Numerical Methods for Ordinary Differential Equations (ODE)I

Introduction
In this course, we focus on the following general initial-value problem (IVP) for a first

order ODE: . )
{a: fte) { a = [t ()

x(a) = xg z(a) = g

In many applications, the closed-form solution for the above IVP may be very complicated
and difficult to evaluate or there is no closed-form solution. So we want a numerical solution.
A computer code for solving an ODE produces a sequence of points (t;,z;), i =0,1,...,n
where x; is an approximation to the true value z(t;), while mathematical solution is a
continuous function x(t).

Q: Suppose you have obtained those (¢;, ;). Now you want to obtain an approximate value
of x(t) for some ¢ which is within the interval [to, ¢,] but is not equal to any ¢;, what can
you do?

The Euler method

We would like to find approximate values of the solution to the IVP over the interval [a, b].
Use n + 1 points tg, t1,...,t, to equally partition [a,b]. h = ;41 —t; = (b — a)/n is called
the size step. Suppose we have already obtained z;, an approximation to z(¢;). We would
like to get x;41, an approximation to x(¢;11). The Taylor series expansion

(tiv1) =~ x(t;) + (L — )2 (&) = x(t;) + hf (&, 2(t;))
leads to the Euler method
xi+1:$i+hf(ti7$i)7 ZZO,]_,,’TL—]_

Q: Derive the Euler method by the rectangle rule for integration.



Algorithm for the Euler method (given f,a,b, xg,n).
h— (b—a)/n

to < a

fori=0:n-1
Tiv1 < X5 + hf(tz, ZEZ)
ti+1 — ti + h

end

Note: In the Euler method, we chose a constant step size h. But it may be more efficient
to choose a different step size h; at each point ¢; based on the properties of f(¢,z). An

adaptive method can be developed.
/

z(0) =1
you observe? How do you explain what you observed?

Example: Use the Euler method to solve over [0,4] with n = 20. What did

Errors for the Euler method
The Taylor series expansion gives

1
z(tiv1) = x(t;) + hf(ti, x(t:)) + §h2$//(2i+1)> Ziy1 € [ti, tiga]- (1)
the Euler method gives
Tip1 = i + hf(ti, ;). (2)
From (1) and (2)

T(tiv1) — Tip1 = x(ti) — xi + h[f (G, 2(t) — f(ti, zi)] + %th”(zi—H)'

x(ti11) — T441 is the error at ¢;,1. This is called the global error at ¢;,1. It arises from
two sources:

1. the local truncation error: $h%z"(z;1). Notice if z; = x(¢;), then the local trun-
cation error at t;,1 is just the global error at ¢;,;.

2. the propagation error: x(t;) — x; + h[f(t;, x(t;)) — f(t;,x;)]. This is due to the
accumulated effects of all local truncation errors at t1,ts, ..., 1;.

When we perform the computation on a computer with finite precision, there is an addi-
tional source of errors: the rounding error.

Note: There are a few techniques to determine the step size h according to error analysis
results.



The trapezoid-Euler method

Tipr = x + hf(ts, x),
Tiv1 = x; + $h[f(ti, ) + f(tig1, Ligr)]

In the literature, this is also called the improved Euler’s method or Heun’s method.

The midpoint-Euler method

Tiy1/2 = x; + %hf(tm ),
Tip1 = @i+ hf(ti + 5D, i1 )2)

General Taylor series methods
Taylor series expansion gives

1 1
z(tiy1) =~ x(t;) + ha'(z;) + ghQIB//(ti) +F —lhma:(m) (t;)
! m!

From 2’ = f(t,z), we can compute 2", ..., ™. Define z}, 27, ... ,xgm) as approximations
to 2'(t;), 2" (t;), ..., 2™ (t;), respectively. Then we have the Taylor series method of order
m:

1 1 m .
Tiy1 = x; + hal + =h%z) + -+ —hmxl( ) 2y is known.
o2t m!
Remarks:
1. The Euler method is a Taylor series method of order 1.

2. If f(t,x) is complicated, then high-order Taylor series methods may be very compli-
cated.

Runge-Kutta methods of order 2

1 1
il = T; 1—-— K —K
Tit1 $+( 2a) 1+20¢ 2

where
Ky = hf(t;,z;),
KQ = hf(tZ + Oéh, T+ OéKl),
a # 0.



When a = 1, we obtain the trapezioid-Euler method, and when « = 1/2, we obtain the

midpoint-Euler method. The local truncation error of Runge-Kutta methods of order 2 is
O(h?).

Runge-Kutta methods of order 4
The classical fourth-order Runge-Kutta method

1
Tiv1 = X4 + E(Kl + 2K2 + 2K3 + K4)
where

Kl = hf(tz,xz),
1 1
KQ = hf(tZ + —h, xT; —+ —Kl),

2 2
1 1
K3 = hf(tl -+ §h,xl + §K2),

K4 = hf(tl + h, x; + Kg)

This method is in common use for solving IVPs. The local truncation error of Runge-Kutta
methods of order 4 is O(h?).

MATLAB tools

1. 0de23: based on a pair of 2nd and 3rd-order Runge-Kutta methods.

2. ode4d5: based on a pair of 4th and 5th-order Runge-Kutta methods.



