
Norms

Norm is a measure of size of a vector or matrix.

• Typical vector norms:

Let v = [v1, v2, . . . , vn]T be a real vector.

‖v‖1 =
n

∑

i=1

|vi|, ‖v‖∞ = max
i
|vi|, ‖v‖2 = (

n
∑

i=1

v2

i)
1/2.

• Typical matrix norms:

Let A = (aij) be an m× n matrix.

1. p-norm: ‖A‖p = maxx 6=0
‖Ax‖p

‖x‖p

, p = 1, 2,∞:

‖A‖1 = max
j

m
∑

i=1

|aij|, ‖A‖∞ = max
i

n
∑

j=1

|aij |, ‖A‖2 = (largest eigenvalue of AT A)1/2

2. Frobenius norm: ‖A‖F = (
∑

ij |aij |
2)1/2.

Gaussian Elimination with No Pivoting (GENP)

Problem: Ax = b, where A: nonsingular n× n matrix.
GENP has two phases:

• Forward elimination: transform Ax = b to an upper triangular system.

• Back substitution: solve the upper triangular system.

GENP Algorithm: Given A and b, solve Ax = b.

for k = 1 : n− 1
for i = k + 1 : n

mult← aik/akk

for j = k + 1 : n
aij ← aij −mult ∗ akj

end
bi ← bi −mult ∗ bk

end
end
xn ← bn/ann

for k = n− 1 : −1 : 1
xk ← (bk −

∑n
j=k+1 akj ∗ xj)/akk

end

1

Cost of GENP
1 flop = 1 elementary operation: +, −, ∗, or /.

GENP costs 2

3
n3 flops (lower order terms are ignored).

MATLAB file genp.m for solving Ax = b

function x = genp(A,b)

% genp.m Gaussian elimination with no pivoting

%

% input: A is an n x n nonsingular matrix

% b is an n x 1 vector

% output: x is the solution of Ax=b.

%

n = length(b);

for k = 1:n-1

for i = k+1:n

mult = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n)-mult*A(k,k+1:n);

b(i) = b(i) - mult*b(k);

end

end

x = zeros(n,1);

x(n) = b(n)/A(n,n);

for k = n-1:-1:1

x(k) = (b(k) - A(k,k+1:n)*x(k+1:n))/A(k,k);

end

Note: It can be shown that GENP actually produces the so called LU factorization:

A = LU

where L is an n×n unit lower triangular matrix and U is an n× n upper triangular matrix, see
Chap 8 of Cheney & Kincaid. Once the LU factorization is available, we can solve two triangular
systems Ly = b and Ux = y to obtain the solution x.

Gaussian Elimination with Partial Pivoting (GEPP)

Problem: Ax = b, where A: nonsingular n× n matrix.
The difficulties with GENP:
In the k’th step of forward elimination,

• if akk = 0, GENP will break down.

• if akk is (relatively) small, i.e., some multipliers (in magnitude) ≫ 1, then GENP will
usually (not always) give unnecessary poor results.

2

In order to overcome the difficulties, in the k’th step of forward elimination, we choose the largest
element from akk, ak+1,k, . . . , ank as a pivot element,

|aqk| = max{|akk|, |ak+1,k|, . . . , |ank|} (say)

then interchange row k and row q of A, and interchange bk and bq as well. This process is called
partial pivoting. The resulting algorithm is called GEPP.

GEPP Algorithm: Given A and b, solve Ax = b.

for k = 1 : n− 1
determine q such that

|aqk| = max{|akk|, |ak+1,k|, . . . , |ank|}
for j = k : n

do interchange: akj ↔ aqj

end
do interchange: bk ↔ bq

for i = k + 1 : n
mult← aik/akk

for j = k + 1 : n
aij ← aij −mult ∗ akj

end
bi ← bi −mult ∗ bk

end
end
xn ← bn/ann

for k = n− 1 : −1 : 1
xk ← (bk −

∑n
j=k+1 akj ∗ xj)/akk

end

Cost: 2

3
n3 flops + 1

2
n2 comparisons.

MATLAB file gepp.m for solving Ax = b

function x = gepp(A,b)

% genp.m GE with partial pivoting

% input: A is an n x n nonsingular matrix

% b is an n x 1 vector

% output: x is the solution of Ax=b.

n = length(b);

for k = 1:n-1

[maxval, maxindex] = max(abs(A(k:n,k)));

q = maxindex+k-1;

if maxval == 0, error(’A is singular’), end

A([k,q],k:n) = A([q,k],k:n);

b([k,q]) = b([q,k]);

for i = k+1:n

3

mult = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n)-mult*A(k,k+1:n);

b(i) = b(i) - mult*b(k);

end;

end;

x = zeros(n,1);

x(n) = b(n)/A(n,n);

for k = n-1:-1:1

x(k) = (b(k) - A(k,k+1:n)*x(k+1:n))/A(k,k);

end

Note: It can be shown that GEPP actually produces the so called LU factorization with partial
pivoting:

PA = LU

where P is a permutation matrix, L is an n× n unit lower triangular matrix, and U is an n× n
upper triangular matrix, cf. Chap 8 of Cheney & Kincaid. Once this factorization is available,
we can solve two triangular systems Ly = Pb and Ux = y to obtain the solution x.

Some Theoretical Results about GEPP

Let xc is the computed solution of Ax = b by an algorithm. Define the residual vector
r = b− Axc.

• We can show that if we use GEPP, then the computed solution xc satisfies

(A + E)xc = b, (1)

where usually
‖E‖ ≈ ǫ‖A‖, (2)

with ǫ being the machine epsilon. So xc exactly solves a nearby problem. We say GEPP
is usually numerically stable

• If (1) and (2) hold, we can show

‖r‖ <
∼ ǫ‖A‖·‖xc‖,

‖xc − x‖

‖x‖
<
∼ ǫ‖A‖·‖A−1‖,

where κ(A) = ‖A‖·‖A−1‖ is called the condition number of Ax = b.

Here (‖ · ‖ can be ‖ · ‖1, ‖ · ‖2, or ‖ · ‖∞)
Note:

• The size of residual is usually relatively small compared with the product of the size of A
and the size of xc.

4

• Let ǫ ≈ 10−t and κ(A) ≈ 10p. Then usually xc has approximately t− p accurate decimal
digits. If κ(A) is large, we say the problem Ax = b is ill-conditioned.

The accuracy of a computed solution depends on (i) the stability of the algorithm (ii) the
condition number of the problem.

Solving Tridiagonal Systems by GENP

Algorithm for solving

d1 c1

a1 d2 c2

. . .
. . .

. . .

an−2 dn−1 cn−1

an−1 dn

x1

x2

...
xn−1

xn

=

b1

b2

...
bn−1

bn

for i = 2 : n
mult← ai−1/di−1

di ← di −mult ∗ ci−1

bi ← bi −mult ∗ bi−1

end
xn ← bn/dn

for i = n− 1 : −1 : 1
xi ← (bi − ci ∗ xi+1)/di

end

Cost: 8n flops.
Storage: store only ai, ci, di and bi by using 4 1-dimensional arrays.
Do not use a 2-dimensional array to store the whole matrix.

Diagonally Dominant Matrices

Def: Let A = (aij)n×n. A is strictly diagonally dominant by column if

|ajj| >
n

∑

i=1,i6=j

|aij|, j = 1 : n.

A is strictly diagonally dominant by row if

|aii| >
n

∑

j=1,j 6=i

|aij|, i = 1 : n.

We can show

• if a tridiagonal A is strictly diagonally dominant by column, then partial pivoting is not
needed, i.e., GENP and GEPP will give the same results. (exercise)

• if a tridiagonal A is strictly diagonally dominant by row, then GENP will not fail (see
C&K, pp. 282-283).

5

