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1. Introduction

Krylov subspaces are useful for approximating eigenvalues and for solving sparse
linear systems of equations. When the matrix in question is real and symmetric
the Lanczos algorithm provides an efficient method for producing an orthonormal
sequence of vectors which provides a basis for an appropriate Krylov subspace [7,15].

Both the conjugate gradient algorithm (CG) and the minimum residual algo-
rithm (MR) are available to solve the appropriate linear system Az = b, see for
example [5,14]. However CG is only guaranteed to exist and be stable when A is
positive definite. The properties of the CG and MR approximations, their error
bounds, residuals and iteration polynomials, are usually derived as consequences
of the algorithms themselves. What we do in this paper, for clarity and emphasis,
is to discuss the CG and MR approximations from a Krylov subspace without any
reference to how these approrimations are to be computed. This leads us to some
insights that appear to be new as well as simple explanations of known phenomena.
We ignore the complications produced by rounding errors; for the effect of these on
the Lanczos process see for example [6,12,13,15].

It is known, at least to experts, that the so called Ritz valuesfor A from the Krylov
subspace govern the accuracy of CG [16]. We illustrate here how local peaks in the
error norm of the CG approximation occur when a Ritz value lands close to zero
on its way to an eigenvalue. The corresponding quantities for MR were studied in
[4,10]. Since they are Ritz values, but associated with A=1, we call them harmonic
Ritz values rather than use overworked adjectives such as pseudo or generalized
as used in [4,10,11], and [3] in French. The smallest positive harmonic Ritz value
approaches the smallest positive eigenvalue of A monotonically from above and the
largest negative harmonic Ritz value approaches the largest negative eigenvalue of
A monotonically from below as the dimension increases. We discovered that, when
appropriate shifts are used, these harmonic Ritz values yield the ‘optimal’ error
bounds on A’s eigenvalues that Lehmann derived in the 1950s and 1960s [8,9].
There are several different ways to characterize the harmonic Ritz values either
via a pseudo-Lanczos algorithm using an indefinite product [u,v] = v’ Au or as a
banded generalized eigenvalue problem. Nevertheless, using Kahan’s reformulation
of Lehmann’s intervals, see [15], one can compute them from a carefully chosen
symmetric tridiagonal matrix which has the Lanczos tridiagonal matrix as a leading
submatrix. Consequently ordinary Ritz values interlace harmonic Ritz values.

The next section establishes notation and then the Galerkin solution is considered
(the CG solution when A is positive definite). Most, perhaps all, of these initial
results are known, but not as well as they should be. Section 4. summarizes our
experiments illustrating the irregular behavior of the CG error norm for matrices
that are not positive definite.

In Section 5. the minimum residual approximation is analyzed and the harmonic
Ritz values are introduced. Section 6. describes the pseudo-Lanczos algorithm and
finally in Section 7. the connection with the Lehmann/Kahan bounds is established.
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Approximate Solutions and Eigenvalue Bounds from Krylov Subspaces 3

2. Notation for Krylov Subspaces

Let A denote a real symmetric n X n matrix. Krylov subspaces, defined in (2.1)
below, arise naturally in a variety of methods. A sequence of vectors is generated,
one at a time, and the subspaces they span form a nested sequence. Suitable linear
combinations of the vectors yield approximate solutions to linear systems Az = b
and also approximate eigenvectors. The subspaces are defined for each j < n by

K7 = K7(A;b) = span{b, Ab, ..., A7~ 1b}. (2.1)

An orthonormal basis {v1,va, ..., v;}, called the Lanczos basis, may be obtained
by applying the Gram-Schmidt process to the Krylov (or power) basis {b, Ab, ...,
AI=1b}. Define V; € R™™J by

Vi = [v1, ..., v5]. (2.2)

In practice, however, V; is computed by a three-term recurrence relation that avoids
most of the work needed for the Gram-Schmidt process. Since we are avoiding algo-
rithmic details in this paper we simply state the relations satisfied by the generated
quantities. See [5] or [15] for a full development.

starting vector: b =v1]|b]] = v1 /1, (2.3)
orthonormality: V;VJ = I;, the j x j identity matrix, (2.4)
3-term recurrence: AV; =V T; = ViTj + 'vj+1ﬁj+1(e§j))t (2.5)
where
P2 . s
T; = tridiag o1 a9 o aj_ aj , (2.6)
P2 . s P
(7Y = (0,0,...,0,1), (2.7)

and the superscript (j) gives the dimension and TJ € RUFDXI  where TJ is 1}
supplemented with an extra row (0,0, ...,0, 8j4+1).

The Lanczos vectors are computed by equating the last columns on each side of
(2.5) and noting that all quantities are known except for 841 and vj41.

The construction of the Lanczos basis is shift-invariant, that is using A — pf
instead of A one obtains

(A= pD)V; = Vi (T — ply) + Uj+1ﬁj+1(e§»j))t,

with all the same quantities as before.

One nice feature is that if dim K/ < j then K/ is invariant under A, and in
that case the approximations discussed in the rest of this paper are exact solutions.
Consequently there is no loss of generality in assuming that dim K7 = j, and hence
that the quantities s, ..., 8, defined below are all positive.

The spectral factorization of T; is written as

T; = 5;0;5;

F R
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4 Paige, Parlett, and Van der Vorst

where

S;t=5t, @ =diag (0Y,...,0). (2.8)
With the quantities in (2.8) one can define a third basis for K7, the Ritz basis
{ygj), e y](»j)}, and the matrix Y; = V;S;, where

W =Vis, i=1,2...], (2.9)

with s; the ith column of S; and sy; is its kth entry. In contrast to the Lanczos
basis the whole Ritz basis changes at each step. The pairs (ng), ygj)), 1=1,...,]
are the Rayleigh-Ritz approximations to eigenpairs of A from K7 and this set of
pairs is, in a precise sense, see [15], the best set of approximate eigenpairs from K7.
Indeed the (ng), ygj)) are the eigenpairs of the projection of A onto K7. The full

dimension assumption makes the {95”} distinct and we order them by
95”<ng)<...<0§”. (2.10)

For brevity the {HZ(J)} are called Ritz values of A.

The Lanczos algorithm computes the {v;} in turn and builds up 7 at the same
time from (2.5). In this paper we make use of four bases for K7: the Lanczos basis
{v1,...,v;}, the Ritz basis {ygj), cey y](»J)}, the power basis {b, Ab, ..., A7~'b}, and
a basis introduced in Section 5. called the harmonic Ritz basis. Each has its merits.

The power basis shows the one-one correspondence between /P;_,, the space of
real polynomials of degree strictly less than j, and KJ(b; A) given by

¢ € Pj_ — ¢(A)b e K. (2.11)

It is helpful to keep the polynomials ¢ and the vectors ¢(A)b simultaneously in
mind when reading the sections that follow.

The following elementary but important lemma shows an attractive feature of
Krylov subspaces which will be used in several places. The proof simply exploits
the tridiagonal form of 7j.

Lemma 1 Let o(A) = 1M + ...+ 71X + 70 have ezact degree j. Then
(A = Vip(T3)el? 81 + v 4173 B 41 € KT+ not K,
where B, = 1Bz B

Proof We drop the superscript (j) on all the egj). Define u; = eq, and for k& =
2,0, up = Tjup_1 = T]»k_lel, then since T} is tridiagonal (2.6) shows that wy
has only its first k entries nonzero, the kth being 82 - - - 8 for k > 1. jFrom (2.5)

AVjel = ij}'el = V]’UQ,

A*Vjer = AVjuy = VjTjus = Vjuz = V;T ey,

AVier = AVjup = ViTjup = Vijuggr = VT er  if k <, (2.12)
AVier = AViuy = (VT +vipiBiae)uy = ViT] er + vigi B - B
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Approximate Solutions and Eigenvalue Bounds from Krylov Subspaces 5

Thus, for ¢ € P},

(A1 = Vie(Tj)er + vj417; 82 - - Bj+1,
and the lemma follows on multiplying by ;. [ |

Corollary 1 The only nonzero vectors in KIt! that are orthogonal to K7 have
the form @(A)b where the p(A) are scalar multiples of m;(A) = det (M; — T});
vit1 = T (A)b/Bj1.

Proof If pp()) = 7 AF + ... has exact degree k < j then from (2.12) pi(A)b has a
nonzero component along vy, € K7, and so cannot be orthogonal to K7.
Now m;(A) is monic of degree j, and by the Cayley-Hamilton theorem 7;(7;) = 0.
So from the lemma, for « € R, am;j(A)b = vj+15j+1a L K7. Since any polynomial
of degree j that is not a multiple of 7; may be written as am; 4 p;, with pp of degree
k < j we see that

(amj + pe)(A)b = vjy1fj 410+ pr(A)b

which is not orthogonal to K7. ]
The monic polynomial 7; is called the Lanczos polynomial of degree j. By (2.8)

7i(A) = ﬁ(/\ — 04y (2.13)

i=1

and this product representation gives more insight than an expansion in the power
basis. In fact the {m;} are a sequence of polynomials orthogonal with respect to
a certain inner product. However we do not make use of the properties of such
polynomials in this essay.

3. The Galerkin (conjugate gradient) Approximation

This section considers the Galerkin (or weak) solution zj from K’ to Az = b, for
Jj < n. It is what CG delivers. In general it satisfies

(Az{,u) = (b,u) forallue K7,

or equivalently '
ri{y =b— Az LK. (3.14)
which is why z¥ may be called a Galerkin approximation; K7 comprises the test

vectors as well as the trial vectors. Next we give representations for z§’ and rj’ in

the three bases exhibited in Section 2.. Justification and discussion come afterwards

since the results are quite well known. We use ||.|| to denote the vector 2-norm
throughout.

Lanczos basis: 27 = VjTj_161||b||, (3.15)

Il = Bjaley Ty el - 1181, (3.16)

(r ) ATIY = BPAT — BRelT e (3.17)
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6 Paige, Parlett, and Van der Vorst

Ritz basis: ,7:;”

Y@Tl(St’el)llbll

||b||2y<” 511/04), (3.18)

(o)At = btA‘lb—||b||QZsfi/9§j). (3.19)
Krylov basis: z7 = [( A5 (0) ))\ A] b, (3.20)
ri = mi(A)b/m;(0), (3.21)

where 7; is the jth Lanczos polynomial.
Justification

The Ritz representation is less well known than the other two. All three forms
show that the existence of 7! is a necessary and sufficient condition for existence
and uniqueness of z’. The Lanczos representation follows readily from (2.5) using
(2.3) and (2.4). The Ritz representation follows from (2.8) and T]»_1 = Sj@j_lSJt».
To obtain (3.19) from (3.18) it is only necessary to note that ¥; = V;S; gives

VY = VSISV =L, b=BVje = AY;Sle,
and since r 1 .7;

(r}”)tA_lr}” =b A - btrw + (2§ vyt Azf = =bA"1h - btl‘}”.
The Ritz representation (3.18) shows clearly that to have a good approximation to
A~1b by 2 requires that the Ritz pairs (92(-]), yZ(])) associated with the eigenvalues
close to zero be good approximations too. In many applications the small eigenval-
ues are closely clustered and the large eigenvalues are relatively well separated, and
consequently good approximations to the small eigenvalues occur for much larger
values of j than good approximations to the large eigenvalues, see for example [15,
Ch. 12]. This explains the puzzling phenomenon that it is often ‘easier’ to approxi-
mate several large eigenvalues of A than to approximate A~'b, the solution to one
linear system.

The elegant result (3.21) follows from the corollary to Lemma 1 in Section 2..
We included that proof because it seems to be the most elementary derivation of
(3.21). Since z} € K7, ry =b— Az} € Ki+1(A;b), and from (2.11) ri = p(A)b,
p€e P Itis the special nature of Krylov spaces that yields

(A = Vip(Tj)e1 1 + vi417i Bi+1,

and only the choice ¢ = am;, o € IR, eliminates the components of the residual
@(A)b in K. To determine o we see from am;(A)b =b — Az¥ that am;(0) =1, so
the unique residual polynomial for a Galerkin solution from K7 is 7;(A)/m;(0). The

expression (3.20) follows from 2% = A~'(b—r¥) = A~ [m;(0)] — w;(A)]b/7;(0) on
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Approximate Solutions and Eigenvalue Bounds from Krylov Subspaces 7

noting 7;(0) — 7;(A) has no constant term. Observe that

7i(0) = det 01, — 7] = [[(~09),

i=1

so that if 92(-]) vanishes there is no weak solution for this value of j. Consequently
the Galerkin solution may not be worth computing whenever 7} is ill-conditioned.
Comments

Since Tj represents the projection of A onto K7 the Ritz values, for each j, are
confined to the convex hull of A’s eigenvalues, i.e. the smallest interval containing
A’s spectrum. When A is indefinite A’s spectral interval contains zero, and transient
peaks in the graph of [|r}’|| as a function of j occur only when a Ritz value lands
close to zero on its way to one of A’s eigenvalues. The experiments in the next
section illustrate these comments.

The gradient of the functional (b — Az)'A=1(b — Az) is —2(b — Az)! and thus,
on K7, this functional is stationary at z = zj . The second derivative (or Hessian)
matrix is 24 and so for positive definite A this critical point is actually a minimum
over 2 € K7, and this functional may be written as

[Irl3-2 or |lA™ — 2|3

because both A~! and A induce valid norms. The conjugate gradient algorithm
(CG) is a popular way of computing z§ in the positive definite case. Indeed the
algorithm is often presented as a way to minimize the A-norm of the error at each
step.

Even when CG is presented with a symmetric indefinite matrix it may well suc-
ceed in producing a satisfactory approximation. Nevertheless stability cannot be
guaranteed in this case since breakdown is possible. There is a minor variation of
the usual CG implementation that can, when necessary, take a double step and
avoid the explicit computation of ¥ when 7} is ill-conditioned. Such algorithms
are under study by the second author. Algorithms in [14] can do this, but are more
expensive than CG. For nonsymmetric A a look-ahead variant of bi-CG has been

developed by R. Bank in [1].

4. An Experiment with Conjugate Gradients

Here we show how the CG error tends to behave for indefinite matrices. An illus-
tration of similar residual behavior is given in [14], but here we explain why the
observed behavior occurs. For nonsingular A the error has the same iteration poly-
nomial (applied to , the initial error) as the residual has (applied to b, the initial
residual), since from (3.21)

T —zy = A_lr}” = A7 mi(A)b/7;(0) = mj(A)z/7;(0). (4.22)
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Figure 1. Convergence of CG for m =0, 1.

A clear understanding of the behavior follows from the form of this error. From
(2.13) we see the components of the error are proportional to

(M) /mi(0) = (L= A /090) (1= X /000y (1= X708, i=1,... n.

If for any j there is a Ritz value 0,9) ~ 0, this ensures 7;(A;)/7;(0) will be large for
reasonably sized A; not well approximated by some Ritz value, and so a very small
0,(6]) can give some very large error components.

Our numerical experiment has been carried out with a diagonal matrix (which is
not a loss of generality) of dimension 100, with m some integer in [0, 100]:

A = diag(1 — 2m, 3 — 2m, ..., 197 — 2m, 199 — 2m), (4.23)

so that A has m negative eigenvalues. The right hand side has been chosen so that
z=(1,1,...,1)% and zo = 0.

For m = 0, we have that A is positive definite, and the convergence history
plotted in Figure 1(a) will therefore not come as a surprise.

For m = 1, we observed the convergence history as shown in Figure 1(b). The
peak at the 19th step can be explained as follows. When for some j the Ritz value
ng) comes close to the origin (on its way towards Ay = —1), which happens for
J = 19, most of the 7;(A;)/7;(0) may be expected to be large. Hence the error

can take a large value. Note that ng) converges to Ay = 1, so that it can happen
only during a relatively short phase in the iteration process that a Ritz value may
come close to the origin. After such a phase, i.e., when 9?) has arrived in the
neighborhood of Ay, we may expect the process to behave as a process in which
A1 plays no role. That means that the process behaves as a process determined by
positive eigenvalues only [2,16]. It may then be no surprise to see a convergence
behavior very similar to the situation for m = 0 when j > 20 in Figure 1(b).
Likewise, for m = 2, we may expect two phases where a Ritz value is close to
the origin (hence two peaks, see Figure 2(a)), and for m = 3 we see three peaks,
as might have been anticipated. Obviously we have been lucky enough to avoid the
rare event of singular 7. However, for indefinite matrices Ritz values may come
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Figure 2. Convergence of CG for m = 2, 3.

arbitrarily close to the origin, so that the peaks can be very high indeed. We must
not give the impression that there will always be m peaks, i.e. local maxima, in
the graph of ||7*"|| when there are m negative eigenvalues. However m is an upper
bound on that number when b*Ab > 0.

5. The Minimal Residual Approximation

The Galerkin solution to Az = b discussed in Section 3. neglects the quantity &;41
which is, in practice, knowable after j steps of an appropriate Krylov subspace
method. With the aid of ;41 it is possible to find the unique vector 2" in K/
that minimizes ||b — Az|[. Thus r*" = b — Az}"" is characterized by

[[7""|] = min [|b— Aul| over u € K7 (b; A). (5.24)

We may also call 27"" the least squares (LS) solution to Az = b in K7.

Recall from (2.5) that the Lanczos algorithm delivers V; € IR™*J where AV, =
Vj_HTj. The accuracy of the Galerkin solution in K7 is governed by the eigenvalues
of T; and, by analogy, we might expect the accuracy of the MR solution in K to be
governed by the singular values of TJ This is not correct, but is close to the truth.
The appropriate quantities, which we are tempted to call the harmonic Ritz values,
turn out to be the reciprocals of the (ordinary or weak) Ritz values of A~ from
AKJ. jFrom (2.5) and (2.8) T} = S;0; S; = VthVj, so if A has eigendecomposition
A= XAX" we see ©; = VV;AVV]', W; = X'V;S;, and the (ordinary) Ritz values
Hl(j) (of A) are all weighted arithmetic means of A’s eigenvalues. At the end of this
section we will show the harmonic Ritz values are all weighted harmonic means of
A’s eigenvalues, which led to this terminology.

The singular values of TJ are the eigenvalues of the symmetric positive definite
matrix M; where

M} =T}T; =17 + Bl yejel = Ti(1 + B, fi )15, (5.25)
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10 Paige, Parlett, and Van der Vorst

this last expression holding if 7} is nonsingular and 7; f; = e;.
Before we say more about the harmonic Ritz values we present zJ'" in terms of
the Lanczos basis. We will prove all these results later in this section.

T = I/]»T]."'e(ljﬂ)ﬁl
= VM Ty, (5.26)
where T]ﬂ' denotes the Moore-Penrose generalized inverse of TJ Further
ri" = Viprww()By,  |[[r" ] = |w(1)] B, (5.27)

where w is the normalized left null vector of Tj; thj = 0" and w(1) is its first
entry. We also show

lw(D)] = Byl F DI/ L+ Bl 1), (5.28)
giving the improvement in the residual of MR over the weak solution:
P71 = W1/ + B |52 (5.29)

Next we introduce the monic MR polynomial, and justify this definition later:

xi(A)

det [\ I; — T ' M) (5.30)
= det X -T; - fje]tﬂf-pl]
j .
= ] -6
i=1
In terms of the Krylov basis and this MR polynomial we will show
r;m x;j(A)b/x;(0), (5.31)
o <M ) b (5.32)
A=A

Ax; (0)
These {675])} are the harmonic Ritz values. Associated with them are harmonic Ritz
vectors

3 =vis, i=1,...] (5.33)

where

TOIMPE =567, |I5i]| = 1. (5.34)

Since Tj8; = MJ-2§i/§Z(-j) it follows that the set {5;} is M?-orthogonal and hence
linearly independent. In particular with obvious notation

M85 = $;6;7". (5.35)
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Approximate Solutions and Eigenvalue Bounds from Krylov Subspaces 11
In terms of the harmonic Ritz basis {gjgj), ceey g§”}, gl(” =Vj§,i=1,...,7],

J . . -
J:;m =5 Zﬂﬁ”(m/@g”), Vi1t = 625]'_161' (5.36)

i=1

In view of (5.36) it is significant that the largest interval around zero that is free of
eigenvalues of A is also free of harmonic Ritz values.
Justification
Recall that
AV; = Vi T; and V7 '=VE

For any vector Vjc in K7,

r

b— AVjc

ol

= Vne(ln)ﬁl - Vn <

)e

Since V,, is orthogonal

Il

18— ()l

= ||e(1j+1)61 — Tje||, discarding null rows.
In terms of the Moore-Penrose generalized inverse the least squares solution is
mr T j+1
e — (Tj+)6(1J+ )61
(011 T
= Mj_sze(lj)ﬁl,

using the special form of TJ This gives (5.26). Now since w spans the left null space
of Tj, the projector onto range(fj) is

J i i
giving
A = AVTF B
= Vip(GIHe
= Vigi(I - ww)ef gy,
Thus

j+1
rit =b— Az} = j+1w'wte(1]+ )ﬁl,

as claimed in (5.27). Note that [|r""|[ = [w(1)|$1, and if T} is nonsingular

w(l)? =1— etlTij_szel =1—el(L+ B fif]) e,
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12 Paige, Parlett, and Van der Vorst

and using (I + uu’)™! = T — u(1 + u'u)~tu? gives (5.28) and so (5.29).
The derivation of y; is more interesting. Recall from Section 3. that

Vimi(A)b =0

where 7; is the monic Lanczos polynomial. Now from (5.24) we see ri'" =b—AV;z;
where z; is chosen so that (AVj)trg’" = 0. Thus for the residual to have the form
ax(A)b we seek x € IP; such that V;Ax(A)b = 0. We can create monic Ax(A) from
7;(A) and 7j41(A) since

Vi (A)h = 0

implies, a fortiori, that V]»t7rj+1(A)b = 0. All we need for Ax(A) is a monic polynomial
in [P; 41 with no constant term, and having the right orthogonality properties. The
unique solution is

AX(A) = 741(A) = 1 (M) 7541(0)/7;(0).

This defines x; but does not give an expression in terms of T; and £;41. To ob-
tain (5.31) we use the Schur complement of AI; — Tj in Alj41 — Tj41 and take
determinants:

Ti41(A) = det L1 — Tjqa] = mj(A)det [A — ajp1 — B 16 (A — Tj) " ey,

Tj41(0) = w5 (0)[—aj41 + BF41 €5 T g5

Fortunately the ‘unknown’ term o1 will disappear from x:

Ti1(X) = T (M) 741(0)/75(0) = w5 (VA = B paef {(A = T3) 7+ 17 e

Now invoke the following identity (called Hilbert’s first resolvent condition in Func-
tional Analysis)
vt—vili=uvY\wv-uyv

so that Tj_1 +(A - Tj)_1 =xA—- Tj)_lTj_l. Hence

X)) = w65 (A = 1) ey
= det []; - ]+1T 616}(>‘Ij = T;) " (X
= det [AL; - T; - ﬁj+1fj6;]:

as claimed. In the final lines we used the fact that det( + zy') = 1+ y'z and the

standard result on products. The zeros 672-(]) of x are eigenvalues of T; —|—B]2+1Tj_16J €
and govern the accuracy of MR.

To justify (5.36) we see from (5.35) that Mj_2Tj = gj(:)j_lgj_l, and after substi-
tuting this in (5.26) we obtain the desired result

]— -1 (J)ﬁl
NS ten) B

In [4] Freund, and in [11] Morgan, essentially use this rank one modification of

07!

V; S;
Y;07
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T; to compute the 0; but we offer a simpler method which is given in Section 7..
The A~! connection

It remains to connect the {672-(])} with A~1. Since A~! maps AK’ into K’ we
may consider the (orthogonal) projection of A=! onto AK?. A convenient basis is

{Awvq, ..., Av; } but it is not orthonormal. However the columns of AV} M]»_1 do form
an orthonormal basis and in it the representation of the projection is

Hj = M7 AV;)PATH AV )M = MY MY

which is similar to M,_sz as claimed, showing the inverses of the harmonic Ritz
values are weighted means of the inverses of A’s eigenvalues. The last section gives

a simple way to compute the {éi(])} from a symmetric tridiagonal matrix.
The A™! connection has also been noticed by Morgan [11]:Section 2. The view-
point taken in that paper is to minimize a Rayleigh quotient for A~!.

6. A Pseudo-Lanczos Algorithm

Given the equation Az = b and the Lanczos basis in V; = [v1,...,v;], one can
consider the projection of the equation onto K7 (b; A), namely

(V; VAV Vi yu = V; Vi

or

VJ'TJ'V;UIVJ'TJ'C:VJQBM ;L‘:VJ'V;U:V]-C’ celr.
This yields the Galerkin (CG) solution
J,;”U = ‘/jj}_lelﬁl.

An alternative approach is to consider the normal equations A%z = Ab, since A® =
A, and the projection on K7, namely

VAT (V) = Vi Vi b
or
ViMViu=ViM?c=VTje1 pr, x~V;Viu="Vjc.
This yields the LS or MR solution
2" = Vi M *Tieq B
Suppose that 7 is invertible and admits the triangular factorization

Tj = LiAjLL,

where lower bidiagonal L; has ones on the diagonal. It is a subtle and useful prop-
erty of Krylov subspaces that Mj2 is reduced to tridiagonal form 7; by the same
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14 Paige, Parlett, and Van der Vorst

congruence that reduces 7; to A;, so that as we will show,
M? — XT; = Li(T; — AAj)LE. (6.37)

The only undesirable feature is that since 7} is not positive definite its triangular
factorization might be unstable, but it will exist if 77,...,7} are all nonsingular,
which is the necessary and sufficient condition for the pseudo-Lanczos process below
to be successful.

One way to understand the reduction in (6.37) is as a byproduct of a pseudo-
Lanczos algorithm applied to A which differs from the standard algorithm only by
replacing the Euclidean inner product (f, g) = ¢*f by an indefinite inner product

[f.9] = ¢"AF. (6.38)

It is only the failure of the positivity axiom that prevents [-,-] from being a true
inner product. Initially

‘61 =V, W1 = [61,51], &1 = [Aﬁl,ﬁl], ‘62 = Aﬁl — ‘61&1/(.«)1.

The ith step of this pseudo-Lanczos algorithm is

wi = [U;, 8],
t = A¥ — _qwifwia,
&i = [t, f’i],
'L~VZ'+1 = {t-— ﬁzdl/wl
) wa . wj
If 7; = tridiag aq . . a; |, (6.39)
wo . wj
then after j successful steps (i.e. w; # 0) the matrix f/] = [01, ..., U;] satisfies

VIAV; = [V}, Vi] = Q; = diag (w1, . ..,wj),

Af/j — f/JQj_ljjj = 1~)j+16§».

Consequently _ - . - .
VLA, = 7, AT;] = .

By construction, 9; € K! for each i, and thus
V= ViR (6.40)
for some invertible upper triangular matrix f;. In particular [‘N/J, IN/J] = ; gives
RjQ; Rj = RV AV R; = V] AV, =T
which is tridiagonal. Consequently 2; must be bidiagonal. Next comes

RITjR; = RIVIA’V;R; = VI A*V; = M} =T}1j,
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this last from Section 5.. Thus we have obtained
M? — \T; = RYT; — AR, (6.41)

and (6.41) differs from (6.37) only by a diagonal scaling R; = D;L}. But the
eigenvalues of the pencil Mf — AT} are the zeros of x(A) in (5.30), and so therefore
are the eigenvalues of the pencil TJ — AQ;, where these are just the “Ritz values”
of this pseudo-Lanczos process.

Finally by substituting the above expressions for MJ»2 and 7} in (5.26) we see
2" = Vi M Tyea fy = ViR (RET; Ry) ™ R Q; Rjea fy = VT eqwn|[b]],
since Rje; = e; from (6.40) and ¥; = v, so the MR solution can be found from
this pseudo-Lanczos process in the same way the weak solution was found from the

standard Lanczos process via (3.15).

We hasten to add that in practice we would not compute the Harmonic Ritz
values or the MR solution from this pseudo-Lanczos process — it is essentially of
theoretical interest.

7. Harmonic Ritz Values and Lehmann’s Intervals

We recall two standard results from eigenvalue theory. An m x m matrix H is
said to be a section of an n x n A if H = Q'AQ for some @ € IR"*™ with
Q'Q=1,, m<n.

(I) Interlacing
Any intervals (—oo, s] and [t, +00) contain at least as many eigenvalues of A as
they do eigenvalues of a section H.

(IT) Nesting
The convex hull of the Ritz values (for A) of a subspace S contains the Ritz
values (for A) of any proper subspace of S.

The Krylov methods build up a nested sequence of subspaces. By (IT) the extreme
Ritz values min and max must converge monotonically to the extreme eigenvalues as
the dimension increases. Applying this result to A~! we see that when A has eigen-
values of both signs then the smallest positive harmonic Ritz value approximates
the smallest positive eigenvalue of A from above. Similarly the largest negative har-
monic Ritz value approximates the largest negative eigenvalue of A from below. In
other words any interval containing zero and free of A’s eigenvalues is also free of
harmonic Ritz values.

In practice, for Krylov subspaces of modest dimension (such as 30), the extreme
Ritz values are good approximations to the extreme eigenvalues of A. Now since
the harmonic Ritz values are reciprocals of the Ritz values of A=! from AKJ, we
might guess that the smallest (in absolute value) harmonic Ritz values would also
be good approximations to A’s smallest eigenvalues, and approximate these much
sooner than the Ritz values would. Unfortunately this is not borne out by our
example below. Clearly the Ritz values of A~! from AKJ do not behave the way
we would hope Ritz values of A~! from K7 to behave.
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(a) : convergence CG

(b) : convergence MR
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Figure 3. Convergence of CG and MR and the Ritz values for m = 4.

In Figure 3(a) we have plotted the convergence history of CG for the case m =4
in (4.23), and we see four peaks, as anticipated. In Figure 3(c) we see how the Ritz
values converge to “their” eigenvalues. Note that we do have four phases in which a
Ritz value is close to zero, and these phases correspond to the peaks in Figure 3(a).

In Figure 3(b) we have displayed the convergence history for the minimum resid-
ual process, which is smooth as one might expect: because of the minimization of
[I77"" (|2 over the current Krylov subspace, we know this cannot increase. ;From the
polynomial point of view we know that no harmonic Ritz value can come close
enough to the origin to blow up the MR-polynomial in (5.31).

In Figure 3(d) we see the convergence of the harmonic Ritz values for the cor-
responding pseudo-Lanczos process, i.e., the Lanczos process carried out with the
bilinear form given in (6.38). Note that the smallest positive harmonic Ritz value
converges monotonically from above to the smallest positive eigenvalue, and also
that the largest negative harmonic Ritz value (the negative value closest to zero)
converges monotonically from below to the largest negative eigenvalue. But we see
these small eigenvalues are still only found at about the same stage as in Fig-
ure 3(c). However, as we show below, these harmonic Ritz values do provide op-

timal eigenvalue intervals. The {ng)} interlace the {@(j)} U {0} which interlace
5 (7)

the {9§j+1)} U {£oo}, the sign on oo depends on ajyq. It follows that each 6;
lies between a 6U) and a #U+1). Consequently the 8U) and the 8U) stabilize (on
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eigenvalues) at about the same value of j.

We also observe that the minimum residual process converges much faster after
the smallest positive eigenvalue and the largest negative one have been approxi-
mated sufficiently well, see [1] for more details. This happens at about the same
phase in the iteration process of CG, which is not that amazing, since it may be
expected that as soon as the CG convergence behavior is determined by the posi-
tive eigenvalues only, the corresponding error norm (zj — ,l‘)tA(JE;U — &), with the
error restricted to the subspace spanned by the “positive” eigenvectors, must be
expected to reduce about as fast as (¢7*" —2)" A*(2"" — ), see [11] for more details.
Since the MR approximation makes use of the value 8;4; it would seem preferable
to the weak (CG) approximation. However it proved hard to find an efficient im-
plementations of MR that could compete with CG. See [14] for further discussion
of practical aspects of the two approaches.

As far as solving Az = b is concerned we have no more to say about harmonic
Ritz values. However it turns out that the computable error bounds on eigenvalues
developed by N.J. Lehmann in the 1950s and 1960s are directly related to harmonic
Ritz values. The key fact is the shift invariance of Krylov subspace methods. The
three term recurrence relation (2.5) may be applied to A— uI instead of A to obtain

(A= pD)V; = Vi(Tj = plj) + vjs1 B 416 (7.42)

with the same Lanczos vectors {vi,...,v;} as before. The Ritz values from K/ =

range(V;) for A — ul are just 6’5” — p, but the harmonic Ritz values change in a
much more complicated way since from the eigenproblem (5.34) we have

(Tj — pI;)? + B yejel]u = 0(T; — pl;)u. (7.43)

So, when necessary, we write 675»])(;1), 1t =1,...,J, to indicate this dependence on
(. We assume that u is not an eigenvalue of Tj.

Note that the two él(»])(,u) closest to p converge monotonically to the two eigen-
values of A closest to pu.

Readers familiar with Lehmann’s results will recognize (7.43) as a possible for-
mulation of his [t, 7] (here [y, s + 6]) intervals in [8]. Let us index the solutions of
(7.43) as follows and drop the dependence on pu:

09) <. <dV¥) <0< P < g (7.44)

Theorem (Lehmann, 1966)
Fach interval [p, ,u—i—éz(-])], 1=1,...,7—r contains at least 1 eigenvalues of A. Fach

interval [p + 67(_]2) ul, i=1,...,7 contains at least i eigenvalues of A. Moreover, in
the absence of extra information no smaller intervals have this property.

It comes as no great surprise that the polynomial x, corresponding to the mini-
mum residual ||b—(A—p)z|| should have zeros which are reasonable approximations
to the eigenvalues of A closest to u. The equation (7.43) can be reformulated as

det [(Tj — pl)(Tj — (u+0)I;) + BFyejes] = 0, (7.45)

and it was from (7.45) that Lehmann advocated computing 0.
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18 Paige, Parlett, and Van der Vorst

Nevertheless there is a simpler and more accurate way to find the HNZ(-j)(u), i=
1,...,j. It was found by Kahan and presented in [15, Ch. 10]. Consider the (j +
1) x (5 + 1) tridiagonal matrix Tj4; obtained from Tj4; — plj+1 by replacing the
(J+ 1,74 1) entry by BJZ_H/(S]' where 6;1 = e}(Tj — pl;)~te; is the reciprocal of
the (j,j) element of A; in the triangular factorization T; — pl; = L; AJ'L}. It will
be shown that Tj+1 has zero as a simple eigenvalue and the remaining eigenvalues
yield the ggj)(,u), 1 =1,...,7. The derivation makes use of the same facts as were
used at the end of Section 5. when justifying expression (5.30).

Ty —pl =01 | Bisa
Bj+1 | BJZ-H/‘SJ' — 0

Tjy1 — 01 = (7.46)

det [Tiy1 — 01 = det (Tj — ul — 1) «
[ﬁ;+1/6j —0- 632+16; (T3 —p— 5)—16].]

= det (Tj — p— O[B4 e (T — )™ — (T — p— 0) " }e; — 6]

(
= (=) det (T; — p—0) det [T+ 5741 (Ty — )~ ejel(Ty —p— )]
(

Thus the eigenvalues of Tj4; are zero and the solutions of (7.45).
Note that the eigenvalues of Tj — ul, i.e. the shifted Ritz values, strictly interlace
those of Tj4,. Adding p to these shows, with appropriate indexing shown in 7.44,

...<u—|—§(_jl)(u)<€(_jl)<,u<0§j)<,u—|—€~§j)(,u)<...,

so the Ritz values lie strictly within the corresponding Lehmann intervals.

8. Conclusions

We have shown that the zeros of the iteration polynomial (5.30) associated with
the minimum residual method for symmetric indefinite systems satisfy interesting
convergence properties. In particular, these zeros (the harmonic Ritz values) con-
verge to the eigenvalues of A monotonically towards the origin (from both sides
for indefinite A). By considering different shifts in A — 7, we have shown the cor-
responding zeros give us the Lehmann [t, 7] intervals for bounding eigenvalues of
A. This could be an alternative to using inverse iteration via iterative solution of
equations. Our observations also help in understanding local convergence behavior
in the conjugate gradient and minimum residual methods.

The contribution of this study is largely a theoretical one. It points out useful
connections between what we have called the harmonic Ritz values of A, the mini-
mum residual method and its iteration polynomial, the pseudo-Lanczos process in
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Approximate Solutions and Eigenvalue Bounds from Krylov Subspaces 19

Section 6. and its Ritz values, and the Lehmann eigenvalue intervals, as well as
explaining results we observe in practice. This increased understanding could fa-
cilitate the study and design of methods for finding internal eigenvalues or solving
linear systems involving large matrices. In [11] it has been suggested that the har-
monic Ritz vectors offer better possibilities for restarting purposes when searching
for internal eigenvalues.
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