|l = y;+ O(e), and even with errors in the normalization it follows
that ||¥;]| = 14+ 0(e), so that the next-to-diagonal elements of T (which is auto-
matically symmetric with these two algorithms) are in error by at most O(g).

This analysis has then shown that not only are A(1, 7) and A(2, 7) the more efficient
algorithms, but they also do not suffer the deficiencies outlined above that seriously
limit the accuracy of A(l, 6) and A(2, 6).

There remains one other possible algorithm, this is obtained by using (1) to compute
a; and then taking f; = v7_;(Av;—a;v,) etc. A swift analysis shows that (10), (13),
(14), and so (15) hold in this case, thus this algorithm has all the faults of A(l, 6)
including the extra computation and storage, and can be discarded.
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3. Computational Results

The following computations were carried out on the University of London Atlas
computer which has & = 8-'2 = 1-5x 10-!!; ordinary accumulation of inner-
products was used. The eigenvalues were found using the tg/1 procedure (Wilkinson &
Reinsch, 1971), the possible error of each eigenvalue then being bounded by s¢|T|.0(1)
if s iterations were needed.

TaABLE 1

The eigenvalues computed from 20 steps of each of four variants of
the Lanczos method applied to the Rosser matrix

True roots A(l, 6) A, 7 A2, 6) AR, 7
—1020-0490184 —1020-0490190 —1020-0490188 ~—1020-0490189 ~—1020-0490189
—1020-0490189 —1020-0490187 —1020-0490189 —1020-:0490189
—1020-0490187 —1020-0490186 —1020-0490187 —1020-0490187
—1020-0490183 —1020-0490184 —1020-0490186 —1020-0490186
—987-2137098

0-0 —0-0000007 —0-0000002 — 0-0000002 —0-0000004
—0-0000005 —0-0000001 0-0000001 —0-0000003
—0-0000002 0-0000001 0-0000005 —0-0000002
0-0980486 0-0980485 0-0980484 0-0980477 0-0980483
0-0980487 0-0980485 0-0980482 0-0980483
0-0980490 0-0980488 0-0980485 0-0980484
1000-0 999-9999890 999-9999998 1000-0000000 1000-0000000
twice 999-9999965 999-9999999 1000-0000006 1000-0000000
1000-0000000 1000-0000000 1000-0000020 1000-0000000
1000-0152578
1019-9019514 1019-9006454 1019-9019513 1019-9019034 1019-9019514
1019-9014508 1019-9019514 1019-9019334 1019-9019514

1019-9186942 1019-9329014
1020-0 1019-9996229 1019-9999998 1019-9999628 1020-0000000
1020-0006577 1020-0000000 1020-0000199 1020-0000000
1020-0490184 1020-0491866 1020-0490184 1020-0490238 1020-0490184
10200504332 1020-0490184 1020-0490953 1020-0490185

In order to exhibit the differences in performance of the four analysed algorithms

they were all applied to the 8 x 8 Rosser matrix (see Westlake, 1968: 150) using an
initial vector with equal elements. This matrix has interestingly grouped eigenvalues
as can be seen in the first column of Table 1. In order to exhibit an extraordinary
property of the Lanczos process 20 steps of each algorithm were carried out and the
eigenvalues tabulated. The process does not curtail, instead eigenvalues continue to
converge so that T can have several nearly equal eigenvalues corresponding to one
simple eigenvalue of A. Table 1 shows the definite superiority of A(1, 7) and A(2, 7)
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over the other two which lose up to five more decimal figures of accuracy for close
roots, A(1, 6) being the worst as was expected from the error analysis. The accuracy
for both A1, 7) and A(2, 7) was quite remarkable, being within 5 x 10~ ||A}| for the
converged eigenvalues; this is about the same size as the bound given for 7g/1. The
superiority of these two algorithms was even more marked for further iterations,
even well separated eigenvalues being found distinctly more accurately by them.

The algorithms A(l,7) and A(2,7) are thus seen to perform very well for the
Rosser matrix and there is nothing to choose between them. In order to examine their
suitability for very large sparse matrices they were both applied to the matrix A of
order 1000 derived from the usual five-point approximation with unit step-length
to the Laplace operator for a class of functions that vanish on the boundary of a
rectangular region of sides 51 and 21. The initial vector contained equal components
of all eigenvectors and 600 steps of the algorithms were carried out. Again ordinary
accumulation of inner-products was used.

The results are too numerous to present in a table and a verbal description for
A(1, 7) will suffice; A(2, 7) exhibited occasional minor differences but again the two
algorithms were almost identical for accuracy.

92 of the lowest eigenvalues of Tg, agreed with the corresponding eigenvalues of
A in at least the ninth decimal place; these true eigenvalues were those from the lowest
0-0261316900 up to 0-7718718678, and included 58 different eigenvalues. From the
smallest upwards the numbers of each of these were

5,54,3,3,3,33,3,2,2,2,2,2,2,2,2,2,2,2
with the remaining 38 appearing once only. The eigenvalues of A from 7-2281281322
to the largest one 7-9738683100 were also given accurately in at least the ninth decimal
place, and numbering from the largest down the numbers of each different eigenvalue
were the same as for the lower group. Outside these two groups the accuracy fell off
quite quickly, so that about 370 of the remaining 416 eigenvalues of Tgo, approxi-
mated eigenvalues of A to only two or three decimal places.

The absolute errors in the 184 converged eigenvalues of Teoo were less than 3 x 10-1°,
This is a really remarkable result, as it means that these eigenvalues of T, represent
those of A more accurately than the eigenvalues of Tgo, can be computed using rg/1
with the same precision. tg/1 had to be used with increased precision to show the true
accuracy of the algorithm A(1, 7).

Finally to give a rough idea of the speed of the process, both A(l, 7) and A(2, 7)
took about the same time to reduce the 1000 by 1000 Laplace matrix to Tgoo as it
took tql1 to find all the eigenvalues of T4, using the same precision, i.e. about six
minutes. Both these Lanczos algorithms were extravagantly programmed with no
consideration for speed. The speed of convergence of the Lanczos process can be
gauged from the fact that if the eigenvalues of A are ordered 4, € 4, € ... < 44000
then after 100 steps 4, was given accurately to 9 decimal places, 1, to 7, 13 t0 5, A, to 3,
Ag97t0 3, Aggs 10 5, Aggg to 7, and Ay g0 to 9 decimal places.

4. Eigenvectors and Eigenvalue Multiplicities

Some eigenvectors of A can be found from the algorithm A(l, 7) or A(2,7) by
computing the corresponding orthonormal eigenvectors q; such that T,q; = 14,
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then reproducing v,, v,, ..., ¥; in order to form the required approximate eigenvectors
z; = Vq, of A. These eigenvectors may then be used to obtain a satisfactory indication
of the multiplicities of some of the eigenvalues of A as follows.

Suppose a group of s very close eigenvalues 1,4, ..., 4., have converged and are
well separated from the remaining eigenvalues of T,, then these must approximate an
eigenvalue, or a group of very close eigenvalues, of A; suppose there are r close
eigenvalues of A in this group and these are well separated from the remainder, the
corresponding eigenvectors then form an r dimensional invariant subspace of A. Note
that as is usually the case it will be impossible to distinguish multiple eigenvalues of
A from a group of very close eigenvalues. The approximate eigenvectors z;., ..., Z;,s
can be computed, normalized, and checked for accuracy by forming f; = Az;—A;z;.
If these fi,4, ..., fi4y are small the z,,,, ..., z;,, must lie approximately in the above
invariant subspace of A, The rank of Z = [z,,,, ..., z;,] then gives a good indication
of the dimension r of this invariant subspace of A. For suppose Z has p negligible
singular values with the remaining s—p not very small, then r > s—p. If p = 0 this
is all that can be concluded, however if p > 0 then the probability is very high that
r = 5-p, the certainty increasing with increase in p. This uncertainty is common
whenever partial eigensystems only are computed. Thus the tendency of the Lanczos
method to produce more solutions than in fact exist can be used to advantage here
to check the multiplicity of solutions.

In practice it has been found that normalizing the z; and computing Z"Z has led
to the correct results on multiplicity, even though some information is lost in this
approach. When 4,4, ..., 4, correspond to a simple eigenvalue of A, every element
of Z7Z has been found to have a modulus of unity. Otherwise the correct information
has been found by taking p to be the number of computed eigenvalues of ZTZ that
are not very much greater than the computer precision.

5. Conclusion

To sum up, this paper provides very convincing arguments for using the Lanczos
process in the form of algorithms A(l, 7) and A(2, 7) in an iterative manner to find
several extreme eigenvalues of very large sparse symmetric matrices, both accurately
and quickly. The algorithms are very easily programmed, being so simple and repetitive
in nature, and seem easily amenable to parallel processing for even greater speed.
A satisfactory criterion for convergence of 1; and z; = Vq;, where T,q; = A4, can
be found by computing the last element g,; of q,, then

Az, — Az, | < Bysr1lguil +OC).
Note that gy, ..., g can easily be computed while finding the eigenvalues of T,
without having to compute the full vectors qq, ..., q,.

Although the error analysis here has shown which are the best algorithms, it has
not shown that these necessarily give accurate results, nor has it shown that the
remarkably fast convergence found in practice will necessarily occur. The excellent
accuracy of the successful algorithms has been proven by Paige (1971), and it is hoped
that this, with a proof of the rapid convergence, will be published shortly. It would also
be useful to devise a means of obtaining the multiplicities of eigenvalues of A without
having to compute the corresponding eigenvectors, though this may not be possible.
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