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ABSTRACT

Generalized sphere decoding (GSD) algorithms have been ap-
plied to decode the under-determined MIMO systems. It de-
tects the transmitting vector by decoding a sequence of de-
termined subproblems. In this paper a fast recursive GSD
algorithm is proposed. This new algorithm can generate the
sequence of determined subproblems in a more efficient way
than the current algorithms. A column-reordering strategyfor
the channel matrix is incorporated into the reduction process
of the new algorithm, which can significantly reduce the com-
putational cost. Furthermore, a method to determine a good
initial radius of the hyper-sphere is given. Numerical sim-
ulations show that the new recursive GSD algorithm can be
significantly faster than the current algorithms.

1. INTRODUCTION

In Gaussian multi-input multi-output (MIMO) linear chan-
nels systems, the sphere decoding algorithms are often em-
ployed to detect the transmitting signal vector. Under some
circumstances, the MIMO system may be under-determined.
One such an application is the multiple-antenna communica-
tion systems where there are more transmitting antennas than
receiving antennas. A typical approach to decoding under-
determined MIMO system is to solve the followingunder-
determined integer least squares problem (UILS)

min
x∈In

k

‖y − Ax‖2
2 (1)

whereIk is a2k-PAM signal set for some positive integerk:
Ik = {odd integerj : −2k +1 ≤ j ≤ 2k−1}, y ∈ R

m is the
received signal vector,A ∈ R

m×n is a channel matrix with
rank(A) = m, x ∈ In

k is the transmitting vector.
A generalized sphere decoding (GSD) algorithm was first

proposed by Damen et al [1] to solve (1). Recently Dayal and
Varanasi [2] proposed another GSD algorithm, to be called
Algorithm DV, which can significantly reduce the complexity
by partitioning the candidate set into disjoint ordered subsets.
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Most recently Yang, Liu and He [3] proposed a new GSD al-
gorithm, to be called Algorithm YLH, which is usually faster
than Algorithm DV. All these algorithms mainly consider how
to generate a sequence of determined sub-ILS problems. In
this paper a recursive GSD algorithm will be proposed. The
new algorithm can generate the sequence of determined sub-
ILS problems in a more efficient way. The reduction process
of the new algorithm incorporates a column-reordering strat-
egy to decrease the generation time of the subproblems and
the number of these subproblems to be solved. A method
to determine a good initial radius of the hyper-sphere is also
given, which overcomes a difficulty with current algorithms.

The rest of this contribution is organized as follows. In
Section 2 we present our new GSD algorithm. Section 3 gives
simulation results to show the efficiency of our recursive GSD
algorithm. Finally a summary is given in Section 4.

2. A RECURSIVE GSD ALGORITHM

For simplicity, we assume thatk = 1 in Ik, i.e.,xj take
its value from{±1} for 1 ≤ j ≤ n. The extension to the
general case can be done similarly as in [2].

Suppose thatA has the QR decomposition:A = QR,
whereQ ∈ R

m×m is orthogonal andR ∈ R
m×n is an upper

trapezoidal matrix (see, e.g., [4, Sec 5.2]). Letȳ , QT y ∈
R

m andN , n − m + 1. Partitionȳ, R andx as follows

ȳ=

[

ȳ(1)

ȳm

]

m−1

1
, R=

[

R1 R2

0 rT

]

m−1 N

m−1

1
, x=

[

x(1)

x(2)

]

m−1

N
.

(2)
Then the problem (1) withk = 1 is transformed to

min
x∈In

1

‖ȳ − Rx‖2
2 = min

x
(2)∈IN

1

[

(ȳm − rT x(2))2

+ min
x

(1)∈Im−1
1

‖(ȳ(1) − R2x
(2)) − R1x

(1)‖2
2

]

. (3)

Suppose that one has

‖ȳ − Rx‖2
2 ≤ β2 (4)



for some scalarβ (we will discuss how to choose the initialβ
in Sect 2.3). Then it follows that

(ȳm − rT x(2))2 ≤ β2. (5)

From (3) we observe that the original problem can be solved
in the following way. We first fixx(2), then employ a con-
ventional sphere decoding algorithm (see, e.g., [5] and [6])
to solve the sub-ILS problem within the brackets in (3). The
problem can be solved by exhaustively trying every possible
x(2). This is the key idea of the GSD algorithm proposed in
[1] (which uses a partition slightly different from (2)). But it
is not efficient. Algorithm DV in [2] first determines a pos-
siblex(2) which satisfies (5) in a more efficient way by a set
partition approach, which will also be used here to findx(2).

2.1. Solving the transformed problem (3)

We first give a new bound (see (6)) which is at least as tight
as (5) by using the idea of [6]. Notice that‖ȳ − Rx‖2

2 =
∑m

i=1(ȳi−
∑n

j=i rijxj)
2 and eachxj ∈ {±1}, j = 1, · · · , n.

Definedi , min
(

∣

∣ȳi−
∑n

j=i |rij |
∣

∣,
∣

∣ȳi+
∑n

j=i |rij |
∣

∣

)

if |ȳi| >
∑n

j=i |rij |, otherwise0. Obviously(ȳi−
∑n

j=i rijxj)
2 ≥ d2

i .
Then from (4) it follows that

(ȳm −
n

∑

j=m

rmjxj)
2 ≤ β2 −

m−1
∑

i=1

d2
i . (6)

Defineρ , (β2 −
∑m−1

i=1 d2
i )

1/2. Let I+ , {j |rmj ≥

0, m ≤ j ≤ n} andI− , {j |rmj < 0, m ≤ j ≤ n}. Then
(6) is equivalent to

ȳm − ρ ≤
∑

j∈I+

rmjxj +
∑

j∈I−

rmjxj ≤ ȳm + ρ. (7)

For eachxj , m ≤ j ≤ n, define the following bijective trans-
formation (see [3]):

b̄j ,

{ 1+xj

2 , j ∈ I+

1−xj

2 , j ∈ I−
(8)

so that̄bj ∈ {0, 1}. Defineāj , 2|rmj |, j = m, . . . , n, then
we obtain from (7) that

ȳm +

n
∑

j=m

|rmj |−ρ ≤
n

∑

j=m

āj b̄j ≤ ȳm +

n
∑

j=m

|rmj |+ρ. (9)

We sort these nonnegativeāj in nondecreasing order:

0 ≤ āj1 ≤ āj2 ≤ · · · ≤ ājN
.

The nonnegativity of̄aj , which is not true in Algorithm DV,
is crucial for our new algorithm. To simplify notation, define

ηL , ȳm +

n
∑

i=m

|rmj | − ρ, ηU , ȳm +

n
∑

i=m

|rmj | + ρ,

a , [a1, · · · , aN ]T , [āj1 , āj2 , · · · , ājN
]T ,

b , [b1, · · · , bN ]T , [b̄j1 , b̄j2 , · · · , b̄jN
]T ,

then the inequality (9) can be rewritten as

ηL ≤ aT b ≤ ηU . (10)

For anyb with bj ∈ {0, 1}, we can check if it satisfies
(10). If so, we then obtain the correspondingx(2) through (8)
and solve the sub-ILS problem in (3). But for efficiency we
want to avoid enumerating all possibleb. In the following we
show how to do it based on the idea of [2]. LetS be the set
of all possible2N binary sequences forb. For every subset
B of S, one associates two quantities, lower boundlb(B) and
upper boundub(B), satisfyinglb(B) ≤ aT b ≤ ub(B), ∀b ∈
B. Define the subsets ofS as follows:Si , {b ∈ S|ω(b) =

i}, 0 ≤ i ≤ N whereω(b) ,
∑N

k=1 bk. Obviously these
subsetsSi form a disjoint partition ofS (to be called a depth-
1 partition) and have the optimal lower bounds and upper
bounds:lb(S0) = ub(S0) = 0, lb(Si) =

∑i
k=1 ak, ub(Si) =

∑N
k=N−i+1 ak, 1 ≤ i ≤ N. Since allak ≥ 0 and are in non-

decreasing order, it follows that

lb(S0) ≤ lb(S1) ≤ · · · ≤ lb(SN) , (11)

ub(S0) ≤ ub(S1) ≤ · · · ≤ ub(SN). (12)

These subsets starting withS0, thenS1 until SN are tested
against (10). Iflb(Si) > ηU , thenSi and all the subsequent
subsets afterSi do not need to be tested, since no anyb in
these subsets will satisfy (10). Ifub(Si) < ηL, onlySi can be
discarded. Iflb(Si) ≤ ηU andub(Si) ≥ ηL, we need to test
all the elements ofSi against (10). Note that the cardinality
of Si is ( N

i ) and it can be quite large whenN is large. In
order to discard as many sequences inS as possible before
testing them against (10), we propose the following deepest
depth partition strategy.

DefineSi,j , {b ∈ Si|bj = 1 andbk = 0, 1 ≤ k ≤
j − 1} for 1 ≤ i ≤ N, 1 ≤ j ≤ N − i + 1. It is easy to
observe that they form a disjoint partition (depth-2) ofSi and
we have the optimal lower bound and upper bound for each
Si,j : lb(Si,j) =

∑i+j−1
k=j ak, ub(Si,j) = aj +

∑N
k=N−i+2 ak.

Obviously lb(Si,j) andub(Si,j) for j = 1, . . . , N − i + 1
are in nondecreasing order, respectively. Then we continue
the above partition process for each subset, unless the subset
has only one element or has been discarded. Finally each left
subset has only one element.

Now we describe the whole process of our new GSD al-
gorithm for solving (3). The algorithm searches the subsets
Si through the order:S0, S1, S2, · · · , SN . First we find the
largest indexi1 and the smallest indexi2 such thatub(Si1) <
ηL and lb(Si2) > ηU . Due to (11) and (12), the subsets
S0, · · · , Si1 andSi2 , · · · , SN can be discarded. Next we con-
sider the subsets fromSi1+1 to Si2−1. Define the setΓ =
{Si1+1, · · · , Si2−1}. Let the first subset ofΓ be Γ1, i.e.,
Si1+1. If Γ1 contains only one elementb, we check if it sat-
isfies (10) and if it does we solve the corresponding sub-ILS



problem. Otherwise, we do the depth-2 partition toΓ1 and
deal with the elements of setΓ1 in a recursive way. AfterΓ1

is done, we delete it fromΓ. In the leftΓ, we delete eachΓj

such thatlb(Γj) > ηU . Then we deal with the first subset in
Γ again. The whole process is terminated whenΓ is empty.

Algorithm Recursive GSD for problem (3)
Input: The trapezoidal matrixR ∈ R

m×n, the vectorȳ ∈
R

m, the initialηL, ηU , β2, the setS.
Output: The optimal solutionx ∈ Z

n to (3) satisfying
‖ȳ − Rx‖2

2 < β2.
function: x = UILS(R, ȳ, ηL, ηU , β2, S)
if setS contains only one elementb

if b satisfies (10)
Solve the corresponding sub-ILS problem.
If a solution exits, let it bex, and update
ηL, ηU , β2, otherwise setx = Null.

end
else

PartitionS into disjoint subsetsS1, S2, · · · , SLS
,

and defineΓ = {S1, S2, · · · , SLS
}.

Find the largest indexi1 such thatub(Si1) < ηL,
and deleteS1, · · · , Si1 from Γ.
while Γ 6= ∅

Find the smallest indexi2 such that
lb(Si2) > ηU , deleteSi2 , · · · , SLΓ from Γ.
if Γ 6= ∅

Let Γ1 be the first subset ofΓ
x′ = UILS(R, ȳ, ηL, ηU , β2, Γ1)
if x′ 6= Null, setx = x′, end
DeleteΓ1 from Γ

end
end

end

The above algorithm is more efficient in generating a se-
quence of sub-ILS problems than Algorithm DV given in [2].
The key is that we used the bijective transformation (8), which
is an extension of that used in Algorithm DV, so that in depth-
1 partition (say)lb(·) andub(·) have the ideal orders (11) and
(12), which make it possible to discard more sequences which
do not satisfy (10) than Algorithm DV. The paper [2] says
that high depth is necessary to effectively reduce the com-
putational complexity for severely under-determined systems.
But it does not show how to choose the depth of Algorithm
DV. This leaves a user to decide the depth. However, there is
no such problem with our algorithm, since it has the deepest
depth, which allows us to make full use of the advantage of
this partition technique.

2.2. Reduction from problem (1) to problem (3)

In solving a box constrained overdetermined ILS problem, to
make the search process fast, the reduction process has to in-
volve column-reordering of the channel matrixA (see, e.g.,

[6] and [7]). But for the UILS problem (1), to our knowl-
edge, no GSD algorithm in the literature has considered to
apply this strategy. In this section we propose a column-
reordering strategy in the reduction from (1) to (3), i.e., we
will find a good permutation matrixP in the QR decomposi-
tion: AP = QR. This strategy can significantly reduce the
generation time of sub-ILS problems and decrease the num-
ber of these sub-ILS problems.

Suppose

i , min{k : lb(Sk) > ηU = ȳm +

n
∑

j=m

|rm,j | + ρ} (13)

then from (10) and (11) in Section 2.1 we see all the remain-
ing subsetsSk for k ≥ i can be discarded without generating
any sub-ILS problems. Therefore we would likei in (13) to
be as close to 1 as possible. In addition to this, we also want
to makeηU as small as possible. Its purpose is not just to
decreasei in (13), but to help to rejectb in other subsetsSj

satisfyinglb(Sj) ≤ ηU in generating a sub-ILS problem.
In the following we describe our reduction process. We

first compute the QR decomposition ofA by using the stan-
dard column pivoting strategy (see, e.g., [4, Sect 5.4.1]),which
gives the QR decomposition ofAP̄ , whereP̄ is a permuta-
tion matrix. This will tend to make|rm,j | (j = m, . . . , n)
(see (13) ) small, since, roughly speaking,m larger columns
of A (in terms of the 2-norm) have been moved to the front.
Then we computēy. In order to makeηU small, we always
keepȳm to be nonpositive (if̄ym > 0, we can simply mul-
tiply ȳm and the last row ofR by −1). Then we obtain the
index i satisfying (13). Note that any reordering of the last
n − m + 1 columns ofAP̄ will not change the value ofi,
since nothing in the inequality in (13) will change. The re-
ordering of the firstm − 1 columns ofAP̄ may only change
ρ in (13) a little bit and is unlikely to change the smallest
index i usually. So we only consider the following column
permutations. Forj = 1, . . . , m − 1, we interchange thej-
th column andm-th column ofR (which is equivalent to the
corresponding column interchange inAP̄ ). After each inter-
change, we compute the QR decomposition of the permuted
R. This can be done in an efficient way by using the Givens
rotations, since the permutedR has structure. In each time
we have to simultaneously updateȳ by the same Givens rota-
tions. Then we can obtain the correspondingi in (13). Finally
we know which permutation gives the smallesti. If there is
more than one permutation leading to the same smallesti, we
choose the one which gives the smallestηU . So finally the
column-reordering ofA is determined.

2.3. Determining the initial radius of the hyper-sphere

The radiusβ of the initial hyper-sphere in (4) is crucial to
the cost of a GSD algorithm. If it is too small, the optimal
solution might be outside the searched hyper-sphere and the
GSD algorithm has to be restarted with a biggerβ (in [2] and
[3] β2 is increased by a factor of2). If it is too large, there



are too many candidates inside the searched hyper-sphere. In
[2] and [3], the initialβ2 is taken asm/2. It appears that this
choice may still have the above problems.

In our new GSD algorithm, we obtain the initialβ by solv-
ing the constrainedreal LS problem. Letx′ = e+x

2 where
e = [1, 1, · · · , 1]T ∈ R

n. Then the problem (3) is equivalent
to min

x
′∈{0,1}n ‖y′ − R′x′‖2

2, wherey′ = ȳ + Re, R′ =
2R. We solve thereal LS problemmin0≤x

′≤e ‖y′ −R′x′‖2
2

to obtain the real solutionx′ by a gradient projection method
(see, e.g, [8, Sec 16.6]). Then we takeβ2 = ‖y′ −R′⌊x′⌉‖2

2,
where thei-th entry of⌊x′⌉ is the nearest integer tox′

i.

3. SIMULATIONS

In this section, we compare the computational performance of
our new recursive GSD algorithm given in Section 2, to be re-
ferred to as Algorithm CY for consistence and convenience,
with Algorithm DV and Algorithm YLH. All our computa-
tions were performed in MATLAB 7.0.

The elements ofA ∈ R
m×n were drawn from an i.i.d.

zero-mean, unit variance Gaussian distribution. The input
vectory ∈ R

m was constructed asy = Ax + v where each
entry of x was taken from{±1}, the elements of the noise
vectorv ∈ R

m were drawn from an i.i.d zero-mean Gaussian
distribution. We used the same conventional sphere decoding
algorithm for solving each sub-ILS problem in the three al-
gorithms, which was the Schnorr-Euchner based search algo-
rithm with the V-BLAST preprocessing strategy incorporated
(see [7]). In Algorithm DV, we took the depth to ben−m−1.
The cost of the different GSD algorithms is measured by the
total number of flops. The cost of the column-reordering and
the computation of the initial radius of the hyper-sphere inAl-
gorithm CY is not considered, since it is negligible compared
with the other cost. For each case, we performed 100 runs
and took the average number of flops.

Forv ∼ N(0, 0.12Im), m = 10, n−m = 3, 4, . . .14, we
give the average number of flops of the three different GSD
algorithms in Fig. 1. From this figure, we observe that our
new GSD algorithm becomes more and more efficient than
Algorithm DV and Algorithm YLH whenn − m increases.
Whenn−m = 14, the cost of either Algorithm DV or Algo-
rithm YLH is 20 times more than that of our Algorithm CY.

4. SUMMARY

In this paper we proposed a recursive GSD algorithm for opti-
mal decoding of under-determinedMIMO systems. We showed
how to efficiently generate the sequence of sub-ILS problems
by modifying the set partition technique of [2]. We also pre-
sented a reduction process with column-reordering strategy,
which can significantly reduce the computational cost. More-
over, we gave a method to determine a good initial radius of
the hyper-sphere to overcome the difficulty with current al-
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Fig. 1. Average flops vs n-m,v ∼ N(0, 0.12I).

gorithms. Simulation results showed that our new GSD algo-
rithm is much more efficient than those given in [2] and [3].
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