
Numerical Methods for Ordinary Differential Equations (ODE)

Introduction
In this course, we focus on the following general initial-value problem (IVP) for a first
order ODE:

{

x′ = f(t, x)
x(a) = x0

or

{

dx(t)
dt

= f(t, x(t))
x(a) = x0

In many applications, the closed-form solution for the above IVP may be very complicated
and difficult to evaluate or there is no closed-form solution. So we want a numerical solution.
A computer code for solving an ODE produces a sequence of points (ti, xi), i = 0, 1, . . . , n
where xi is an approximation to the true value x(ti), while mathematical solution is a
continuous function x(t).
Q: Suppose you have obtained those (ti, xi). Now you want to obtain an approximate value
of x(t) for some t which is within the interval [t0, tn] but is not equal to any ti, what can
you do?

The Euler method
We would like to find approximate values of the solution to the IVP over the interval [a, b].
Use n + 1 points t0, t1, . . . , tn to equally partition [a, b]. h = ti+1 − ti = (b− a)/n is called
the size step. Suppose we have already obtained xi, an approximation to x(ti). We would
like to get xi+1, an approximation to x(ti+1). The Taylor series expansion

x(ti+1) ≈ x(ti) + (ti+1 − ti)x
′(ti) = x(ti) + hf(ti, x(ti))

leads to the Euler method

xi+1 = xi + hf(ti, xi), i = 0, 1, . . . , n− 1.

Q: Derive the Euler method by the rectangle rule for integration.

1



Algorithm for the Euler method (given f, a, b, x0, n).

h← (b− a)/n
t0 ← a
for i = 0 : n− 1

xi+1 ← xi + hf(ti, xi)
ti+1 ← ti + h

end

Note: In the Euler method, we chose a constant step size h. But it may be more efficient
to choose a different step size hi at each point ti based on the properties of f(t, x). An
adaptive method can be developed.

Example: Use the Euler method to solve

{

x′ = x
x(0) = 1

over [0, 4] with n = 20. What did

you observe? How do you explain what you observed?

Errors for the Euler method
The Taylor series expansion gives

x(ti+1) = x(ti) + hf(ti, x(ti)) +
1

2
h2x′′(zi+1), zi+1 ∈ [ti, ti+1]. (1)

the Euler method gives
xi+1 = xi + hf(ti, xi). (2)

From (1) and (2)

x(ti+1)− xi+1 = x(ti)− xi + h[f(ti, x(ti))− f(ti, xi)] +
1

2
h2x′′(zi+1).

x(ti+1) − xi+1 is the error at ti+1. This is called the global error at ti+1. It arises from
two sources:

1. the local truncation error: 1
2
h2x′′(zi+1). Notice if xi = x(ti), then the local trun-

cation error at ti+1 is just the global error at ti+1.

2. the propagation error: x(ti) − xi + h[f(ti, x(ti)) − f(ti, xi)]. This is due to the
accumulated effects of all local truncation errors at t1, t2, . . . , ti.

When we perform the computation on a computer with finite precision, there is an addi-
tional source of errors: the rounding error.

Note: There are a few techniques to determine the step size h according to error analysis
results.

2



The trapezoid-Euler method











x̂i+1 = xi + hf(ti, xi),
xi+1 = xi + 1

2
h[f(ti, xi) + f(ti+1, x̂i+1)]

ti = a + ih

In the literature, this is also called the improved Euler’s method or Heun’s method.

The midpoint-Euler method











xi+1/2 = xi + 1
2
hf(ti, xi),

xi+1 = xi + hf(ti + 1
2
h, xi+1/2)

ti = a + ih

General Taylor series methods
Taylor series expansion gives

x(ti+1) ≈ x(ti) + hx′(xi) +
1

2!
h2x′′(ti) + · · ·+

1

m!
hmx(m)(ti)

From x′ = f(t, x), we can compute x′′, . . . , x(m). Define x′

i, x
′′

i , . . . , x
(m)
i as approximations

to x′(ti), x
′′(ti), . . . , x

(m)(ti), respectively. Then we have the Taylor series method of order
m:

xi+1 = xi + hx′

i +
1

2!
h2x′′

i + · · ·+
1

m!
hmx

(m)
i , x0 is known.

Remarks:

1. The Euler method is a Taylor series method of order 1.

2. If f(t, x) is complicated, then high-order Taylor series methods may be very compli-
cated.

Runge-Kutta methods of order 2

xi+1 = xi + (1−
1

2α
)K1 +

1

2α
K2

where

K1 = hf(ti, xi),

K2 = hf(ti + αh, xi + αK1),

α 6= 0.

3



When α = 1, we obtain the trapezioid-Euler method, and when α = 1/2, we obtain the
midpoint-Euler method. The local truncation error of Runge-Kutta methods of order 2 is
O(h3).

Runge-Kutta methods of order 4
The classical fourth-order Runge-Kutta method

xi+1 = xi +
1

6
(K1 + 2K2 + 2K3 + K4)

where

K1 = hf(ti, xi),

K2 = hf(ti +
1

2
h, xi +

1

2
K1),

K3 = hf(ti +
1

2
h, xi +

1

2
K2),

K4 = hf(ti + h, xi + K3).

This method is in common use for solving IVPs. The local truncation error of Runge-Kutta
methods of order 4 is O(h5).

MATLAB tools

1. ode23: based on a pair of 2nd and 3rd-order Runge-Kutta methods.

2. ode45: based on a pair of 4th and 5th-order Runge-Kutta methods.

4


