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ABSTRACT Most recently Yang, Liu and He [3] proposed a new GSD al-

Generalized sphere decoding (GSD) algorithms have been a#?rlthm, to be called Algorithm YLH, which is usually faster

plied to decode the under-determined MIMO systems. It de. an Algorithm DV. All these algorithms mainly consider how

tects the transmitting vector by decoding a sequence of dt(-) generate a sequence of determined sub-ILS problems. In
9 y 9 q is paper a recursive GSD algorithm will be proposed. The

termined subproblems. In this paper a fast recursive GS new algorithm can generate the sequence of determined sub-

algorithm is proposed. This new algorithm can generate thﬁ_s problems in a more efficient way. The reduction process

sequence of determined subproblems in a more efficient wa; . . .
d P of the new algorithm incorporates a column-reordering-stra

than the current algorithms. A column-reordering strafegy L
2 . . egy to decrease the generation time of the subproblems and
the channel matrix is incorporated into the reduction pssce
. . L the number of these subproblems to be solved. A method
of the new algorithm, which can significantly reduce the com,,

. . to determine a good initial radius of the hyper-sphere is als
putational cost. Furthermore, a method to determine a 9008 9 Yper-sp ©

initial radius of the hyper-sphere is given. Numerical Sim_gwen, which overcomes a difficulty with current algorithms

. ) . The rest of this contribution is organized as follows. In
ulations show that the new recursive GSD algorithm can b . . . .
L . ection 2 we present our new GSD algorithm. Section 3 gives
significantly faster than the current algorithms.

simulation results to show the efficiency of our recursivddGS
algorithm. Finally a summary is given in Section 4.
1. INTRODUCTION

. . , : 2. ARECURSIVE GSD ALGORITHM
In Gaussian multi-input multi-output (MIMO) linear chan-
nels systems, the sphere decoding algorithms are often em-
ployed to detect the transmitting signal vector. Under some o simplicity, we assume that = 1 in Z, i.e.,z; take
circumstances, the MIMO system may be under-determinegs value from{+1} for 1 < j < n. The extension to the
One such an application is the multiple-antenna communicgyeneral case can be done similarly as in [2].
tion systems where there are more transmitting antennas tha  syppose thart has the QR decompositiod = QR,
receiving antennas. A typical approach to decoding undefyhere@ ¢ R™*™ s orthogonal and? € R™*" is an upper
determined MIMO system is to solve the followinmder-  trapezoidal matrix (see, e.g., [4, Sec 5.2]). et Q”y ¢

determined integer least squares problem (UILS) R™ andN 2 n — m + 1. Partitiong, R anda as follows
g, ly — Azll; (1) _ [V m _|R1 Ry|m-1 2™ mea
o v= Ym | 1 ’ R= 0 rT |1 » = m(2) N

whereZ,, is a2*-PAM signal set for some positive integer m-1 N @

T, = {odd integeyj : —2"+1<j <28 —1},y € R™isthe  Then the problem (1) with = 1 is transformed to
received signal vectord € R™*" is a channel matrix with

rankA) = m, € Z}} is the transmitting vector. min ||y — Rz|2 = min |:(17m —pTg®)?

A generalized sphere decoding (GSD) algorithm was first zeIy ezl L”
proposed by Damen et al [1] to solve (1). Recently Dayal and . o _ Rox®) — B2 3
Varanasi [2] proposed another GSD algorithm, to be called + mmnenz?nfl Iy 227) @z )- (@)
Algorithm DV, which can significantly reduce the complexity
by partitioning the candidate set into disjoint orderedsatb. Suppose that one has
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for some scalaB (we will discuss how to choose the initial b2 by, bn]T 2 by by 5 bin]T
in Sect 2.3). Then it follows that

(Gm — rT2@)? < g2 (5)

then the inequality (9) can be rewritten as

. < a’b <. (10)

From (3) we observe that the original problem can be solved
in the following way. We first fixz(*), then employ a con- For anyb with b; € {0,1}, we can check if it satisfies
ventional sphere decoding algorithm (see, e.g., [5] anil [6](10). If so, we then obtain the correspondield’ through (8)
to solve the sub-ILS problem within the brackets in (3). Theand solve the sub-ILS problem in (3). But for efficiency we
problem can be solved by exhaustively trying every possiblgvant to avoid enumerating all possitiieln the following we
x(?. This is the key idea of the GSD algorithm proposed inshow how to do it based on the idea of [2]. L&be the set
[1] (which uses a partition slightly different from (2)). Bt  of all possible2” binary sequences fdr. For every subset
is not efficient. Algorithm DV in [2] first determines a pos- B of S, one associates two quantities, lower bouir{@) and
siblez(?) which satisfies (5) in a more efficient way by a setupper bound:b(B), satisfyinglb(B) < a’b < ub(B),Vb €
partition approach, which will also be used here to fird . B. Define the subsets & as follows:S; £ {b € S|w(b) =

i},0 < i < N wherew(b) £ Zszl bi. Obviously these
2.1. Solving thetransformed problem (3) subsetss; form a disjoint partition ofS (to be called a depth-
%. partition) and have the optimal lower bounds and upper
bOUﬂdS:lb(So) = ub(So) =0, lb(SZ) = 22:1 Ak, ’U,b(SZ) =
ZkN:N_iH ar,1 < i < N. Since alla;, > 0 and are in non-
decreasing order, it follows that

We first give a new bound (see (6)) which is at least as tigh
as (5) by using the idea of [6]. Notice thig — Rx|3 =
Sy (Gi— >0 rijay)® and each; € {1}, =1,--- .

Defined; £ min(\yi—Z?:i i | |92 Injl\) if 7] >

S0, Irij|, otherwised. Obviously(g; — Y7, rijz;)? > d2. Ib(So) < Ib(S1) < --- < Ib(SN) , (11)
Then from (4) it follows that ub(Sp) < ub(S1) < --- < ub(Sn). (12)
n m—1 . . .
o — w2 < B 2 6 These subsets starting wify, then S, until Sy are tested
(v J;nr i) < B ; g © against (10). 1fib(S;) > n,, thenS; and all the subsequent

subsets aftef; do not need to be tested, since no @nin
Definep 2 (32 — S, d?)Y/2. LetIt 2 {j |r,; >  these subsets will satisfy (10).4b(S;) < 7., only S; can be
0,m<j<n}andI~ £ {j |rmj < 0,m < j < n}. Then discarded. Ib(S;) < n, andub(S;) > 7., we need to test
(6) is equivalent to all the elements of; against (10). Note that the cardinality
of S; is (%) and it can be quite large wheNi is large. In
Ym —p < Z Tmj%j + Z TmjTi < Ym +p.  (7)  order to discard as many sequencessias possible before

jert JeI- testing them against (10), we propose the following deepest
For each;, m < j < n, define the following bijective trans- depth partition strategy.
formation (see [3]): DefineS;; = {b € Silb; = landb, = 0,1 < k <
- - j—1}for1 < i < N1 <j< N-i+1. Itiseasyto
b A { ) J_, Jjel 8) observe that they form a disjoint partition (depth-2)efand
/ 1oz jel” we have the optimal lower bound and upper bound for each

_ Si g 16(Sis) = S ag, ub(Sij) = aj+ S niis Gk
o) thatbj_- € {0,1}. Definea, £ 2|7mjl, 5 = m,...,n, then okfvioéslyjlga(si_j)kéﬁd ubk(Sl-_j() féjr)j :31, .2.:.67]\1}[—4%24—2
we obtain from (7) that are in nondecreasing order, respectively. Then we continue
n no n the above partition process for each subset, unless thetsubs
Im+ Y rmil=p <> @0, <Pm+ Y [rmsl+p- (9)  has only one element or has been discarded. Finally each left

j=m j=m j=m subset has only one element.
We sort these nonnegatitie in nondecreasing order: Now we describe the whole process of our new GSD al-
B B B gorithm for solving (3). The algorithm searches the subsets
0<ay <aj, <---<ajy. S; through the order:Sy, S1, S, - - - , Sn. First we find the

The nonnegativity ofi;, which is not true in Algorithm Dy, ~ largestindex, and the smallest inde such thatub(Si,) <
is crucial for our new algorithm. To simplify notation, degin 7= @nd(b(Si,) > 7, Due to (11) and (12), the subsets

So, -+ ,S;, andS,,,--- , Sy can be discarded. Next we con-
n n . .
A - A sider the subsets frorfi;, 11 t0 S;,_1. Define the sel’ =
M = Ym + Z [rms = s 0 = G + Z 73| + o {Si;+1, "+ ,Si,—1}. Let the first subset of" be T, i.e.,
Lo e L S;, +1. If I'; contains only one elemeht we check if it sat-
a = lay, - an]’ = ag,ag, a0, isfies (10) and if it does we solve the corresponding sub-ILS



problem. Otherwise, we do the depth-2 partitionftoand  [6] and [7]). But for the UILS problem (1), to our knowl-
deal with the elements of s&t in a recursive way. AfteF’;  edge, no GSD algorithm in the literature has considered to
is done, we delete it frori. In the leftl’, we delete eachi;  apply this strategy. In this section we propose a column-
such thatb(T';) > n,. Then we deal with the first subset in reordering strategy in the reduction from (1) to (3), i.ee w
I" again. The whole process is terminated wies empty. will find a good permutation matri® in the QR decomposi-
tion: AP = QR. This strategy can significantly reduce the

‘Algorithm Recursive GSD for problem (fﬁ) generation time of sub-ILS problems and decrease the num-
Input: The trapezoidal matrifz € R™*", the vectory €  per of these sub-ILS problems.

R™, the initial Ne, Mo, ﬂQ, the setS. Suppose
Output: The optimal solutionc € Z™ to (3) satisfying n
|y — Rz < 2. i 2 min{k : 16(Sk) > 0y = Gm + Y [rmjl+p}  (13)
function: = UILS(R, 9, 7., v, 32, S) j=m
if setS contains only one elemeht then from (10) and (11) in Section 2.1 we see all the remain-
if b satisfies (10) ing subsetsS;, for k > 7 can be discarded without generating
Solve the corresponding sub-ILS problem. any sub-ILS problems. Therefore we would likén (13) to
If a solution exits, let it bez, and update be as close to 1 as possible. In addition to this, we also want
Ny 10, 32, otherwise sek = Null. to maker, as small as possible. Its purpose is not just to
end decreaseé in (13), but to help to rejeds in other subsets);
dse satisfyinglb(S;) < n, in generating a sub-ILS problem.
Partition$ into disjoint subsets’;, S, - - - , Sr, In the following we describe our reduction process. We
and defind” = {51, Ss,- -+, S, }. first compute the QR decomposition d4f by using the stan-
Find the largest indek such thatub(S;,) < 7., dard column pivoting strategy (see, e.g., [4, Sect 5.4ut])ch
and deletes,, - - -, S;, fromT. gives the QR decomposition of P, whereP is a permuta-
whileI" £ 0 tion matrix. This will tend to maker,, ;| (j = m,...,n)
Find the smallest indek such that (see (13) ) small, since, roughly speakingarger columns
1b(S;,) > 1y, deleteS,,, - -- , Sy, fromT. of A (in terms of the 2-norm) have been moved to the front.
ifT£0 Then we computg. In order to make;, small, we always
LetT'; be the first subset df keepy,, to be nonpositive (ifj,, > 0, we can simply mul-
x' = UILS(R, g, 7,0, 8%, T1) tiply 4,, and the last row o® by —1). Then we obtain the
if 2’ # Null, setx = 2/, end index i satisfying (13). Note that any reordering of the last
Deletel’; fromT n —m + 1 columns of AP will not change the value of,
end since nothing in the inequality in (13) will change. The re-
end ordering of the firstn — 1 columns ofA P may only change
end p in (13) a little bit and is unlikely to change the smallest
index ¢ usually. So we only consider the following column
The above algorithm is more efficient in generating a sepermutations. Foj = 1,...,m — 1, we interchange thg-

quence of sub-ILS problems than Algorithm DV given in [2]. th column andn-th column of R (which is equivalent to the
The key is that we used the bijective transformation (8)althi  corresponding column interchange4nP). After each inter-

is an extension of that used in Algorithm DV, so that in depth-change, we compute the QR decomposition of the permuted
1 partition (say)b(-) andub(-) have the ideal orders (11) and R. This can be done in an efficient way by using the Givens
(12), which make it possible to discard more sequences whidlbtations, since the permutd® has structure. In each time
do not satisfy (10) than Algorithm DV. The paper [2] sayswe have to simultaneously updajéy the same Givens rota-
that high depth is necessary to effectively reduce the comions. Then we can obtain the correspondiimg(13). Finally
putational complexity for severely under-determinedesy®.  we know which permutation gives the smalléstf there is

But it does not show how to choose the depth of Algorithmmore than one permutation leading to the same smallest

DV. This leaves a user to decide the depth. However, there shoose the one which gives the smallgst So finally the

no such problem with our algorithm, since it has the deepesiolumn-reordering ofA is determined.

depth, which allows us to make full use of the advantage of

this partition technique. 2.3. Determining theinitial radius of the hyper-sphere

The radiusg of the initial hyper-sphere in (4) is crucial to
the cost of a GSD algorithm. If it is too small, the optimal

In solving a box constrained overdetermined ILS problem, tasolution might be outside the searched hyper-sphere and the
make the search process fast, the reduction process has to 8SD algorithm has to be restarted with a biggdm [2] and
volve column-reordering of the channel matei (see, e.g., [3] 32 is increased by a factor @). If it is too large, there

2.2. Reduction from problem (1) to problem (3)



are too many candidates inside the searched hyper-sphere. |
[2] and [3], the initial3? is taken asn/2. It appears that this
choice may still have the above problems.

In our new GSD algorithm, we obtain the initiadby solv-
ing the constrainedeal LS problem. Letr’ = <t where
e=[1,1,---,1]7 € R™. Then the problem (3) is equivalent
to ming 0,13 ||y’ — R'2’(|3, wherey’ = § + Re, R’ =
2R. We solve theeal LS problemming<q <e ||y — R'2'||3
to obtain the real solutiom’ by a gradient projection method
(see, e.g, [8, Sec 16.6]). Then we take= ||y’ — R'|=']||3,
where the-th entry of | '] is the nearest integer td.

3. SSIMULATIONS

In this section, we compare the computational performahce o
our new recursive GSD algorithm given in Section 2, to be re-
ferred to as Algorithm CY for consistence and convenience,
with Algorithm DV and Algorithm YLH. All our computa-
tions were performed in MATLAB 7.0.

The elements oA € R™*™ were drawn from an i.i.d.
zero-mean, unit variance Gaussian distribution. The input
vectory € R™ was constructed ag = Ax + v where each
entry of z was taken from{£1}, the elements of the noise
vectorv € R™ were drawn from an i.i.d zero-mean Gaussian
distribution. We used the same conventional sphere degodin
algorithm for solving each sub-ILS problem in the three al-

gorithms, which was the Schnorr-Euchner based search algo-
rithm with the V-BLAST preprocessing strategy incorpothte [2]

(see[7]). In Algorithm DV, we took the depth to he-m —1.

The cost of the different GSD algorithms is measured by the
total number of flops. The cost of the column-reordering and
the computation of the initial radius of the hyper-spherlin
gorithm CY is not considered, since it is negligible complare

with the other cost. For each case, we performed 100 rurl$]

and took the average number of flops.
Forv ~ N(0,0.12I,,),m = 10,n—m = 3,4,...14, we

give the average number of flops of the three different GSIZM

algorithms in Fig. 1. From this figure, we observe that our
new GSD algorithm becomes more and more efficient than
Algorithm DV and Algorithm YLH whenn — m increases.
Whenn — m = 14, the cost of either Algorithm DV or Algo-
rithm YLH is 20 times more than that of our Algorithm CY.

4. SUMMARY

In this paper we proposed a recursive GSD algorithm for opti-g(]

mal decoding of under-determined MIMO systems. We show!
how to efficiently generate the sequence of sub-ILS problems
by modifying the set partition technique of [2]. We also pre-
sented a reduction process with column-reordering styateg

(5]

(6]
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Fig. 1. Average flops vs n-my ~ N(0,0.121).

gorithms. Simulation results showed that our new GSD algo-
rithm is much more efficient than those given in [2] and [3].
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