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SUMMARY

We consider the Givens QR factorization of banded Hessenberg-Toeplitz matrices of large order and
relatively small bandwidth. We investigate the asymptotic behavior of the R factor and the Givens
rotation when the order of the matrix goes to infinity, and present some interesting convergence
properties. These properties can lead to savings in the computation of the exact QR factorization
and give insight for approximate QR factorizations of interest in preconditioning. The properties also
reveal the relation between the limit of the main diagonal elements of R and the largest absolute root
of a polynomial. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Structured matrices are encountered in various scientific and engineering applications, see for
example [11] and [12]. One well-known class is the class of Toeplitz matrices, whose elements
along each diagonal are the same constants. In many applications, such as image processing,
the Toeplitz matrices are banded. In this paper, we consider the realN×N banded Hessenberg-
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Toeplitz matrices, which have the form
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where b 6= 0, am 6= 0, m ≥ 2. This class of matrices may appear in difference equations
arising from the discretization of differential equations. For example, the tridiagonal matrix
b = a2 = 1

h2 , a1 = − 2
h2 , and m = 2 arises from the discretization of the one dimensional

Poisson equation u′′(x) = f(x) for x ∈ (0, 1) with u(0) = u(1) = 0, and belongs to this class.
The matrix representing the discretization of the one dimensional Laplacian was the starting
point of our investigation: if one computes the LU factorization of this simple tridiagonal
matrix, one finds
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which shows that if the discretization matrix is large, the entries in the LU factors converge
to a limit, which can be interpreted again at the continuous level: we obtain both in the L
and the U factor the finite difference stencil 1

h [−1 1], and therefore one can interpret the LU
factorization of the discretized one dimensional Laplacian as the product of two first order finite

differences. This indicates that the continuous LU factorization of the differential operator d2

dx2

is just the product of two first order differential operators d
dx , and the LU factorization of the

matrix corresponds to d2

dx2 = d
dx · d

dx . In [6], this fact was used to find the continuous analog
of the block LU factorization of the Laplacian in two and three spatial dimensions. Carefully
choosing particular approximations of the continuous factors led to a new class of incomplete
LU preconditioners, the AILU (Analytic Incomplete LU), which has a better asymptotic
convergence rate as the mesh parameter is refined than standard ILU preconditioners. The
approximation idea of the exact factors used in AILU is related to the frequency filtering
preconditioners, introduced at the algebraic level by Wittum and Wagner, [19, 20], and later
extended by Wagner [16, 17] and Buzdin [5]. In their analysis, the limits of the entries of the
LU factorization of a very large matrix, already analyzed in an early paper by Bauer [1] to
approximate the Hurwitz-decomposition of a polynomial, play the decisive role, see also [9].
At the continuous level, the AILU preconditioner was also defined and analyzed in [7] and
[8] for two and three dimensional Helmholtz problems, which are notoriously difficult to solve
with Krylov methods, because of their indefiniteness, and classical ILU preconditioners fail
to lead to convergent methods. The AILU however captures the essential of the underlying

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–22
Prepared using nlaauth.cls



QR FACTORIZATION OF BANDED HESSENBERG-TOEPLITZ MATRICES 3

differential operator in its approximate LU factors and leads to an efficient method for these
types of problems in acoustics.

This motivated us to look if there is also a continuous limit of the QR factorization in such
situations. Applying the QR factorization to the tridiagonal matrix representing the discrete
Laplacian in one dimension, one observes that the Q factor converges to a matrix with 1 in
the sub-diagonal and zero everywhere else (a shifting matrix), whereas the R factor converges
to a matrix like the discretized Laplacian, but the stencil shifted to the upper triangle of the
matrix, i.e., the QR factors converge to a factorization of the following form (only one row of
each of the three matrices are displayed and the underlined entry is the diagonal entry):

1

h2
[. . . , 0, 1,−2, 1, 0, . . .] = [. . . , 0, 1, 0, . . .]

1

h2
[. . . , 0, 1,−2, 1, 0, . . .].

In this simple, one dimensional case, it seems that in the continuous limit, the QR factorization

of d2

dx2 is simply Id · d2

dx2 , the orthogonal matrix Q is the identity and the upper triangular

factor remains d2

dx2 , which is a local operator and thus already diagonal in the continuous limit.
Can such a result be proved for more general Toeplitz matrices? And if yes, is it possible to
use the continuous limits of the QR factorization like in the case of the continuous limits of the
LU factorization to construct a new class of preconditioners for Krylov methods of the type
LSQR [14], which would have as the ideal preconditioner the QR factorization of the matrix
A?

We try to give an answer to the first question for the banded Hessenberg-Toeplitz matrix
in (1) in this paper. We investigate the convergence of the diagonals of the R factor and the
convergence of the Givens rotations which are used to compute the QR decomposition of the
banded Hessenberg-Toeplitz matrix, when N becomes large. This convergence result can be
useful by itself, even before it is used to find the continuous limit of the QR factorization
of a differential operator and to construct a preconditioner. In fact, if one can show that
the entries in the QR factorization converge rapidly to machine precision, one can avoid the
computation of the entire factorization and use the limits directly instead in the factors, as
soon as convergence is achieved, leading to significant computational savings in solving the

linear system Ax = c, or the least squares problem min ‖Āx − d‖2 (where Ā =

[
A
beTN

]

with

eTN = [0, . . . , 0, 1] is still a Toeplitz matrix) by the QR factorization. If A is a symmetric,
diagonally dominant, tridiagonal Toeplitz matrix, it is shown in [13] that the diagonals of the
LU factors of A converge and computational savings are possible. Similar properties also hold
for cyclic reduction, see [4]; but for the QR factorization we are not aware of any results in
the literature.

Before proceeding, we introduce some basic notation. We use ei to denote the unit vector
whose i-th element is 1. For any matrix B, we denote by B(i, :) the i-th row, by B(:, j) the
j-th column, and by B(:, j1 : j2) the submatrix formed by column j1 up to column j2. For a
square matrix B, we denote its spectral radius by ρ(B). For a complex number c, we use Re(c)
to denote its real part.

The rest of this paper is organized as follows. In Section 2, we first introduce the Givens
QR procedure and give iterative formulas which are the key to our later analysis. Then, after
giving two lemmas, we present the main convergence results, followed by a convergence rate
analysis. In Section 3, we use some numerical examples to illustrate our findings. Finally a
brief summary is given in Section 4.
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2. MAIN RESULTS

2.1. The QR factorization of A

For simplicity, we assume from now on that b = 1 in the banded Hessenberg-Toeplitz A unless
we state otherwise, and say A is “normalized”. This is without loss of generality, since if b 6= 1,
we can write A = b·(A/b) where the subdiagonal elements of A/b are 1s, and the Q factor of A
can be taken as the same as that of A/b and the R factor of A is just b times that of A/b. The
QR factorization A = QR can be computed by a sequence of Givens rotations. In the general
n-th step of the QR factorization process, a Givens rotation Qn,n+1 is applied to rows n and

n+1 of A to annihilate the n-th element of the subdiagonal. Let ξ
(n)
i denote the n-th element

of the (i− 1)-th upper diagonal of R. The n-th step can then be described as follows:

Qn,n+1

[

x
(n−1)
1 x

(n−1)
2 · · · x

(n−1)
m 0

1 a1 a2 · · · am

]

=

[

ξ
(n)
1 ξ

(n)
2 · · · ξ

(n)
m ξ

(n)
m+1

0 x
(n)
1 x

(n)
2 · · · x

(n)
m

]

, (2)

where

x(0) ≡ [x
(0)
1 , x

(0)
2 , · · · , x(0)

m ]T = [a1, a2, · · · , am]T , (3)

Qn,n+1 =

[
cn sn
−sn cn

]

, cn =
x

(n−1)
1

√

1 + (x
(n−1)
1 )2

, sn =
1

√

1 + (x
(n−1)
1 )2

. (4)

From (2) and (4) it is straightforward to verify that x(n) ≡ [x
(n)
1 , x

(n)
2 , · · · , x(n)

m ]T , n = 0, 1, . . .,
satisfy

x(n) =
1

√

1 + (x
(n−1)
1 )2

Gx(n−1), G ≡







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

a1 −1
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...
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, (5)

and ξ(n) ≡ [ξ
(n)
1 , ξ

(n)
2 , . . . , ξ

(n)
m+1]

T , n = 1, 2, . . ., satisfy






ξ
(n)
1 =

√

1 + (x
(n−1)
1 )2,

ξ
(n)
i = (x

(n−1)
1 x

(n−1)
i + ai−1)/

√

1 + (x
(n−1)
1 )2, i = 2, . . . ,m,

ξ
(n)
m+1 = am/

√

1 + (x
(n−1)
1 )2.

(6)

Notice here that the main diagonal elements ξ
(n)
1 (n = 1, 2, . . .) of R are taken to be positive.

If A is not “normalized”, i.e., b 6= 1, the signs of the main diagonal elements of its R factor
will be taken to be the same as that of b.

Since Givens rotations do not change the 2-norm of each column of A, we have

|ξ(n)
1 | ≤ ||A(:, n)||2 ≤

√
√
√
√1 +

m∑

k=1

a2
k,

√

(ξ
(n)
i+1)

2 + (x
(n)
i )2 ≤ ‖A(:, n+ i)‖2 ≤

√
√
√
√1 +

m∑

k=1

a2
k, i = 1, . . . ,m, n = 1, 2, . . . . (7)
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Therefore all |ξ(n)
i | and |x(n)

i | are bounded.
Our goal is to study the asymptotic behavior of the diagonals of the R factor and the Givens

rotations as n goes to infinity. From (4) and (6), we see that the sequences {Qn,n+1} and {ξ(n)}
depend on the sequence {x(n)}. Thus the key is to investigate the convergence of {x(n)} based
on the iteration (5). Let the m×m matrix in (5) be denoted by G, and its largest eigenvalue
in absolute value by λmax. Note that G is nonsingular and −G is the companion matrix of the
monic polynomial

p(x) = xm + a1x
m−1 + a2x

m−2 + · · ·+ am−1x+ am. (8)

Also notice that (5) is some kind of an iterative process of the power method for computing
an eigenvector associated with λmax. But unlike two usual scaling factors ‖Gx(n−1)‖2 and
max(Gx(n−1)) (the entry of Gx(n−1) with largest absolute value) used in the power method

(see for example [10, p.330] and [18, p.571]), the scaling factor in (5) is

√

1 + (x
(n−1)
1 )2, which

is equal to ξ
(n)
1 . In the power method one is only interested in the limit of the direction of

{x(n)}, but here we want to know exactly what the limit of {x(n)} is. Due to the new scaling
factor, our convergence analysis of {x(n)} is more complicated than the standard one.

2.2. Convergence results

We need the following two technical Lemmas to prove our main convergence result.

Lemma 1. If λ is an eigenvalue of G, then the vector u ≡ [u1, u2, · · · , um]T defined by






u1 = λ,

ui = (−1)i−1λi +
∑i−1

k=1(−1)i−k−1 akλ
i−k = λ(ai−1 − ui−1), 2 ≤ i ≤ m− 1,

um = am = λ(am−1 − um−1),

(9)

is an eigenvector of G associated with λ, and [(−λ)m−1, (−λ)m−2, · · · ,−λ, 1]T is an eigenvector
of GT associated with λ.

Proof. This result is a direct consequence of the special structure of G. 2

Lemma 2. Let the real sequence {xn} be defined by xn = λxn−1√
1+γ2x2

n−1

+ yn−1, where

limn→∞ yn → 0, λ ≥ 1, γ 6= 0, xn ≥ 0 for all n ≥ 0, and for any n > 0 there is always
n0 > n such that xn0

6= 0. Then

lim
n→∞

xn =
√

λ2 − 1/|γ|. (10)

Proof. The proof is technical and given in the Appendix. 2

We now state and prove the main convergence result of this paper.

Theorem 1. Let A be the banded Hessenberg-Toeplitz matrix given by (1) with b = 1. Let x
(n)
i

(i = 1, . . . ,m) and ξ
(n)
i (i = 1, . . . ,m+1) be defined by (2), cn and sn by (4), and let G be the

m×m matrix in (5).
(i) If ρ(G) < 1, then

lim
n→∞

ξ
(n)
1 = 1, lim

n→∞
ξ
(n)
i = ai−1, i = 2, . . . ,m+ 1, (11)
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and
lim
n→∞

cn = 0, lim
n→∞

sn = 1. (12)

(ii) Suppose G has a distinct largest eigenvalue λmax in modulus, i.e., λmax may be repeated,
but there are no other different eigenvalues which have the same modulus as λmax. If ρ(G) ≡
|λmax| ≥ 1, then

lim
n→∞

ξ
(n)
1 = |λmax|,

lim
n→∞

ξ
(n)
i = sign(λmax)

[
i−1∑

k=0

(−1)i−k−1(ak − ak−2)λ
i−k
max + ai−2

]
(13)

= −λmax lim
n→∞

ξ
(n)
i−1 + sign(λmax)(ai−1λmax + ai−2), 2 ≤ i ≤ m, (14)

lim
n→∞

ξ
(n)
m+1 = am/|λmax|,

where a−2 = a−1 ≡ 0 and a0 ≡ 1, and

lim
n→∞

|cn| =
√

λ2
max − 1/|λmax|, lim

n→∞
sn = 1/|λmax|, (15)

where when ρ(G) > 1 and n is large enough,

sign(cn) = sign(λmax) sign(cn−1). (16)

Proof. (i) From (5), we have

x(n) =
1

Πn−1
i=0

√

1 + (x
(i)
1 )2

Gnx(0),

which implies
||x(n)||2 ≤ ||Gn||2||x(0)||2.

If ρ(G) < 1, then Gn −→ 0, as n → ∞, see for example ([10], Lemma 7.3.2). Therefore
x(n) −→ 0. Thus (11) follows from (6) and (12) follows from (4).

(ii) Since G − λI has rank at least m − 1 for any λ, G is nonderogatory, that is, in the
Jordan form of G no eigenvalue appears in more than one Jordan block. Suppose that G has
k distinct eigenvalues and they are arranged in decreasing order,

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λk−1| ≥ |λk|,

where λ1 = λmax, which is real according to the given assumption. Let G have the Jordan
decomposition

G = SJS−1, J ≡ diag(J1, J2, . . . , Jk), Ji ≡







λi 1
· ·

λi 1
λi







li×li

. (17)

Defining the new sequence

x̃(n) ≡ [x̃
(n)
1 , x̃

(n)
2 , · · · , x̃(n)

m ]T = S−1x(n), n = 0, 1, . . . , (18)
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we observe that {x̃(n)} is bounded, since {x(n)} is bounded (see (7)). From (5) and (6), we
obtain

x̃(n) =
1

ξ
(n)
1








J1

J2

. . .

Jk







x̃(n−1), n = 1, 2, . . . , (19)

where

ξ
(n)
1 =

1
√

1 +
(
x

(n−1)
1

)2
=

1
√

1 +
∣
∣
∑m

i=1 γi x̃
(n−1)
i

∣
∣
2
, (20)

S(1, :) ≡ [γ1, . . . , γm]. (21)

We would like to show x̃
(0)
l1
6= 0. Since x̃(0)T

= x(0)T

S−T , we have

x̃
(0)
l1

= (x(0))T ·S−T (:, l1). (22)

Since GT = S−TJTST , S−T (:, l1) is an eigenvector of GT associated with λ1. Since GT is
nonderogatory, we have, by Lemma 2.1,

(S−T )(:, l1) = α[(−λ1)
m−1, (−λ1)

m−2, · · · ,−λ1, 1]
T

for a nonzero constant α. Combining this and (x(0))T = [a1, a2, . . . , am] (see (3)), we obtain
from (22) that

x̃
(0)
l1

= α

m∑

i=1

ai(−λ1)
m−i.

But since −λ1 is an eigenvalue of −G, we obtain with (8)

m∑

i=1

ai(−λ1)
m−i = −(−λ1)

m.

Hence, x̃
(0)
l1

must be nonzero.

Since for n ≥ li − 1,

Jni =








λni
(
n
1

)
λn−1
i · · ·

(
n
li−1

)
λn−li+1

1

λni · · ·
(
n
li−2

)
λn−li+2

1

. . .
...

λni ,







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we obtain from (19) for n ≥ max{l1 − 1, . . . , lk − 1},

x̃(n) =
1

ξ
(1)
1 ξ

(2)
1 · · · ξ(n)

1

{[(

λn1 x̃
(0)
1 +

(
n

1

)

λn−1
1 x̃

(0)
2 + · · ·+

(
n

l1−1

)

λn−l1+1
1 x̃

(0)
l1

)

e1

+
(

λn1 x̃
(0)
2 + · · ·+

(
n

l1−2

)

λn−l1+2
1 x̃

(0)
l1

)

e2 + · · ·+ λn1 x̃
(0)
l1

el1

]

+
[(

λn2 x̃
(0)
l1+1 +

(
n

1

)

λn−1
2 x̃

(0)
l1+2 + · · ·+

(
n

l2−1

)

λn−l2+1
2 x̃

(0)
l1+l2

)

el1+1

+
(

λn2 x̃
(0)
l1+2 + · · ·+

(
n

l2−2

)

λn−l2+1
2 x̃

(0)
l1+l2

)

el1+2 + · · ·+ x̃
(0)
l1+l2

λn2 el1+l2

]

+ · · · · · ·

+
[(

λnk x̃
(0)
m−lk+1 +

(
n

1

)

λn−1
k x̃

(0)
m−lk+2 + · · ·+

(
n

lk−1

)

λn−lk+1
k x̃(0)

m

)

em−lk+1

+
(

λnk x̃
(0)
m−lk+2 + · · ·+

(
n

lk−2

)

λn−lk+1
k x̃(0)

m

)

em−lk+2 + · · ·+ x̃(0)
m λnkem

]}

=

(
n

l1−1

)
λn−l1+1

1

ξ
(1)
1 ξ

(2)
1 · · · ξ(n)

1

{
[(

x̃
(0)
l1

+
l1 − 1

n− l1 + 2
λ1x̃

(0)
l1−1 + · · ·+

(
n

l1−1

)−1

λl1−1
1 x̃

(0)
1

)

e1

+
( l1 − 1

n− l1 + 2
λ1x̃

(0)
l1

+ · · ·+
(

n

l1−1

)−1

λl1−1
1 x̃

(0)
2

)

e2 + · · ·+
(

n

l1−1

)−1

λl1−1
1 x̃

(0)
l1

el1

]

+

(
n

l1−1

)−1(
n

l2−1

)(λ2

λ1

)n−l1+1[(

λl1−l22 x̃
(0)
l1+l2

+ · · ·+
(

n

l2−1

)−1

λl1−1
2 x̃

(0)
l1+1

)

el1+1

+
( l2 − 1

n− l2 + 2
λl1−l2+1

2 x̃
(0)
l1+l2

+ · · ·
)

el1+2 + · · ·+
(

n

l2−1

)−1

λl1−1
2 x̃

(0)
l1+l2

el1+l2

]

+ · · · · · ·

+

(
n

l1−1

)−1(
n

lk−1

)(λk
λ1

)n−l1+1[(

λl1−lk1 x̃(0)
m + · · ·+

(
n

lk−1

)−1

λl1−1
k x̃

(0)
m−lk+1

)

em−lk+1

+
( lk − 1

n− lk + 2
λl1−lk+1
k x̃(0)

m + · · ·
)

em−lk+2 + · · ·+
(

n

lk−1

)−1

λl1−1
k x̃(0)

m em

]
}

. (23)

Therefore, using the fact that |λi|/|λ1| < 1 for i = 2, . . . ,m and the fact that {|x̃(n)
1 |} is

bounded, we can conclude that as n→∞,

x̃
(n)
1 ∼

(
n

l1−1

)

λn−l1+1
1 x̃

(0)
l1

/
(
ξ
(1)
1 ξ

(2)
1 · · · ξ(n)

1

)
, (24)

x̃
(n)
i → 0, i = 2, 3, . . . ,m. (25)

Then we have with (20) that as n→∞,

Re(x̃
(n)
1 ) ∼ x̃

(n)
1 , |x̃(n)

1 | ∼ n|λ1||x̃(n−1)
1 |

(n− l1 + 1)|ξ(n)
1 |

∼ |λ1||x̃(n−1)
1 |

√

1 + |γ1|2|x̃(n−1)
1 |2

.
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Since {|x̃(n)
1 |} is bounded, it follows that we can write

|x̃(n)
1 | ≡ |λ1||x̃(n−1)

1 |
√

1 + |γ1|2|x̃(n−1)
1 |2

+ y(n−1) (26)

for some sequence {y(n)} which converges to zero. In order to apply Lemma 2 to the above
sequence, we need to show that γ1, the first entry of S(1, :) in (21), is nonzero. In fact, since
S(:, 1) is the eigenvector of G associated with λ1 and G is nonderogatory, by Lemma 1 we have

S(:, 1) = β[u1, u1, . . . , um]T , (27)

where β is a nonzero real constant, and ui, i = 1, . . . ,m are defined by (9) with λ ≡ λ1. Thus

γ1 = βu1 = βλ1 6= 0. (28)

Then applying Lemma 2 to (26), we obtain

lim
n→∞

|x̃(n)
1 | = (

√

λ2
1 − 1)/|γ1|. (29)

Recalling that x(n) = Sx̃(n) (see (18)), we have by (25), (27)–(29) that

lim
n→∞

|x(n)
1 | =

√

λ2
1 − 1, lim

n→∞
x

(n)
1 x

(n)
i = ui

λ2
1 − 1

λ1
, i = 2, . . . ,m. (30)

With these relations, we can obtain from (6) and (9) with some algebraic manipulations (13)

and (14). Combining the limit of {|x(n)
1 |} with (4) leads to (15).

If |λ1| > 1, then limn→∞ |Re(x̃
(n)
1 )| = limn→∞ |x̃(n)

1 | 6= 0. It follows from (24) that when n
is large enough,

sign(Re(x̃
(n)
1 )) = sign(λ1) sign(Re(x̃

(n−1)
1 )),

i.e., the sign of Re(x̃
(n)
1 ) will change alternatively when n is large enough. But since x

(n)
1 ∼

γ1x̃
(n)
1 ∼ γ1Re(x̃

(n)
1 ) when n is large enough,

sign(x
(n)
1 ) = sign(γ1) sign(Re(x̃

(n)
1 )) = sign(λ1) sign(x

(n−1)
1 ).

Hence (16) follows from this and (4). 2

Remark 1. Theorem 1 can be extended to a broader class of matrices. Notice that the initial
vector x(0) in the iteration (5) is defined in (3), but this is not necessary for having the
convergence results. In case (i), we see from the proof that x(0) can be arbitrary. In case
(ii), the sequence {x̃(n)} starts with the initial vector x̃(0) = S−1x(0). We observe that the

arguments of the proof can still be carried out if x̃(0) has a nonzero component x̃
(0)
i for some

i with 1 ≤ i ≤ l1. Since x(0) = Sx̃(0), this means that the results in Theorem 1 (ii) still
hold, if the initial vector x(0) has at least one nonzero component in the invariant subspace of
G associated with λmax. This is exactly a condition assumed for the convergence of the power
method, see [18, p.583]. Thus, even if the upper-left elements of the banded Hessenberg Toeplitz
matrix A are changed, we still have the convergence results of Theorem 1 as long as in case
(ii) after some finite steps of the QR factorization, we can get a vector x(k) which satisfies
the above condition. Such a class of matrices may arise in certain applications, see the second
example given in Section 3.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–22
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10 X.-W. CHANG, M. J. GANDER, AND S. KARAA

Remark 2. From case (i), we observe that the limits of the rows of R can be obtained by
just simply shifting the rows of A one position to the right. Case (ii) establishes an interesting
relation between the limit of the main diagonal elements of the R factor and the largest root
in magnitude of the polynomial equation p(x) = 0 (see (8)). If we know one of them, the other
will be known. When the bandwidth of A is small, λmax(G) can easily be computed, and then

the limits of {ξ(n)
i } (i = 1, . . . ,m+ 1) can easily be obtained from the recursion (14).

Remark 3. If the discretization A of a differential operator A leads to case (i), then the
limits of the QR factorization can be interpreted, when the mesh is refined, as the continuous
QR factorization of the differential operator A = Id · A, as it was shown for the simple
example in the introduction. Furthermore, the limits can be used to construct an approximate
QR factorization of A, Â = Q̂R̂ where Q̂ = [e2, . . . , eN , e1] and R̂ = [e1, A(:, 1:N − 1)], i.e.,
R̂ is a right-shift of A to upper triangular form (note that the subdiagonal of A has been
normalized to one). It is easy to verify that the difference A− Â is a rank one matrix, so the
approximate QR factorization is only a rank one change distant from the exact one. A similar
low rank distance property was also shown for approximate LU factorizations of banded Toeplitz
matrices, see [9], where the low rank difference is treated by the Sherman-Morrison-Woodbury
formula in the solution process.

There are however discretizations of differential operators which lead to case (ii); an example
of which is given in Section 3. In that case, the rows of the R factor do not converge to a simple
shift of the rows of the discretized operator A. Nevertheless, even in that case, Â = Q̂R̂ defined
above constitutes an approximate QR factorization of A, since A− Â is still a rank one matrix.
It might well be this approximate factorization which has good preconditioning properties, even
in case (ii).

Remark 4. Theorem 1 is not only interesting in theory but also useful in computations. If the
dimension of the banded Hessenberg-Toeplitz matrix is large, we may not need to carry out the
entire QR factorization process to obtain the QR factors, because the limits of the R factor and
the Givens rotations may have been reached to machine precision before the QR factorization
process is completed, which can lead to significant savings in the computation.

A special case of Theorem 1 is when the matrix is tridiagonal,

A =










a c
b a c

. . .
. . .

. . .

b a c
b a










. (31)

Here, we prefer not to “normalize” the subdiagonal elements of A. The n-th step of the QR
factorization of A can be described by

Qn,n+1

[

x
(n−1)
1 x

(n−1)
2 0

b a c

]

=

[

ξ
(n)
1 ξ

(n)
2 ξ

(n)
3

0 x
(n)
1 x

(n)
2

]

,

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–22
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where (cf. (3)–(6))

x(0) ≡ [x
(0)
1 , x

(0)
2 ]T = [a, c]T ,

Qn,n+1 =

[
cn sn
−sn cn

]

, cn =
sign(b)x

(n−1)
1

√

b2 + (x
(n−1)
1 )2

, sn =
sign(b)b

√

b2 + (x
(n−1)
1 )2

,

[

x
(n)
1

x
(n)
2

]

=
sign(b)

√

b2 + (x
(n−1)
1 )2

[
a −b
c 0

] [

x
(n−1)
1

x
(n−1)
2

]

, (32)

ξ
(n)
1 = sign(b)

√

b2 + (x
(n−1)
1 )2, ξ

(n)
2 =

sign(b)(x
(n−1)
1 x

(n−1)
2 + ab)

√

b2 + (x
(n−1)
1 )2

, ξ
(n)
3 =

sign(b)bc
√

b2 + (x
(n−1)
1 )2

.

(33)

The eigenvalues of the matrix G =

[
a −b
c 0

]

corresponding to the “unnormalized” A are

λmax,min =
1

2
(a±

√

a2 − 4bc), |λmax| ≥ |λmin|. (34)

So the eigenvalues of G/b corresponding to the “normalized” A/b are λmax,min/b. By
Theorem 1, we have

Corollary 1. Let A be the tridiagonal Toeplitz matrix in (31), and let λmax,min be defined by
(34).
(i) If |λmax| < |b|, then

lim
n→∞

ξ
(n)
1 = b, lim

n→∞
ξ
(n)
2 = a, lim

n→∞
ξ
(n)
3 = c, lim

n→∞
cn = 0, lim

n→∞
sn = 1.

(ii) If |λmax| ≥ |b|, a2 − 4bc > 0, and a 6= 0, then

lim
n→∞

ξ
(n)
1 = sign(bλmax)λmax, lim

n→∞
ξ
(n)
2 = sign(bλmax) (b+ c), lim

n→∞
ξ
(n)
3 = sign(bλmax)λmin,

lim
n→∞

|cn| =
√

λ2
max − b2/|λmax|, lim

n→∞
sn = |b|/|λmax|,

where, if |λmax| > b and n is large enough,

sign(cn) = sign(bλmax)sign(cn−1).

Remark 5. In Theorem 1 (ii) and Corollary 1 (ii), we (implicitly) assume that G has only one
distinct dominant eigenvalue. This is also an assumption for the power method. The following
example shows that if this is not true, then convergence may not be guaranteed. Suppose in the

tridiagonal A, a = 0. In this case, G =

[
0 −b
c 0

]

has exactly two distinct eigenvalues with the

same modulus. Since x
(0)
1 = 0, it is easy to verify from (32) that x

(2n)
1 = 0 for all n, and

x
(1)
1 = −sign(b)c, x

(2n+1)
1 = −sign(b) c x

(2n−1)
1

√

b2 + (x
(2n−1)
1 )2

, n = 1, 2, . . . .
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If |c| > |b|, then by Lemma 2 the sequence {|x(2n+1)
1 |} converges to

√
c2 − b2. Hence, from (33),

lim
n→∞

ξ
(2n)
1 = b, lim

n→∞
ξ
(2n+1)
1 = sign(b)|c|,

which shows that {ξ(n)
1 } does not converge.

2.3. Evaluation of the convergence rates

In Section 2.2, we presented the convergence results for the diagonals of the R factor and
the Givens rotations. How fast do these sequences converge? This is the question we would
like to address in this section. Since the power method with standard scaling factors usually
convergences linearly, we can expect that these sequences usually have the same order of
convergence. But since the situation here is more complicated than the power method with
standard scaling factors, we perform a convergence rate analysis here, giving not only the
convergence order, but also convergence factors.

For a sequence {y(n)} which converges to the limit y∗, we define

r{y(n)} ≡ lim sup
n→∞

‖y(n) − y∗‖1/n,

where we assume that the limit exists. If 0 < r{y(n)} < 1 or r{y(n)} = 1, we say the sequence
{y(n)} has r-linear or r-sublinear convergence, respectively (here “r” stands for “root”); and
r{y(n)} is called the convergence factor. For various measures of efficiency of iterative processes,
see [15, Chap.3].

In our analysis, we will use the following lemmas.

Lemma 3. Let {y(n)} be a sequence defined by the iterative process

y(n) = F (y(n−1)), n = 1, 2, . . . , (35)

where F : Rp → Rp is a mapping. Let y∗ be the limit of {y(n)}. If F is Fréchet differentiable
at y∗, then

r{y(n)} = ρ(DF (y∗)),

where DF (y∗) is the Jacobian matrix of F at y∗.

Proof. It is straightforward to see that the conclusion is true from the proof of [15, Theorem
3.5]. But we would like to make a remark here to avoid possible confusion. In [15, Theorem
3.5], it is assumed that ρ(DF (y∗)) < 1. But this condition was only used to show the local
convergence of {y(n)} (in our notation), while here we have assumed that {y(n)} converges. So
we do not need the condition ρ(DF (y∗)) < 1. 2

Lemma 4. Let two sequences {y(n)} ∈ Rp and {z(n)} ∈ Rq have limits y∗ and z∗, respectively,
and be related by

z(n) = F (y(n)),

where the mapping F : Rp → Rq is Fréchet-differentiable at y∗. Then

r{z(n)} ≤ r{y(n)}. (36)
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Proof. Since F is Fréchet-differentiable at y∗, it is locally Lipschitz-continuous at y∗. So there
exists a constant c > 0 and an integer n0 such that

‖z(n) − z∗‖ ≤ c ‖y(n) − y∗‖ for n > n0,

which leads to (36). 2

We now analyze the convergence rates of {ξ(n)}, {cn} and {sn} based on different cases in
Theorem 1.
Case (i): ρ(G) ≡ |λmax| < 1. Write (5) as

x(n) = F (x(n−1)), (37)

where F : Rm → Rm is Fréchet-differentiable. A direct calculation shows that the Jacobian of
F at the limit zero is given by DF (0) = G. Thus by Lemma 3, we have

r{x(n)} = ρ(G). (38)

This result can also be obtained from (23), where |λ2| can be equal to |λ1| and r{x(n)} =
r{x̃(n)}.

Since all cn, sn and ξ(n) involve x
(n)
1 , we are interested in obtaining r{x(n)

1 }. Using the
equations in (5) from the bottom to the top, one can show by Lemma 4 that

r{x(n)
i } ≤ r{x(n)

1 }, i = m,m− 1, . . . , 2. (39)

On the other hand, since x
(n)
1 is an element of the vector x(n), we have

r{x(n)
1 } ≤ r{x(n)}.

Therefore we must have
r{x(n)

1 } = r{x(n)}. (40)

In the derivation of (40), we did not use the condition ρ(G) < 1, so it is always true. Then
from (40) and (38), we obtain

r{x(n)
1 } = ρ(G). (41)

Using the expressions of cn and sn in (4) one can show that

r{cn} = r{x(n)
1 } = ρ(G), r{sn} =

(
r{x(n)

1 }
)2

= ρ2(G).

Therefore both {cn} and {sn} have r-linear convergence, but the latter converges faster than
the former.

Now let us consider the convergence rate of {ξ(n)}. From (6), it is easy to show with (39)
and (41) that

r{ξ(n)
1 } = r{ξ(n)

m } =
(
r{x(n)

1 }
)2

= ρ2(G),

r{ξ(n)
i } ≤ r{max{|x(n)

1 |, |x(n)
i |}}·r{x(n)

1 } ≤
(
r{x(n)

1 }
)2

= ρ2(G).

Then it follows that
r{ξ(n)} = ρ2(G).

Thus {ξn} also has r-linear convergence.
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Case (ii) (a): ρ(G) ≡ |λmax| = 1. This is the special case in Theorem 1 (ii). By similar
arguments as those in Case (i), we can show that {cn}, {sn} and {ξ(n)} have r-sublinear
convergence. Therefore all these sequences converge very slowly.

Case (ii) (b): |λmax| > 1. From the proof of Theorem 1 (ii), we see that the sign of λ1 does
not affect the convergence rates of the sequences in question, so we assume here without loss
of generality that λmax is positive. Then the sequence {x(n)} itself converges. Again writing
(5) like (37), denoting the limit of x(n) by x∗, some calculations using (30), (9), (27) and (28)
show that

DF (x∗) =
1

λ1
G+

1− λ2
1

λ2γ1
[S(:, 1), 0].

Then using the Jordan decomposition (17) and (21) one can verify that

DF (x∗) = S

(
1

λ1
J +

1− λ2
1

λ2γ1

[
S(1, :)

0

])

S−1,

where the middle matrix on the righthand side is upper triangular and its diagonal part is

diag(DF (x∗)) = diag(1/λ2
1, 1, . . . , 1

︸ ︷︷ ︸

l1

, λ2/λ1, . . . , λ2/λ1
︸ ︷︷ ︸

l2

, . . . , λk/λ1, . . . , λk/λ1
︸ ︷︷ ︸

lk

).

Then it follows that

r{x(n)} = ρ(DF (x∗)) =

{
1, if l1 > 1,
max{1/λ2

1, |λ2/λ1|} < 1, if l1 = 1.
(42)

From (23) we see that for 2 ≤ i ≤ m the absolute value of the (i, i) entry of diag(DF (x∗)) is

just the convergence factor of the sequence {x̃(n)
i }, which converges to zero. The absolute value

of the (1, 1) entry of diag(DF (x∗)) can be understood as the convergence factor of {x̃(n)
1 } (see

(23) and (26)). If the Jordan block associated with the largest eigenvalue of G has dimension
larger than 1, (42) indicates that {x(n)} has only r-sublinear convergence. This can easily be
observed from (23), where the coefficient of e2 converges to zero sublinearly—very slowly.

It is not difficult to show from the expressions of cn and sn in (4) with (40) and (42) that

r{cn} = r{sn} = r{x(n)
1 } =

{
1, if l1 > 1,
max{1/λ2

1, |λ2/λ1|}, if l1 = 1.

Therefore {cn} and {sn} have r-sublinear or r-linear convergence.
Applying Lemma 4 to (6), we obtain

r{ξ(n)} ≤ r{x(n)}.

On the other hand, from (6) we have
{

(x
(n−1)
1 )2 = (ξ

(n)
1 )2 − 1,

(x
(n−1)
i )2 = (ξ

(n)
i ξ

(n)
1 − ai−1)/((ξ

(n)
1 )2 − 1), i = 2, ...,m,

(43)

where ξ∗1 ≡ limn→∞ ξ
(n)
1 =

√
1 + x∗1 > 1, and applying Lemma 4 to (43) gives

r{(x(n))2} ≤ r{ξ(n)}, where (x(n))2 ≡ [(x
(n)
1 )2, . . . , (x(n)

m )2]T .
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But it is easy to show that
r{(x(n))2} = r{x(n)}.

As a consequence, we have

r{ξ(n)} = r{x(n)} =
{

1, if l1 > 1,
max{1/λ2

1, |λ2/λ1|}, if l1 = 1.

Hence, {ξ(n)} has r-sublinear or r-linear convergence.

3. NUMERICAL EXAMPLES

In this section we give two numerical examples to illustrate the theoretical results given in
Sections 2.2 and 2.3.

The first example is the “unnormalized” tridiagonal Toeplitz matrix

A =










3 1
5 3 1

. . .
. . .

. . .

5 3 1
5 3










.

The eigenvalues of G =

[
3 −5
1 0

]

are λmax,min = (3±
√
11i)/2. Thus ρ(G) = |λmax| =

√
5 < 5.

According to Corollary 1 (i), after enough steps of Givens rotations, a computed row of R
is simply a shift of the corresponding row in A. According to Case (i) in Section 2.3, the
convergence factors of {ξ(n)} and {sn} are ρ2(G/5) = 0.2, and the convergence factor of {cn}
is ρ(G/5) ≈ 0.45. The nonzero diagonals of the R factor (ξ(n)) and the Givens rotations (cn
and sn) of the first 25 steps of the QR factorization procedure computed by MATLAB are
shown in Table 1. From this table, we observe that {cn} tends to converge to zero and all
other sequences converge to the their limits to machine precision in 24 steps. We also see that
the convergence of all sequences is linear, and {cn} converges relatively slower than the other
sequences. This confirms our theoretical results.

The second example we chose is

A =

















6α+9
2 −9α− 6 18α+3

2 −3α
1 3/2 −3 1/2

1 3/2 −3 1/2
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

1 3/2 −3 1/2
1 3/2 −3
3β −18β+3

2 9β

















,

which arises in applying four-point spatial differences to the spatial derivative in a scalar
hyperbolic partial differential equation, and the parameters α and β are introduced by the
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Table I. Results for the first example

n ξ
(n)
1 ξ

(n)
2 ξ

(n)
3 cn sn

1 5.830951894845299e+00 3.086974532565159e+00 8.574929257125441e-01 5.144957554275265e-01 8.574929257125441e-01
2 5.046839430306270e+00 3.042090280161516e+00 9.907190567575820e-01 1.359255332061169e-01 9.907190567575820e-01
3 5.001039152986085e+00 2.996605851029752e+00 9.997922125873653e-01 -2.038459343868916e-02 9.997922125873653e-01
4 5.003881405883999e+00 2.998475700943611e+00 9.992243209682320e-01 -3.937964430484279e-02 9.992243209682320e-01
5 5.000955808892974e+00 3.000196507856399e+00 9.998088747572463e-01 -1.955029300672493e-02 9.998088747572463e-01
6 5.000037166925046e+00 3.000053080536299e+00 9.999925666702456e-01 -3.855723570804071e-03 9.999925666702456e-01
7 5.000006372788071e+00 2.999990020309384e+00 9.999987254440106e-01 1.596593359157377e-03 9.999987254440106e-01
8 5.000007474459249e+00 2.999998275996201e+00 9.999985051103849e-01 1.729097161974871e-03 9.999985051103849e-01
9 5.000001289312853e+00 3.000000468146182e+00 9.999997421374963e-01 7.181399175182089e-04 9.999997421374963e-01
10 5.000000018089969e+00 3.000000050234309e+00 9.999999963820063e-01 8.506460698205245e-05 9.999999963820063e-01
11 5.000000021431909e+00 2.999999979264790e+00 9.999999957136183e-01 -9.258921839789244e-05 9.999999957136183e-01
12 5.000000013164724e+00 2.999999998820036e+00 9.999999973670549e-01 -7.256645217115860e-05 9.999999973670549e-01
13 5.000000001565255e+00 3.000000000876607e+00 9.999999996869491e-01 -2.502202766403997e-05 9.999999996869491e-01
14 5.000000000000624e+00 3.000000000012134e+00 9.999999999998750e-01 -4.999261687355971e-07 9.999999999998750e-01
15 5.000000000055329e+00 2.999999999964450e+00 9.999999999889340e-01 4.704449831513951e-06 9.999999999889340e-01
16 5.000000000021355e+00 3.000000000000937e+00 9.999999999957291e-01 2.922655132641901e-06 9.999999999957291e-01
17 5.000000000001651e+00 3.000000000001385e+00 9.999999999996698e-01 8.127031132861006e-07 9.999999999996698e-01
18 5.000000000000024e+00 2.999999999999907e+00 9.999999999999953e-01 -9.690915855652647e-08 9.999999999999953e-01
19 5.000000000000122e+00 2.999999999999948e+00 9.999999999999757e-01 -2.206861177911299e-07 9.999999999999757e-01
20 5.000000000000032e+00 3.000000000000005e+00 9.999999999999936e-01 -1.130298389633724e-07 9.999999999999936e-01
21 5.000000000000001e+00 3.000000000000002e+00 9.999999999999997e-01 -2.368067981979774e-08 9.999999999999997e-01
22 5.000000000000000e+00 3.000000000000000e+00 1.000000000000000e+00 8.397559900795826e-09 1.000000000000000e+00
23 5.000000000000001e+00 3.000000000000000e+00 1.000000000000000e+00 9.774671904437044e-09 1.000000000000000e+00
24 5.000000000000000e+00 3.000000000000000e+00 1.000000000000000e+00 4.185291162503062e-09 1.000000000000000e+00
25 5.000000000000000e+00 3.000000000000000e+00 1.000000000000000e+00 5.562403166144281e-10 1.000000000000000e+00
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numerical boundary conditions, see [2] and [3] (here for simplicity we have already normalized
the subdiagonal elements by multiplying the original matrix by −3). If we delete the first and
last rows, this matrix becomes a Toeplitz matrix, so it belongs to a class of matrices called
quasi-Toeplitz matrices, see [3]. Note that the first row of A contains four nonzero elements
instead of three and after the first step of the QR factorization the second row has 3 nonzero
elements, so we consider x(1) as the initial vector of the regular QR procedure (2). The matrix

G =





3/2 −1 0
−3 0 −1
1/2 0 0





corresponding to A has the eigenvalues λ1 = 5+
√

33
4 > 1, λ2 = −1, λ3 = 5−

√
33

4 . Direct
computations show that this initial vector is not orthogonal to the eigenvector of G associated
with λ1. Thus by Theorem 1 (ii) and Remark 1, we have

lim
n→∞

ξ
(n)
1 = |λ1| = 2.686140661634507e+00,

lim
n→∞

ξ
(n)
2 = sign(λ1)(−λ2

1 + a1λ1 + 1) = −2.186140661634507e+00,

lim
n→∞

ξ
(n)
3 = sign(λ1)(λ

3
1 − a1λ

2
1 + (a2 − 1)λ1 + a1) = −6.861406616345072e−01,

lim
n→∞

ξ
(n)
4 = a3/λ1 = 1.861406616345072e−01

lim
n→∞

|cn| =
√

λ2
1 − 1/|λ1| = 9.281199364010406e−01,

lim
n→∞

sn = 1/λ1 = 3.722813232690143e−01.

According to Case (ii) (b) in Section 2.3, all of the sequences {ξ(n)}, {cn} and {sn} have r-
linear convergence with the same convergence factor |λ2/λ1| ≈ 0.372. In our computation, we
took α = 6/5 and β = −4/5 as in [3]. The computed results for the R factor and the Givens
rotations of the first 22 steps of the QR factorization procedure are displayed in Tables 2 and
3, respectively. The results show that all sequences converge to their corresponding limits to
machine precision in 21 steps and the convergence is linear with almost the same speed. So if
the order of A is larger than 22, we do not need to compute the general rows of R any more
after 21 steps, except the last two rows of R (because the last row of A is special), which can
be computed separately.

Of course, one can find examples like the well-known second order difference matrix having
the form of (31) with a = −2, b = 1 and c = 1, for which the convergence is extremely slow,
since ρ(G) = 1.

4. SUMMARY AND FUTURE WORK

We analyzed the convergence of the Givens QR factorization of a banded Hessenberg-Toeplitz
matrix when its dimension goes to infinity, and presented some interesting properties of these
infinite factorizations. An immediate practical use of the results given here is that one will not
need to carry out the entire QR factorization procedure for a given banded Hessenberg-Toeplitz
matrix with large dimensions, allowing some saving in the computation. More importantly

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–22
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Table II. Results for the second example—R factor

n ξ
(n)
1 ξ

(n)
2 ξ

(n)
3 ξ

(n)
4

1 8.161494961096285e+00 -1.648962606011617e+01 1.183974265261573e+01 -3.511611553595848e+00
2 3.685408036776648e+00 -3.909220055578865e+00 8.814183112950758e-02 1.356701876727096e-01
3 2.842268895951231e+00 -2.413162633998660e+00 -6.050220596141659e-01 1.759157976615944e-01
4 2.701381390350119e+00 -2.210711477879456e+00 -6.757604005395086e-01 1.850904880688455e-01
5 2.688549175508812e+00 -2.189834721708226e+00 -6.846883629091571e-01 1.859739091085712e-01
6 2.686452196633474e+00 -2.186630209037751e+00 -6.859410633889107e-01 1.861190757931872e-01
7 2.686185340933632e+00 -2.186210009400613e+00 -6.861128970914022e-01 1.861375655583825e-01
8 2.686146749059763e+00 -2.186150167889759e+00 -6.861368209670350e-01 1.861402397970311e-01
9 2.686141512561523e+00 -2.186141986387669e+00 -6.861401288419524e-01 1.861406026680986e-01
10 2.686140779064683e+00 -2.186140844733832e+00 -6.861405878278367e-01 1.861406534969848e-01
11 2.686140677944381e+00 -2.186140687045691e+00 -6.861406514029780e-01 1.861406605042869e-01
12 2.686140663892535e+00 -2.186140665153915e+00 -6.861406602166520e-01 1.861406614780333e-01
13 2.686140661947622e+00 -2.186140662122441e+00 -6.861406614379904e-01 1.861406616128094e-01
14 2.686140661677891e+00 -2.186140661702120e+00 -6.861406616072721e-01 1.861406616315008e-01
15 2.686140661640521e+00 -2.186140661643879e+00 -6.861406616307326e-01 1.861406616340904e-01
16 2.686140661635341e+00 -2.186140661635806e+00 -6.861406616339838e-01 1.861406616344494e-01
17 2.686140661634623e+00 -2.186140661634687e+00 -6.861406616344347e-01 1.861406616344992e-01
18 2.686140661634523e+00 -2.186140661634532e+00 -6.861406616344973e-01 1.861406616345061e-01
19 2.686140661634509e+00 -2.186140661634510e+00 -6.861406616345058e-01 1.861406616345070e-01
20 2.686140661634507e+00 -2.186140661634508e+00 -6.861406616345070e-01 1.861406616345072e-01
21 2.686140661634507e+00 -2.186140661634507e+00 -6.861406616345072e-01 1.861406616345072e-01
22 2.686140661634507e+00 -2.186140661634507e+00 -6.861406616345072e-01 1.861406616345072e-01
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Table III. Results for the second example—Givens rotation

n cn sn

1 9.924652332214365e-01 1.225265720026465e-01
2 9.624834547707337e-01 2.713403753454192e-01
3 9.360633143822804e-01 3.518315953231888e-01
4 9.289596573079728e-01 3.701809761376910e-01
5 9.282536401886650e-01 3.719478182171425e-01
6 9.281372519749216e-01 3.722381515863744e-01
7 9.281224201321695e-01 3.722751311167650e-01
8 9.281202748099058e-01 3.722804795940623e-01
9 9.281199837054626e-01 3.722812053361973e-01
10 9.281199429291787e-01 3.722813069939696e-01
11 9.281199373077336e-01 3.722813210085738e-01
12 9.281199365265680e-01 3.722813229560666e-01
13 9.281199364184471e-01 3.722813232256187e-01
14 9.281199364034524e-01 3.722813232630016e-01
15 9.281199364013749e-01 3.722813232681809e-01
16 9.281199364010869e-01 3.722813232688988e-01
17 9.281199364010471e-01 3.722813232689983e-01
18 9.281199364010414e-01 3.722813232690121e-01
19 9.281199364010407e-01 3.722813232690140e-01
20 9.281199364010406e-01 3.722813232690143e-01
21 9.281199364010406e-01 3.722813232690143e-01
22 9.281199364010406e-01 3.722813232690143e-01

however, the understanding of the limits of the QR factorization as the matrix dimension
grows large gives us insight into the limits of the QR factorization of the discretization of
differential operators. Theorem 1 formally shows that the limit of the QR factorization of the
one dimensional Laplacian operator shown in the introduction is indeed correct. To generalize
this idea to higher dimensional differential operators however, we need to take two more steps:
we need to investigate the convergence of the QR factorization and its block variants of general
banded Toeplitz matrices; and we need to estimate how well the QR factors based on the limits
only are approximating the true factors, in order to understand the preconditioning qualities
of the approximate factors for Krylov methods like LSQR. Preliminary numerical experiments
suggest that one can still get convergence for general banded Toeplitz matrices under certain
conditions and that the approximate QR factors are very well suited to precondition LSQR.

APPENDIX

Proof of Lemma 2.
We deal with the case λ > 1 and the case λ = 1 separately.

Case 1: λ > 1. If there exists n0 > 0 such that when n ≥ n0, xn is a constant, say c, then
c = λc/

√

1 + γ2c2 + yn−1. Since limn→∞ yn = 0, we have c = λc/
√

1 + γ2c2. Thus

c = 0, or c =
√

λ2 − 1/|γ|.
But according to the assumption, c = 0 is impossible, thus in this situation the conclusion
(10) is true.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–22
Prepared using nlaauth.cls



20 X.-W. CHANG, M. J. GANDER, AND S. KARAA

In the following we assume that xn is not a constant for large enough n. Let g(x) ≡
λx/

√

1 + γ2x2 for x ≥ 0. Then g′(x) = λ/(1 + γ2x2)3/2. Notice g(x) is strictly monotonically
increasing and g′(x) is strictly monotonically decreasing. These two properties will be used
a few times in our proof. One can verify that g(x) has the two fixed points 0 and x∗ =√
λ2 − 1/|γ|, i.e., g(0) = 0 and g(x∗) = x∗, and

g′(0) = λ > 1, g′(x∗) = 1/λ2 < 1, g(x) > x for x ∈ (0, x∗).

Let g′(z) = 1 for some z; then we must have 0 < z < x∗. Since g(z) > z, there exists a small
positive number δ < z, such that η ≡ g(z − δ)− z > 0. Thus

z + η = g(z − δ) < g(x∗) = x∗. (I.1)

We now show that for any n > 0, there exists some n0 > n such that xn0
≥ z− δ. In fact, if

this is not true, then there exists some n0 > 0 such that xn < z− δ for any n ≥ n0. Since g
′(x)

is monotonically decreasing, g′(x) ≥ g′(z − δ) > 1 for 0 ≤ x ≤ z − δ. Since limn→∞ yn = 0,
without loss of generality we assume |yn+1− yn| ≤ ω ≡ 1

2 [g
′(z− δ)− 1]|xn0+1−xn0

| 6= 0 when
n ≥ n0. Therefore we have for n > n0,

|xn − xn−1| ≥ |g(xn−1)− g(xn−2)| − |yn−1 − yn−2|
≥ g′(z − δ)|xn−1 − xn−2| − ω

≥ · · · · · ·
≥ g′(z − δ)n−n0−1|xn0+1 − xn0

| − [ω + g′(z − δ)ω + · · ·+ g′(z − δ)n−n0−2ω]

= ω[g′(z − δ)n−n0−1 − 1]/[g′(z − δ)− 1].

Since g′(z − δ) > 1, this shows that xn is unbounded, contradicting the assumption that
xn < z − δ for any n ≥ n0.

Now we assume for some n0, xn0
≥ z − δ and

|yn| ≤ ε ≡ min{η/2, [1− g′(z + η/2)](x∗ − z − η/2)} for any n ≥ n0, (I.2)

where g′(z + η/2) < g′(z) = 1 and x∗ − z − η/2 > 0 from (I.1). We show xn ≥ z + η/2 for any
n ≥ n0 + 1 by induction. From (I.1) and (I.2), we have

xn0+1 = g(xn0
) + yn0

≥ g(z − δ)− ε ≥ (z + η)− η/2 = z + η/2.

Assuming that xn−1 ≥ z + η/2 for some n ≥ n0 + 2, we need to show that xn ≥ z + η/2. If
xn−1 ≥ x∗, then from (I.2) and (I.1), we obtain

xn = g(xn−1) + yn−1 ≥ g(x∗)− ε ≥ x∗ − η/2 ≥ z + η/2.

If xn−1 < x∗, then, since xn−1 ≥ z+ η/2 and x∗ > z+ η/2 (see (I.1)), we have with (I.2) that

|x∗ − xn| = |g(x∗)− g(xn−1)− yn−1| ≤ g′(z + η/2)(x∗ − xn−1) + ε

≤ g′(z + η/2)(x∗ − z − η/2) + (1− g′(z + η/2))(x∗ − z − η/2) = x∗ − z − η/2,

which leads to xn ≥ z + η/2 again. Therefore for any n ≥ n0 + 2, we have

|x∗ − xn| = |g(x∗)− g(xn−1)− yn−1| ≤ g′(z + η/2)|x∗ − xn−1|+ |yn−1|.

Since g′(z + η/2) < 1 and yn−1 →∞, it is easy to show that {xn} converges to x∗.
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Case 2: λ = 1. Let h denote the inverse function of g, i.e., h(x) = x/
√

1− γ2x2, x ≥ 0. One
can verify that h′ is monotonically increasing and h′(x) > 1 for x 6= 0. Suppose {xn} does not
converge to 0, then, since {xn} is bounded, there exists a subsequence {xnk

} which converges
to some x∗ 6= 0. From xnk

= g(xnk−1) + ynk−1 we have xnk−1 = h(xnk
− ynk−1). Thus

lim
k→∞

xnk−1 = h(x∗) = h′(ζ)x∗, where 0 < ζ < x∗.

Then we have

lim
k→∞

xnk−2 = lim
k→∞

h(xnk−1 − ynk−2) = h(h′(ζ)x∗) ≥ h′(ζ)h(x∗) = h′(ζ)2x∗.

Continuing the above steps, we arrive after j steps at

lim
k→∞

xnk−j ≥ h′(ζ)jx∗.

Since h′(ζ) > 1, this leads to a contradiction of the fact that {xn} is bounded. Thus {xn}
converges to 0.
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