
Numerical Integration

Introduction There are two types of integrals: indefinite integral and definite integral. If
we can find an anti-derivative F (x) of a function f , and F is an elementary function, then
we can compute

I =
∫ b

a
f(x)dx = F (b)− F (a).

Maple and Mathematica can do symbolic integration (when possible).
However often it is not possible to obtain such an F (x) for f(x). e.g. the case of f(x) =
e−x2

. When symbolic integration is not feasible, we can use numerical integration, to
approximate an integral by something which is much easier to compute.
One important interpretation for the definite integral

∫ b
a f(x)dx is it is the area between

the graph of f and the x-axis on this interval (here the area may be negative).

Rectangle Rule
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Partition [a, b] into n equal subintervals [xi, xi+1], i = 0, 1, . . . , n − 1, all with width h =
(b− a)/n. Each rectangle touches the graph of f at its top left corner.
The area of the rectangle over [xi, xi+1] is

hf(xi) = hf(a + ih).

The total area of the n rectangle panels is

IR = h
n−1
∑

i=0

f(a + ih).

This is an approximation of I =
∫ b
a f(x)dx and it is called the (left composite) rectangle

rule (for n equal subintervals). Note that f is evaluated at n discrete points.
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Error Analysis of the Rectangle Rule

Tools for error analysis: The Mean-Value-Theorem

• for sum: Let q(x) be continuous on [a, b]. If p(zi) ≥ 0 for i = 1, . . . , n, then

n
∑

i=1

p(zi)q(zi) = q(z)
n
∑

i=1

p(zi), some z ∈ [a, b],

• for integrals: Let q(x) and p(x) be continuous with p(x) ≥ 0. Then

∫ b

a
p(x)q(x)dx = q(z)

∫ b

a
p(x)dx, some z ∈ [a, b]

Theorem: Let f ′ be continuous on [a, b]. Then for some z ∈ [a, b],

I − IR =
1

2
(b− a)hf ′(z) = O(h).

Proof: We first show when h = b− a, it is true, i.e.,

I − IR =
1

2
(b− a)2f ′(z), for some z ∈ [a, b] (∗)

For every x ∈ [a, b], the Taylor series expansion gives

f(x) = f(a) + (x− a)f ′(zx), for some zx ∈ [a, b].

Then
I − IR =

∫ b

a
f(x)dx− f(a)(b− a)

=
∫ b

a
f(x)dx−

∫ b

a
f(a)dx

=
∫ b

a
[f(x)− f(a)]dx

=
∫ b

a
(x− a)f ′(zx)dx

= f ′(z)
∫ b

a
(x− a)dx (MVT for integral)

=
1

2
(b− a)2f ′(z).

Now let [a, b] be divided into n equal subintervals by x0, x1, . . . , xn with spacing h =
(b− a)/n. Applying (∗) to subinterval [xi, xi+1], we have

∫ xi+1

xi

f(x)dx− f(xi)h =
(xi+1 − xi)

2

2
f ′(zi) =

h2

2
f ′(zi),
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for some zi ∈ [xi, xi+1]. So we have

I − IR =
∫ b

a
f(x)dx− h

n−1
∑

i=0

f(xi)

=
n−1
∑

i=0

∫ xi+1

xi

f(x)dx− h
n−1
∑

i=0

f(xi)

=
n−1
∑

i=0

1

2
h2 ·f ′(zi)

= f ′(z)·
1

2
nh2 (MVT for sum)

=
1

2
(b− a)hf ′(z).

Midpoint Rule
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a b|< h >|

Midpoint
Rule

,

We make the midpoint of the top of each rectangle intersect the graph.
The midpoint rule:

IM = h
n−1
∑

i=0

f [a + (i + 1/2)h], where h =
b− a

n
.

Since part of the rectangle usually lies above the graph of f and part below, the midpoint
rule is more accurate than the rectangle rule.
It can be proven that for some z ∈ [a, b]

I − IM =
1

24
(b− a)h2f ′′(z) = O(h2).

(Try to prove it by yourself)
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Trapezoid Rule

Consider trapezoid-shaped panels:

Trapezoid
Rule

a a+h a+2h . . .

The trapezoid rule:

IT =
1

2
h[f(a) + f(b)] + h

n−1
∑

i=1

f(a + ih), with h =
b− a

n
.

It can be shown that for some z ∈ [a, b]

I − IT = −
1

12
(b− a)h2f ′′(z) = O(h2).

Q Prove both the midpoint and trapezoid rules give the exact integral if f is linear.

Recursive Trapezoid Rule

Suppose [a, b] is divided into 2n equal subintervals. Then the trapezoid rule is

IT (2n) =
1

2
h[f(a) + f(b)] + h

2n−1
∑

i=1

f(a + ih).

where h = (b− a)/2n.
The trapezoid rule for 2n−1 equal subintervals is

IT (2n−1) =
1

2
h̃[f(a) + f(b)] + h̃

2n−1−1
∑

i=1

f(a + ih̃).
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where h̃ = (b− a)/2n−1 = 2h. It is easy to show the following recursive formula

IT (2n) =
1

2
IT (2n−1) + h

2n−1
∑

i=1

f [a + (2i− 1)h].

After computing IT (2n−1) we can compute IT (2n) by this recursive formula without reeval-
uating f at the old points.

Simpson’s Rule

There is no need for straight edges:

Simpson’s
Rule

a a+h a+2h . . .

Each panel is topped by a parabola.
There are an even number of panels with width h = (b− a)/n. The top boundary of the
first pair of panels is the quadratic which interpolates

(a, f(a)), (a + h, f(a + h)), (a + 2h, f(a + 2h)). The next interpolates (a + 2h, f(a + 2h)),
(a + 3h, f(a + 3h)), (a + 4h, f(a + 4h)), and so on.
The area of the first 2 panels can be shown to be

h

3
[f(a) + 4f(a + h) + f(a + 2h)]

Q: How would you obtain this ??

Summing the areas of the pairs

h

3
[f(a) + 4f(a + h) + f(a + 2h)],

h

3
[f(a + 2h) + 4f(a + 3h) + f(a + 4h)],

· · · · · · · · ·

h

3
[f(b− 2h) + 4f(b− h) + f(b)],
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leads to Simpson’s rule (h = b−a
n

):

IS =
h

3
[f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + · · ·

+4f(b− 3h) + 2f(b− 2h) + 4f(b− h) + f(b)].

It can be shown for some z ∈ [a, b]

I − IS = −
1

180
(b− a)h4f (4)(z) = O(h4).

Q: What is the highest degree polynomial for which the rule is exact in general ??

Adaptive Simpson’s Method

Motivation and ideas of an adaptive integration method:

A function may varies rapidly on some parts of the interval [a, b], but varies little on other
parts. It is not very efficient to use some panel width h everywhere on [a, b]. But on
the other hand, it is not known in advance on which part of the integral f varies rapidly.
We can consider an adaptive integration method. The basic idea is we divide [a, b] into 2
subintervals and then decide whether each of them is to be divided into more subintervals.
This procedure is continued until some specified accuracy is obtained throughout the whole
interval [a, b].

A framework of an adaptive method:

function numI = adapt(f, a, b, ǫ, · · ·)
Compute the integral from a and b in two ways
and call the values I1 and I2 (assume I2 is better than I1)
Estimate the error in I2 based on |I2 − I1|
if |the estimated error| ≤ ǫ, then

numI = I2 (or numI = I2 + the estimated error)
else

c = (a + b)/2
numI = adapt(f, a, c, ǫ/2, · · ·)

+adapt(f, c, b, ǫ/2, · · ·)
end

This will guarantee |I − numI| <∼ ǫ.
Now we want to fill in details for Simpson’s method.
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• Defining I1 and I2:
Simpson’s rule for n = 2 gives

I = I1 + E1,

where

I1 =
b− a

6
[f(a) + 4f(

a + b

2
) + f(b)],

E1 = −
1

180
(b− a)(

b− a

2
)4f (4)(z).

Simpson’s rule for n = 4 gives
I = I2 + E2,

where

I2 =
b− a

12
[f(a) + 4f(a +

b− a

4
)

+2f(a +
b− a

2
) + 4f(a +

3(b− a)

4
) + f(b)],

E2 = −
1

180
(b− a)(

b− a

4
)4f (4)(z̃).

• Estimating the error in I2:

We assume f (4)(z) in E1 is equal to f 4(z̃) in E2. (a reasonable assumption if f (4) does
not vary much on [a, b]). Then we observe

E1 = 16E2.

Since I = I1 + E1 = I2 + E2, we have

I2 − I1 = E1 − E2 = 16E2 − E2 = 15E2.

This gives an error estimate in I2:

E2 =
1

15
(I2 − I1).

7



Adaptive Simpson’s algorithm:

function numI = adapt simpson(f, a, b, ǫ, level, level max)
h← b− a
c← (a + b)/2
I1 ← h[f(a) + 4f(c) + f(b)]/6
level ← level + 1
d← (a + c)/2
e← (c + b)/2
I2 ← h[f(a) + 4f(d) + 2f(c) + 4f(e) + f(b)]/12
if level ≥ level max, then

numI ← I2

else
if |I2 − I1| ≤ 15ǫ, then

numI ← I2 (or numI ← I2 + 1
15

(I2 − I1))
else

numI ← adapt simpson(f, a, c, ǫ/2, level, level max)
+adapt simpson(f, c, b, ǫ/2, level, level max)

end
end
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Gaussian Quadrature Rules

Unlike previous (composite) integration rules which choose equally spaced nodes for evalua-
tion, Gaussian quadratiure rules choose the nodes x0, x1, . . . , xn and coefficients A0, A1, . . . , An

(which are also called weights) to minimize the expected error obtained in the approxima-
tion

∫ b

a
f(x)dx ≈

n
∑

i=0

Aif(xi).

To measure this accuracy, we assume that the best choice of these values is that which
produces the exact result for the largest class of polynomials.

Theorem. Let q be a nontrival polynomial of degree n + 1 such that

∫ b

a
xkq(x)dx = 0, k = 0, 1, . . . , n. (1)

Let x0, x1, . . . , xn be the zeros of q. Then

∫ b

a
f(x)dx =

n
∑

i=0

Aif(xi), Ai =
∫ b

a
li(x)dx, li(x) = Πn

j=0,j 6=i

(

x− xj

xi − xj

)

,

for any polynomial f(x) with degree less than or equal to 2n + 1.

Any IG =
∑n

i=0 Aif(xi) with xi and Ai (i = 0, 1, . . . n) defined as in the above theorem
called a Gaussian quadrature rule.

If the interval [a, b] = [−1, 1], the Legendre polynomial qn+1(x) defined by

qn+1(x) =
2n + 1

n + 1
xqn(x)−

n

n + 1
qn−1(x), q0(x) = 1, q1(x) = x.

satisfies (1). Thus the roots of qn+1(x) = 0 are the nodes of the Gaussian quadrature rule
for

∫ 1
−1 f(x)dx.

If the Gaussian quadrature rule for
∫ 1
−1 f(x)dx is IG[−1, 1] =

∑n
i=0 Aif(xi). Then it can

shown that the Gaussian quadrature rule for
∫ b
a f(x)dx is

IG[a, b] = β
n
∑

i=0

Aif(α + βxi), α =
1

2
(a + b), β =

1

2
(b− a).
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