
Backward stability of
MGS-GMRES

Chris Paige (McGill University),
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The Major Players
• MGS: “Modified Gram-Schmidt” algorithm:

Bj = VjRj , Vj ≡ [v1, . . . , vj],
V T

j Vj = Ij , Rj upper triangular.

• GMRES: “Generalized Minimum Residual”
algorithm to solve Ax = b, A ∈ R

n×n.

Y. SAAD & M. H. SCHULTZ, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 856–869.

• Based on the algorithm by W. ARNOLDI,
Quart. Appl. Math., 9 (1951), pp. 17–29.
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The Supporting Cast
• Unit roundoff ε . Singular values σ(·) .

Condition κ2(A) ≡ σmax(A)/σmin(A).
• γ̃n ≡ c̃nε/(1 − c̃nε), some c̃ ≥ 1

(N. Higham, 2002).
• Orthonormal vectors Vj ≡ [v1, . . . , vj].
• The computed supposedly orthonormal vectors

V̄j ≡ [v̄1, . . . , v̄j]. “Bar” denotes “computed”.
• Here we use

Bj+1 ≡ [b, AVj], B̄j+1 ≡ [b, fl(AV̄j)],

but MGS results apply to general Bj+1.
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MGS-GMRES for Ax = b, A ∈ R
n×n.

Take % ≡ ‖b‖2, v1 ≡ b/%; generate columns of
Vj+1 ≡ [v1, . . . , vj+1] via the Arnoldi algorithm:

AVj = Vj+1Hj+1,j, V T
j+1Vj+1 = Ij+1. ∗

Approximate solution xj ≡ Vjyj has residual

rj ≡ b − Axj = b − AVjyj

= v1%−Vj+1Hj+1,jyj = Vj+1(e1%−Hj+1,jyj).

The minimum residual is found by taking

yj ≡ arg min
y

{‖b−AVjy‖2 = ‖e1%−Hj+1,jy‖2}. ∗

* DIFFICULTY: V̄ T
j+1V̄j+1 6= Ij+1. Householder-05 – p.4/11



Stability of MGS-GMRES
For some k≤n, the MGS–GMRES method is
backward stable for computing a solution x̄k to

Ax = b, A ∈ R
n×n, σmin(A) � n2ε‖A‖F ;

as well as intermediate solutions ȳj to the LLSPs:

min
y

‖b − AV̄jy‖2, j = 1, . . . , k,

where x̄j ≡ fl(V̄j ȳj),
ε is the unit roundoff.
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Proof of Stability – Basics
• The Arnoldi Algorithm is MGS applied to

B̄n+1 ≡ [b, fl(AV̄n)].
• MGS applied to any Bj is numerically

equivalent to Householder QR applied to
[

Oj

Bj

]

.

Charles Sheffield, see Å. Björck & C.C. Paige,
SIMAX, 13 (1992), pp. 176–190.

• When MGS is applied to B̄j to give V̄j, κ2(V̄j)

is small until B̄j is numerically rank deficient!
L. Giraud and J. Langou,
IMA J. NA, 22 (2002), pp. 521–528. (M. Arioli).
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Proof of Stability – Development
• The MGS–“augmented Householder QR”

equivalence and rounding error analysis
extends to rank deficient B̄j .

• The variant of MGS-Least Squares used in
MGS-GMRES is backward stable.

• The loss of orthogonality in MGS is
column scaling independent:

κ̃F (A) ≡ min
diagonal D > 0

‖AD‖F/σmin(AD),

MGS on B̄j ∈ R
n×j: jγ̃nκ̃F (B̄j) ≤ 1/8 ⇒

‖I−V̄ T
j V̄j‖F ≤ j

1

2 γ̃nκ̃F (B̄j).

c.f. Åke Björck 1967; Nick Higham 1996, 2002.
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Proof of Stability – Philosophy
Although loss of orthogonality ‖I−V̄ T

j V̄j‖F

can grow as κ̃F (B̄j), j =1, 2, . . .;
κ2(V̄j) is much better behaved:

jγ̃nκ̃F (B̄j) ≤ 1/8 ⇒ 1 ≤ κ2(V̄j) ≤ 4/3.

But rank(V̄n+1) ≤ n, so κ2(V̄n+1) is unbounded.
Let k≤n be the last integer such that κ2(V̄k)≤4/3,
then (k+1)γ̃nκ̃F (B̄k+1)>1/8, so ∀ diagonal D>0

σmin(B̄k+1D) < 8(k+1)γ̃n‖B̄k+1D‖F ,

showing this singular value must become small!

Householder-05 – p.8/11



Proof of Stability – Resolution
• Since B̄k+1 ≡ [b, fl(AV̄k)],

the last inequality shows that
for this particular k, and for all φ > 0,

σmin([bφ,AV̄k])
<
∼ γ̃kn‖[bφ,AV̄k]‖F .

• This with ideas from C. C. Paige & Z. Strakoš,
Num. Math. 91 (2002), pp. 93–115,
allows us to prove we have a small residual too.

• The standard Rigal & Gaches approach
then helps us to prove backward stability.
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