COMP 350 Numerical Computing

Assignment #2: Overflow and underflow, and cancellation.

Date Given: Wednesday, September 18. Date Due: 5PM, Monday, September 30, 2013

This is a computer assignment. You can use any high-level programming language, but not a
software package such as MATLAB etc. Print out your program and computed results. Do not
submit your code electronically. This assignment will be graded by TA Ms. Lidia Dinulescu.

1. (10 points) Write a program to read a sequence of positive numbers and compute the product.
Assume that the input numbers do not overflow or underflow the IEEE single precision. The
program should have the following properties:

The variables in the program should have type either float of int. Double or extended
precision variables are not permitted.

The program should print the product of the numbers in the following nonstandard
format: a floating point number F' (in standard decimal exponential format), followed
by the string

times 10 to the power,

followed by an integer K. Here we assume |K| is not bigger than the biggest integer that
can be stored.

The result should not overflow, i.e., the result should not be oo, even if the final value,
or an intermediate value generated along the way, is bigger than N,.., the biggest IEEE
single precision floating point number.

The intermediate and final results should not underflow, i.e., the intermediate and final
values should not be subnormal numbers, even if they are smaller than N,;,, the smallest
positive normalized IEEE single precision floating point number.

The program should be reasonably efficient, doing no unnecessary computation (except
for comparisons) when none of the intermediate or final values are greater than Ny, or
smaller than Np;,. In this case, the integer K displayed should be zero.

An important part of the assignment is to choose a good test set to properly check the
program. Print out your program, test input and output. Write some comments about your
test results.

Note: If your compiler does not support the macro INFINITY, then compute oo from 1.0/0.0
at the beginning, assuming the standard response to division by zero is in effect.

2. For any xy > —1, the sequence defined recursively by

Tpyr = 2" (/14 27, — 1), (n>0)

converges to In(zg + 1).

(a)

(b)

(5 points) Let g = 1. Use the formula to compute z,, — In(zo+ 1) forn =1,2,...,60 in
double precision. You should make your code efficient, i.e., avoid unnecessary operations.
Explain your results.

(5 points) Improve the formula to avoid the difficulty you encountered in 2 (a). Again
compute x, — In(xg+ 1) for n = 1,2,...,60 in double precision.

