
Approximation By Spline Functions

Def. A function S is called a spline of degree k if

• The domain of S is an interval [a, b].

• S, S ′, . . . S(k−1) are continuous on [a, b].

• There are points ti (the knots of S) such that a = t0 < t1 < · · · < tn = b and such
that S is a polynomial of degree at most k on each [ti, ti+1].

When k = 1, the splines are called linear splines, when k = 2, the splines are called
quadratic splines, when k = 3, the splines are called cubic splines. Here we are mainly
interested in linear splines and cubic splines.

Interpolation by Linear Splines
Problem: Given n + 1 points (t0, y0), (t1, y1),. . . ,(tn, yn), where without loss of generality
we assume t0 < t1 < · · · < tn. Seek a linear spline S(x) such that S(ti) = yi for 0 ≤ i ≤ n
and ti are the knots of S(x).
Obviously we can write

S(x) =


S0(x), t0 ≤ x ≤ t1
S1(x), t1 ≤ x ≤ t2
...
Sn−1(x), tn−1 ≤ x ≤ tn

where Si(x) = yi + mi(x − ti), ti ≤ x ≤ ti+1, with slope mi = (yi+1 − yi)/(ti+1 − ti). So
S(x) is a piecewise linear polynomial.

Algorithm for evaluating S(x) (given x, ti, yi and mi, i = 0, 1, . . . , n):

for i = 0 : n− 1
if x− ti+1 ≤ 0,

exit loop
end

end
S ← yi + mi(x− ti)

Remarks:

• When x < t0, the algorithm gives S = y0 + m0(x − t0); when x > tn, it gives
S = yn−1 + mn−1(x− tn−1).

• A binary search can be used to find the desired interval which consists of x. Averagely,
this is more efficient.

1



Interpolation by Cubic Splines
For a linear spline, generally S ′ is not continuous, so its graph lacks of smoothness. For
a quadratic spline, generally S ′′ is not continuous, so the curvature of its graph changes
abruptly at each knot. So in practice, the most frequently used splines are cubic splines.
Problem: Given n + 1 points (t0, y0), (t1, y1),. . . ,(tn, yn), where without loss of generality
we assume t0 < t1 < · · · < tn. Seek a cubic spline S(x) such that S(ti) = yi for 0 ≤ i ≤ n
and ti are the knots of S(x).
Obviously we can write

S(x) =


S0(x), t0 ≤ x ≤ t1
S1(x), t1 ≤ x ≤ t2
...
Sn−1(x), tn−1 ≤ x ≤ tn

were Si is a cubic polynomial on [ti, ti+1].
Number of unknowns:
Each Si has 4 unknowns. So there are a total of 4n unknowns.
Number of conditions:
S(ti) = yi for i = 0, 1, . . . , n result in n + 1 conditions. S

(k)
i−1(ti) = S

(k)
i (ti) for k = 0, 1, 2

and i = 1, . . . n− 1 lead to 3(n− 1) conditions. So there are a total of 4n− 2 conditions.
In order to get a unique solution, we need 2 more extra conditions. Here we impose the
following two conditions:

S ′′(t0) = S ′′(tn) = 0.

The resulting spline function is called a natural cubic spline.

Constructing a Natural Cubic Spline
Let zi = S ′′(ti) (0 ≤ i ≤ n). On [ti, ti+1], S

′′
i (x) is a linear polynomial and S ′′i (ti) = zi and

S ′′i (ti+1) = zi+1. So we can write

S ′′i (x) =
x− ti+1

ti − ti+1

zi +
x− ti
ti+1 − ti

zi+1.

Integrating S ′′i (x) twice, we obtain

Si(x) = (ti+1 − x)3
zi

6hi

+ (x− ti)
3 zi+1

6hi

+ cx + d, (1)

where hi ≡ ti+1 − ti, and c and d are constants of integration. We impose the conditions
Si(ti) = yi and Si(ti+1) = yi+1. Then we have

h3
i

zi
6hi

+ cti + d = yi,

h3
i

zi+1

6hi

+ cti+1 + d = yi+1,

2



This gives

c = (yi+1 − yi)/hi − hi(zi+1 − zi)/6

d = (yiti+1 − yi+1ti)/hi + hi(tizi+1 − ti+1zi)/6.

Now we have to determine the zi and zi+1 in Si(x). In order to do this, we impose conditions
S ′i−1(ti) = S ′i(ti). From eqn (1) we obtain

S ′i(x) = −(ti+1 − x)2zi/(2hi) + (x− ti)
2zi+1/(2hi)

+(yi+1 − yi)/hi − (zi+1 − zi)hi/6

So

S ′i(ti) = −1

3
hizi −

1

6
hizi+1 + bi.

Analogously we can derive

S ′i−1(ti) =
1

6
hi−1zi−1 +

1

3
hi−1zi + bi−1.

Thus S ′i−1(ti) = S ′i(ti) leads to

hi−1zi−1 + 2(hi−1 + hi)zi + hizi+1 = 6(bi − bi−1),

i = 1, 2, . . . , n− 1.

Notice z0 = zn = 0. So we have the following tridiagonal system
2(h0 + h1) h1

h1 2(h1 + h2) h2

• • •
• • •

hn−2 2(hn−2 + hn−1)




z1
z2
•
•

zn−1

 =


6(b1 − b0)
6(b2 − b1)
•
•

6(bn−1 − bn−2)


Note that the matrix is strictly diagonally dominant by columns. So this can be reliably
solved by GENP.

3



Algorithm for finding zi, i = 0, . . . , n (given ti, yi, i = 0, . . . , n):

for i = 0 : n− 1
hi ← ti+1 − ti
bi ← (yi+1 − yi)/hi

end
% Forward elimination
u1 ← 2(h0 + h1)
v1 ← 6(b1 − b0)
for i = 2 : n− 1

ui ← 2(hi−1 + hi)− h2
i−1/ui−1

vi ← 6(bi − bi−1)− hi−1vi−1/ui−1
end
% Back substitution
zn ← 0
for i = n− 1 : −1 : 1

zi ← (vi − hizi+1)/ui

end
z0 ← 0

Evaluation of S(x)

Si(x) = (ti+1 − x)3
zi

6hi

+ (x− ti)
3 zi+1

6hi

+

[
yi+1 − yi

hi

− hi

6
(zi+1 − zi)

]
x

+
yiti+1 − yi+1ti

hi

+
hi

6
(tizi+1 − ti+1zi).

This is not the best computational form. As we want to utilize nested multiplication, we
write

Si(x) = Ai + Bi(x− ti) + Ci(x− ti)
2 + Di(x− ti)

3.

Notice Ai = Si(ti), Bi = S ′i(ti), Ci = 1
2
S ′′i (ti), Di = 1

6
S

′′′
i (ti). Then we can obtain

Ai = yi

Bi = −hizi+1/6− hizi/3 + (yi+1 − yi)/hi

Ci = zi/2

Di = (zi+1 − zi)/(6hi)

Si(x) = Ai + (x− ti)(Bi + (x− ti)(ci + (x− ti)Di)).

4



Algorithm for evaluating S(x) (given x, ti, yi and zi for i = 0, 1, . . . , n):

for i = 0 : n− 1
if x− ti+1 ≤ 0

exit loop
end

end
h← ti+1 − ti
B ← −hzi+1/6− hzi/3 + (yi+1 − yi)/h
D ← (zi+1 − zi)/(6h)
S ← yi + (x− ti)(B + (x− ti)(zi/2 + (x− ti)D))

Note. You can use a binary search to find the desired interval consisting of x.

MATLAB Spline Tools: spline

5


