
MILES:

MATLAB package for solving Mixed

Integer LEast Squares problems

Theory and Algorithms

Xiao-Wen Chang and Tianyang Zhou

Scientific Computing Laboratory

School of Computer Science

McGill University

January 2011

Copyright c©2006, 2011 by Xiao-Wen Chang and Tianyang Zhou

1 Introduction

Let the sets of all real and integer m × n matrices be denoted by R
m×n and Z

m×n, respectively, and

the sets of real and integer n-vectors by R
n and Z

n, respectively.

Given A ∈ R
m×k, B ∈ R

m×n and y ∈ R
m. Suppose that [A,B] has full column rank. This

Matlab package provides a function to produce p optimal solutions to the mixed integer least squares

(MILS) problem

min
x∈Rk,z∈Zn

‖y − Ax − Bz‖2
2, (1)

in the sense that a pair {x(j),z(j)} ∈ R
k ×Z

n is the j-th optimal solution if its corresponding residual

norm ‖y − Ax(j) − Bz(j)‖2 is the j-th smallest (some of these p residual norms can be equal), thus

‖y − Ax(1) − Bz(1)‖2 ≤ · · · ≤ ‖y − Ax(j) − Bz(j)‖2 ≤ · · · ≤ ‖y − Ax(p) − Bz(p)‖2.

Here p is a parameter to be provided by a user and its default value is 1.

If the matrix A is nonexistent, (1) becomes an ordinary integer least squares (ILS) problem:

min
z∈Zn

‖y − Bz‖2
2. (2)

This package also provides a function to produce p optimal solutions to (2).

The purpose of this document is to present some theory and algorithms implemented by this

package to solve the MILS problem (1) and the ILS problem (2). For using this package, see a

separate document “MILES: Matlab package for solving Mixed Integer LEast Squares problems,

Users’ Guide”.

The rest of this document is organized as follows. In Section 2 we apply orthogonal transformations

to transform (1) to two subproblems: an ordinary ILS problem and a real upper triangular linear

system of equations (whose right hand side depends on the solution of the former). In Section 3 we

give algorithms to solve the ordinary ILS problem (2). Specifically, a reduction algorithm and a search

algorithm are presented. In Section 4 we give a description of the entire algorithm to solve the MILS

problem (1).

We now describe other notation to be used in this document. Bold upper case letters are used to

denote matrices and bold lower case letters are used to denote vectors. The identity matrix is denoted

by I and its ith column is denoted by ei. Matlab notation is used to denote a submatrix. Specifically,

if A = (aij) ∈ R
m×n, then A(i, :) denotes the ith row, A(:, j) the jth column, and A(i1 : i2, j1 :j2) the

submatrix formed by rows i1 to i2 and columns j1 to j2. D = diag(d1, . . . , dn) specifies a diagonal

matrix. For the (i, j) element of A, sometimes we use aij and sometimes we use A(i, j). We use

det(A) to denote the determinant of A. For a scalar z ∈ R, we use ⌊z⌉ to denote its nearest integer,

and if there is a tie, it denotes the one with smaller magnitude. The operation sgn(z) returns −1 if

z ≤ 0 and 1 if z > 0.

2 Orthogonal Transformations

To solve the MILS problem (1), we will transform it to an ILS problem and a real upper triangular

linear system of equations. By solving these two sub-problems sequentially, we will obtain the MILS

solution.

Suppose A has the QR factorization

A = [QA, Q̄A]

[

RA

0

]

,

1

where [QA
k

, Q̄A
m−k

] ∈ R
m×m is orthogonal and RA ∈ R

k×k is nonsingular upper triangular. This factor-

ization can be computed by Householder transformations, see, e.g., [2, Chap 1] and [6, Chap 5]. Then

we have

‖y − Ax − Bz‖2
2 =

∥

∥

∥

∥

∥

[

QT
A

Q̄
T
A

]

y −

[

RA

0

]

x −

[

QT
AB

Q̄
T
AB

]

z

∥

∥

∥

∥

∥

2

2

= ‖QT
Ay − QT

ABz − RAx‖2
2 + ‖Q̄

T
Ay − Q̄

T
ABz‖2

2. (3)

Notice that for any fixed z, we can choose x ∈ R
k such that the first term on the right hand side of

(3) is equal to zero. Therefore, to solve the MILS problem (1), we first solve the ordinary ILS problem

min
z∈Zn

‖Q̄
T
Ay − Q̄

T
ABz‖2

2 (4)

to obtain the solution ẑ ∈ Z
n, and then solve the upper triangular system

RAx = QT
Ay − QT

ABẑ (5)

to obtain the real solution x̂ ∈ R
k. If we find p optimal integer solutions to (4), then we can obtain

the corresponding p real solutions by solving (5). Thus the key is to solve the ILS problem (4). In the

next section, we will present a method to solve the general ILS problem (2).

3 Solving ILS problems

In this section, we will show how to solve the ILS problem (2). For clarity, we rewrite it here:

min
z∈Zn

‖y − Bz‖2
2, (6)

where B ∈ R
m×n has full column rank. The entire algorithm to solve (6) consists of two processes:

reduction and search. The purpose of the reduction process is to make the search process easier and

more efficient. In this package, the LLL reduction [7] is used in the reduction process. Our algorithm,

which is based on the modified LLL algorithms proposed in [10], is faster than the algorithms given in

[4, Chap 2] and more numerically stable than the algorithm presented in [3]. The search algorithm used

in this package is based on the one presented in [3], which is a modification of the Schnorr-Euchner

enumeration strategy [8] based algorithm presented in [1] and is faster than the search algorithm

implemented by the LAMBDA package [5]. For different reduction strategies, search algorithms and

their comparisons, see [1].

3.1 Reduction

The reduction process transforms the given ILS problem (6) into a new ILS problem and its essential

part is the LLL reduction which transforms B into an upper triangular matrix. The LLL reduction

can be casted as a QRZ factorization (see [10]):

QT BZ =

[

R

0

]

, or B = Q

[

R

0

]

Z−1 = Q1RZ−1, (7)

2

where Q = [Q1
n

, Q2
m−n

] ∈ R
m×m is orthogonal, Z ∈ Z

n×n is unimodual (i.e., Z is an integer matrix and

|det(Z)| = 1, thus Z−1 is also an integer matrix), and R ∈ R
n×n is nonsingular upper triangular and

satisfies the following two LLL reduction criteria:

|rij | ≤
1

2
|rii|, r2

ii ≤ r2
i,i+1 + r2

i+1,i+1, i = 1 : n − 1, j = i + 1 : n. (8)

Here the second criterion is a special case of the more general criterion δr2
ii ≤ r2

i,i+1 + r2
i+1,i+1, where

1/4 < δ ≤ 1. For the QRZ factorization (7) where R satisfies (8), we refer to it as the LLL-QRZ

factorization.

With the QRZ factorization (7), we have

‖y − Bz‖2
2 = ‖QT

1 y − RZ−1z‖2
2 + ‖QT

2 y‖2
2.

Then with ȳ , QT
1 y and z̄ , Z−1z, we see that (6) is equivalent to

min
z̄∈Zn

‖ȳ − Rz̄‖2
2. (9)

Note that if z̄ is a solution to (9), then z = Zz̄ is a solution to (6).

In this section we will present an algorithm to compute the reduction from (6) to (9). Its main

part is the computation of the LLL-QRZ factorization (7). For efficiency, we do not form the Q-factor

of the LLL-QRZ factorization. When we apply an orthogonal transformation to B, we also apply it

to y simultaneously. In the following, we will first introduce some main components of the algorithm,

and then present the entire algorithm.

3.1.1 QR factorization with minimum-column pivoting

In the reduction process, we compute the QR factorization of some matrices. In the computation, we

use a column pivoting strategy, to be referred to as a minimum-column pivoting strategy, which helps

to meet the second LLL reduction criterion in (8).

Suppose C ∈ R
m×n is any given matrix with full column rank. We will find an orthogonal matrix

Q ∈ R
m×m and a permutation matrix P ∈ Z

n×n such that

QT CP =

[

R

0

]

, (10)

where R ∈ R
n×n is nonsingular upper triangular. First, we find the column in C with the smallest

2-norm and if it is not the first column, we interchange it with the first column. We then zero

C(2 : m, 1) by a Householder transformation I−2vvT /vT v, so r11 is determined. Then we work with

the submatrix C(2 :m, 2:n) and repeat the above procedure, and so on. Finally C is transformed to

an upper triangular matrix.

Here we describe a general step. Suppose after the first k − 1 steps, we obtain

Hk−1 · · ·H1CP 1 · · ·P k−1 =

[

Rk−1 Uk−1

0 Ck

]

,

where Rk−1 is (k − 1)× (k − 1) upper triangular. In step k, we first find the column in Ck which has

the smallest 2-norm, and interchange it with its first column by applying a permutation matrix P̄ k to

Ck from right, so we have

Hk−1 · · ·H1CP 1 · · ·P k−1P k =

[

Rk−1 Ūk−1

0 C̄k

]

, P k =

[

Ik−1 0

0 P̄ k

]

.

3

Then we use a Householder matrix H̄k to zero C̄k(2 : m − k + 1, 1), i.e., H̄kC̄ke1 = rkke1. Thus we

have

HkHk−1 · · ·H1CP 1 · · ·P k−1P k =

[

Rk Uk

0 C̄k+1

]

, Hk =

[

Ik−1 0

0 H̄k

]

,

where Rk is k × k upper triangular. Finally we obtain the QR factorization (10), where

Q = H1H2 · · ·Hn, P = P 1P 2 · · ·P n.

Now we describe the algorithm as follows.

Algorithm 3.1 (QR Factorization with Minimum-Column Pivoting) Given C ∈ R
m×n with

m ≥ n and F ∈ R
m×p. This algorithm computes the QR factorization of C in (10) (without forming

the Q-factor) and computes F := QT F . The permutation matrix P is encoded in an integer vector

piv, i.e., P j is the identity with rows j and piv(j) interchanged.

function [R, F , piv] = qrmcp(C, F)

for k = 1:n

// Compute the 2-norm squared of each column of C

for j = k :n

s(j) = ‖C(k :m, j)‖2

end

q = arg mink≤j≤n s(j)

piv(k) = q

if q > k

Interchange C(:, k) and C(:, q)

Interchange s(k) and s(q)

end

Use C(k :m,k) to find the Householder vector vk

C(k :m,k :n) = C(k :m,k :n) − (2vk/v
T
k vk) ∗ (vT

k ∗ C(k :m,k :n))

F (k :m, :) = F (k :m, :) − (2vk/v
T
k vk) ∗ (vT

k ∗ F (k :m, :))

end

// Set R to be the upper triangular part of C

R = triu(C)

3.1.2 Integer Gauss transformations for off-diagonal size reduction

To reduce the off-diagonal entries of the upper triangular matrix R to meet the first LLL reduction

criterion in (8), we use the so-called integer Gauss transformations or integer Gauss matrices (see,

e.g., [9]), which have the following form:

Zij = I − αeie
T
j , i < j, α is an integer.

It is easy to show that Zij is unimodual.

Applying Zij (i < j) to R from the right gives

R̄ , RZij = R − αReie
T
j .

Thus R̄ is the same as R, except that

r̄kj = rkj − αrki, k = 1, . . . , i.

Taking α = ⌊rij/rii⌉ to ensure |r̄ij | ≤ |r̄ii|/2.

4

Algorithm 3.2 (Integer Gauss Transformations) Given a nonsingular upper triangular matrix

R ∈ R
n×n, a matrix Z ∈ Z

m×n, and two column indices j1 and j2 with j1 ≤ j2, this algorithm

applies integer Gauss transformations Zij to R such that after the transformations |rij | ≤ |rii|/2 for

j = j1 :j2, i = j − 1:−1:1 and it also computes Z := Z ·Πj2
j=j1

Π1
i=j−1Zij .

function: [R,Z] = gauss(R,Z, j1, j2)

for j = j1 : j2

for i = j − 1:−1:1

α = ⌊R(i, j)/R(i, i)⌉

if α 6= 0

R(1: i, j) = R(1: i, j) − αR(1: i, i)

Z(:, j) = Z(:, j) − αZ(:, i)

end

end

end

3.1.3 Column reordering

In order to meet the second LLL reduction criterion in (8), we use the minimum-column pivoting

strategy to do column reordering. We first find a submatrix R(:, j1 : j2) which “most” violates the

second LLL reduction criterion, then we reduce its off-diagoanl entries by integer Gauss transforma-

tions and apply the QR factorization with minimum-column pivoting to R(j1 :j2, j1 :j2). The columns

j1 : j2 of R are then reordered.

Now we show how to choose j1 and j2 exactly. We choose the index j2 such that |rj2−1,j2−1| will

decrease most if columns j2 − 1 and j2 are interchanged, i.e., j2 is defined by

j2 = arg min
2≤j≤n

{|r̄j−1,j−1/rj−1,j−1| : |r̄j−1,j−1/rj−1,j−1| < 1}, (11)

where

|r̄j−1,j−1| ,

√

r̃2
j−1,j + r2

j,j, r̃j−1,j , rj−1,j −

⌊

rj−1,j

rj−1,j−1

⌉

rj−1,j−1.

Note that r̃j−1,j is the value of the reduced rj−1,j by the integer Gauss transformation Zj−1,j (so

|r̃j−1,j| ≤ |rj−1,j−1|/2) and r̄j−1,j−1 is the new value of rj−1,j−1 if columns j−1 and j of R are

interchanged and R is brought back to an upper triangular matrix by a Givens rotation from the left.

For efficiency, we do not actually perform the integer Gauss transformation on R and the column

permutation; instead, we just compute the value of r̄j−1,j−1.

After obtaining j2, we apply integer Gauss transformations Zi,j2 for i = j2 − 1 : −1 : 1 to R to

reduce the off-diagonal entries in column j2. Then we find j1 such that

j1 = min{j : |rkk| > ‖R(k :j2, j2)‖2, k = j : j2 − 1}. (12)

Note that each column j for j = j1 : j2 − 1 and column j2 are not in correct order while column j1 − 1

and column j2 are in correct order.

3.1.4 Reduction algorithm

Now we introduce the complete process for reduction. First we compute the QR factorization of B

with minimum-column pivoting by Algorithm 3.1. Then we start to work with the upper triangular

5

matrix R. We try to find the index j2 satisfying (11). We assume that such a j2 exists, otherwise

the columns of R are already in good order, i.e., after off-diagonal reduction, R will satisfy the LLL

reduction criteria (8). Then we apply integer Gauss transformations to the j2-th column of R to

reduce its off-diagonal entries and find the index j1 satisfying (12). After that, we apply integer Gauss

transformations to reduce the off-diagonal entries of R in the submatrix R(:, j1+1:j2 − 1). Doing this

is to make the later column reordering meaningful (note that in the second LLL reduction criterion

in (8) the superdiagonal entries satisfy the first criterion) and to make the reduction process more

numerically stable (this helps to avoid producing large numbers during the reduction process). Then

we compute the QR factorization of R(j1 : j2, j1 : j2) with minimum column pivoting and reorder the

columns of R(:, j1 :j2). After this, we apply integer Gauss transformations to reduce the off-diagonal

entries in R(:, j1 : j2) for numerical stability. Then we continue finding a new submatrix and repeat

the above process until no index j2 satisfying (11) can be found. Finally, we apply integer Gauss

transformations to all off-diagonal entries of R, resulting in an upper triangular R satisfying the LLL

reduction criteria (8).

Algorithm 3.3 (Reduction) Given B ∈ R
m×n with full column rank and y ∈ R

m. This algorithm

computes the LLL-QRZ factorization (7) (without forming the Q-factor) and y := QT y.

function: [R,Z,y] = reduction(B,y)

Z = In

// Compute the QR factorization of B with minimum-column pivoting

[R,y,piv] = qrmcp(B,y)

// Update Z using piv

for j = 1 : n

Interchange Z(:, j) with Z(:,piv(j))

end

while true

// Find j2

j2 = 0

minratio = 1

for j = 2 : n

if |R(j, j)/R(j−1, j−1)| < minratio

α = ⌊R(j−1, j)/R(j−1, j−1)⌉

η = R(j−1, j) − αR(j−1, j−1)

ratio =
√

R(j, j)2 + η2/|R(j−1, j−1)|

if ratio < minratio

j2 = j

minratio = ratio

end

end

end

if j2 = 0 // No j2 can be found

break the while loop

end

// Perform off-diagonal size reduction for R(:, j2)

[R,Z] = gauss(R,Z, j2, j2)

// Find j1

6

j1 = j2 − 1

while j1 > 1 and |R(j1−1, j1−1)| > ‖R(j1−1:j2, j2)‖2

j1 = j1 − 1

end

// Perform off-diagonal size reduction for R(:, j1+1:j2−1)

[R,Z] = gauss(R,Z, j1 + 1, j2 − 1)

// Apply QRMCP to R(j1 :j2, j1 :j2) and update y(j1 :j2) and R(j1 :j2, j2 + 1:n)

[R(j1 :j2, j1 :j2), T , piv] = qrmcp(R(j1 :j2, j1 :j2), [y(j1 :j2),R(j1 :j2, j2 + 1:n)])

y(j1 :j2) = T (:, 1), R(j1 :j2, j2 + 1:n) = T (:, 2 : n − j2 + 1)

// Reorder columns of R(1:j1 − 1, j1 :j2) and Z using piv

for j = j1 : j2

Interchange R(1:j1−1, j) with R(1:j1−1, j1 + piv(j − j1 + 1)−1)

Interchange Z(:, j) with Z(:, j1 + piv(j − j1 + 1)−1)

end

// Perform off-diagonal size reductions for R(:, j1 :j2)

[R,Z] = gauss(R,Z, j1, j2)

end

// Perform off-diagonal size reduction for R

[R,Z] = gauss(R,Z, 2, n)

In order to reduce data communication time, in the implementation of the above algorithm, we

perform the integer Gauss transformations directly in the above function without calling the separate

function gauss.

3.2 Search

After the reduction, the ILS problem (6) is transformed to the new ILS problem (9). To solve (9), a

search strategy is used to enumerate possible z ∈ Z
n. Our package has the option to find multiple

optimal solutions to (6), which have the smallest residual norms. But we will first show how to find

the optimal solution, which has the smallest residual norm, and then show how to extend the ideas to

find multiple optimal solutions.

To simplify notation, we rewrite (9) as

min
z∈Zn

‖y − Rz‖2
2. (13)

Suppose that the optimal z satisfies the following bound

f(z) , ‖y − Rz‖2
2 < β,

or equivalently
n

∑

k=1

(yk −

n
∑

j=k

rkjzj)
2 < β. (14)

This is an ellipsoid and our problem is to search this ellipsoid to find the optimal solution.

Define

cn , yn/rnn, ck , (yk −

n
∑

j=k+1

rkjzj)/rkk, k = n − 1, . . . , 1. (15)

7

Notice that ck depends on zn, zn−1, . . . , zk+1 and it is determined when the latter are determined.

Then (14) can be rewritten as
n

∑

k=1

r2
kk(zk − ck)

2 < β.

From this, it follows that

level n : r2
nn(zn − cn)2 < β, (16)

...

level k : r2
k,k(zk − ck)

2 < β −

n
∑

i=k+1

r2
ii(zi − ci)

2, (17)

...

level 1 : r2
11(z1 − c1)

2 < β −
n

∑

i=2

r2
ii(zi − ci)

2. (18)

Based on these bounds a search procedure can be developed.

First at level n, we choose zn = ⌊cn⌉. If it does not satisfy the bound (16), no any other integer

will satisfy it, thus there is no any integer point within the ellipsoid. This will not happen if the initial

ellipsoid bound β is large enough (see later comments). If it satisfies the bound, we proceed to level

n − 1. At this level, we compute cn−1 by (15) and choose zn−1 = ⌊cn−1⌉. If zn−1 does not satisfy

the bound (17) with k = n − 1, then we move back to level n and choose zn to be the second nearest

integer to cn, and so on; otherwise, we proceed to level n − 2. We continue this procedure until we

reach level 1 and obtain an integer point ẑ. We store this point and update the bound β by taking

β = ‖ȳ − Rẑ‖2
2. Note that the ellipsoidal region is shrunk—this is crucial for search efficiency. Then

we start to try to find an integer point within the new ellipsoid. The basic idea is to update the latest

found integer point ẑ. Obviously, we cannot update only its first entry z1, since at level 1, we cannot

find any new integer z1 to satisfy (18), which is now an equality. Thus we move up to level 2 to update

the value of z2 by choosing z2 to be the next nearest integer to c2 (“next” means “next to ẑ2”). If it

satisfies the bound at level 2, we move down to level 1 to update the value of z1 and obtain a new

integer point (note that z2 has just been updated and z3, . . . , zn are the same as those corresponding

entries of ẑ), otherwise we move up to level 3 to update the value of z3, and so on. Finally, when we

fail to find a new value for zn to satisfy the bound (16) at level n, the search process stops and the

latest found integer point is the optimal solution we seek.

In our algorithm, the initial bound β is set to be ∞ and we refer to the first found integer point

ẑ as the Babai integer point. Note that Rẑ is called the Babai (lattice) point in the literature, see,

e.g., [1].

The above process is summarized as follows:

Algorithm 3.4 Given nonsingular upper triangular matrix R ∈ R
n×n and y ∈ R

n. This algorithm

finds the optimal solution ẑ to minz ‖y − Rz‖2
2.

1. (Initialization) Set k = n, β = ∞.

2. Compute c(k) = (y(k) −
∑n

j=k+1 R(k, j)z(j))/R(k, k), z(k) = ⌊c(k)⌉,

d(k) = sgn(c(k) − z(k)).

8

3. (Main step) If
∑n

i=k R(i, i)2(z(i) − c(i))2 > β, then go to Step 4. Elseif k > 1, then k = k − 1

and go to Step 2. Else (k = 1), go to Step 5.

4. (Outside ellipsoid) If k = n, terminate. Else, set k = k + 1 and go to Step 6.

5. (A valid point is found) Set β = ‖y − Rz‖2
2, save ẑ = z. Then, let k = k + 1 and go to Step 6.

6. (Enumeration at level k) Set z(k) = z(k) + d(k), d(k) = −d(k) − sgn(d(k)) and go to Step 3

Algorithm 3.4 finds only the optimal solution. We now show how to modify the above process to

find p optimal ILS solutions. At the beginning we set β to be infinity. Denote the first integer point

obtained by the search process (i.e., the Babai point) by z(1). Then we take the second integer point

z(2) to be identical to z(1) except that the first entry in z(2) is taken as the second nearest integer to c1

(note that the first entry in z(1) is the nearest integer to c1). The third z(3) is chosen to be the same as

z(1) except that its first entry is taken as the third nearest integer to c1, and so on. In this way we obtain

p integer points z(1),z(2), · · · ,z(p). Obviously we have f(z(1)) ≤ f(z(2)) · · · ≤ f(z(p)). Then we shrink

the ellipsoidal region by setting β = f(z(p)) and start to search a new integer point within the new

ellipsoid. Suppose the new integer point we have found is z(new) and f(z(j−1)) ≤ f(z(new)) ≤ f(z(j)).

We remove the point z(p) and rename z(new),z(j), · · · ,z(p−1) as z(j),z(j+1), · · · ,z(p), respectively.

Then we shrink the ellipsoidal region again by setting β = f(z(p)) and continue the above process

until we cannot find a new integer point. Finally we end up with p optimal ILS points. Here we would

like to point out that after an integer point is found, the algorithm tries to update its first entry to

obtain the next integer point. This is different from the process of finding the single optimal solution,

in which after an integer point is found the algorithm moves to level 2 and try to update its second

entry.

We would also like to modify Algorithm 3.4 to make it more efficient by using some techniques

introduced in [1], see also [3]. For computational efficiency, we do not want to recompute some-

thing which has been computed if possible. In Step 2 of Algorithm 3.4, some partial summation in
∑n

j=k+1 R(k, j)z(j), say
∑n

j=l R(k, j)z(j) for l > k + 1, may have been obtained in a previous step

when the algorithm was at level k, and so it should not be recomputed in the current step at level

k. What we can do is that after we have determined z(j), we compute R(:, j)z(j) and add it to

R(:, j+1:n)z(j+1:n), which was obtained after z(j + 1) was determined, to obtain R(:, j :n)z(j :n).

Since the values of all z(j) may be updated in the process of finding an integer point, we use a

matrix S(1 : n, 1 : n) to store the above results: S(:, k) = R(:, k : n)z(k : n). Thus we see that

S(k, k + 1) =
∑n

j=k+1 R(k, j)z(j), which will be used in the modified algorithm. In Step 3 of Al-

gorithm 3.4, obviously we can use the result obtained at level k + 1 to compute the partial squared

residual norm
∑n

i=k R(i, i)2(z(i) − c(i))2 at level k and keep this value for later uses.

Now the complete and more efficient search algorithm can be described as follows:

Algorithm 3.5 (Search) Given a nonsingular upper triangular R ∈ R
n×n and y ∈ R

n. This algorithm

searches p optimal solutions to the ILS problem minz∈Zn ‖y − Rz‖2
2. The j-th optimal solution is

given by Ẑ(:, j) for j = 1 : p.

function: Ẑ = search(R,y, p)

// Initialization

z = zeros(n, 1) // the current point

c = zeros(n, 1) // c(k) = (y(k) − R(k, k + 1:n)z(k + 1:n))/R(k, k)

d = zeros(n, 1) // d(k) is used to compute z(k)

9

prsd = zeros(n, 1) // prsd(k) =
∑n

i=k+1 R(i, i)2(z(i) − c(i))2

S = zeros(n, n + 1) // S(:, k) = R(:, k :n)z(k :n)

Ẑ = zeros(n, p) // p candidate solutions in order of nondecreasing residual norms

rsd = zeros(p, 1) // squared residual norms of the p candidate solutions in Ẑ

β = ∞ // ellipsoid bound

ncand = 0 // number of candidate solutions

c(n) = y(n)/R(n, n); z(n) = ⌊c(n)⌉

γ = R(n, n)(c(n) − z(n)); d(n) = sgn(c(n) − z(n))

k = n

while true

newprsd = prsd(k) + γ2 // compute
∑n

i=k R(i, i)2(z(i) − c(i))2

if newprsd < β

if k 6= 1 // move to level k − 1

S(1:k, k) = R(1:k, k) ∗ z(k) + S(1:k, k + 1)

k = k − 1

prsd(k) = newprsd

c(k) = (y(k) − S(k, k + 1))/R(k, k); z(k) = ⌊c(k)⌉

γ = R(k, k)(c(k) − z(k)); d(k) = sgn(c(k) − z(k))

else // k = 1, a new point is found, update the set of candidate solutions

if ncand < p // add the new point

ncand = ncand + 1

Ẑ(:, ncand) = z; rsd(ncand) = newprsd

if ncand = p, β = rsd(p); end

else // ncand < p, insert the new point and remove the worst one

i = 1

while i < p and rsd(i) ≤ newprsd; i = i + 1; end

Ẑ(:, i : p) = [z, Ẑ(:, i : p − 1)]

rsd(i : p) = [newprsd; rsd(i : p − 1)]; β = rsd(p)

end

z(1) = z(1) + d(1); γ = R(1, 1)(c(1) − z(1)); d(1) = −d(1) − sgn(d(1))

end

else // newprsd ≥ β

if k = n // the p optimal solutions have been found

break the while loop

else // k 6= n, move back to level k + 1

k = k + 1

z(k) = z(k) + d(k); γ = R(k, k) ∗ (c(k) − z(k)); d(k) = −d(k) − sgn(d(k))

end

end

end

3.3 ILS algorithm

With the reduction algorithm and the search algorithm, we can give a complete algorithm for solving

the ILS problem (6).

10

Algorithm 3.6 (ILS Solution) Given B ∈ R
m×n with full column rank and y ∈ R

m×n. This

algorithm computes the p optimal solutions to the ILS problem minz∈Zn ‖y−Bz‖2
2. The j-th optimal

solution is given by Ẑ(:, j) for j = 1 : p.

function: Ẑ = ils(B,y, p)

[R,Z,y] = reduction(B,y)

Ẑ = search(R,y(1:n), p)

Ẑ = Z ∗ Ẑ

4 Solving MILS problems

Based on the procedure we described in Section 2, we give a complete algorithm for solving the MILS

problem (1).

Algorithm 4.1 (MILS Solution) Given A ∈ R
m×k, B ∈ R

m×n and y ∈ R
m. Let [A,B] have full

column rank. This algorithm computes p optimal solutions to min
x∈Rk,z∈Zn ‖y − Ax − Bz‖2

2. The

outputs are two matrices X̂ and Ẑ, and the pair {X̂(:, j), Ẑ(:, j)} is the j-th optimal solution, for

j = 1 : n.

function: [X̂, Ẑ] = mils(A,B,y, p)

Compute the QR factorization of A: [Q,R] = qr(A), where Q ∈ R
m×m and R ∈ R

m×k

Set QA = Q(:, 1:k), Q̄A = Q(:, k+1:m), RA = R(1:k, :)

Compute p optimal integer solutions: Ẑ = ils(Q̄
T
AB, Q̄

T
Ay, p)

Solve the following upper triangular equations to get the the corresponding p real solutions:

RAX̂ = QT
A(yeT − BẐ), where e = [1, · · · , 1]T ∈ R

p

11

References

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices. IEEE Transactions

on Information Theory, 48:2201–2214, 2002.

[2] Å. Björck. Numerical Methods for Least Squares Problem. Philadelphia: SIAM, 1996.

[3] X.-W. Chang, X. Yang, and T. Zhou. MLAMBDA: A modified LAMBDA method for integer

least-squares estimation. Journal of Geodesy, 79:552–565, 2005.

[4] H. Cohen. A Course in Computational Algebraic Nunber Theory. Springer-Verlag, Berlin, Ger-

many, 1993.

[5] P.J. De Jonge and C.C.J.M. Tiberius. LAMBDA method for integer ambiguity estimation: im-

plementation aspects. In Delft Geodetic Computing Center LGR-Series, No.12, 1996.

[6] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University Press,

Baltimore, Maryland, 3rd edition, 1996.

[7] A.K. Lenstra, Jr.H.W. Lenstra, and L. Lovasz. Factoring polynomials with rational coefficients.

Mathematische Annalen, 261:515–534, 1982.

[8] C.P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving

subset sum problems. Mathematical Programming, 66:181–199, 1994.

[9] P.J.G. Teunissen. GPS carrier phase ambiguity fixing concepts. In P.J.G. Teunissen and A. Kleus-

berg, editors, GPS for Geodesy, pages 317–388. Springer-Verlag, New York, 2nd edition, 1998.

[10] T. Zhou. Modified LLL Algorithms. Master’s Thesis, McGill University, School of Computer

Science, 2006.

12

