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1. Problem

In this paper, we consider the following block-angular linear model:

Y1 X1 Z ﬁ.l
Yi—1 a Xi—1 Zi-1 pZ—l
Y Xe  Zk «
€1
w| | k=12 (1)
€k—1
€k

or equivalently
Vi = XwiBg + ey, k=12,...,

whereforj=1,2,...,y; € #" is the measurement vector obtained at (usually time)jstep
X; € R*Pi Z; € AP0, B; e AP andy € #7° are parameter vectors; is a random
error vector, and fok = 1, 2, . . ., the block-angular matriX) has full column rank. Note
that vectory does not change with time. This model arises from the global positioning
system (GPS) (see, e.€hang and Paig003), whergf; includes the coordinates of the
relative position of a roving GPS receiver to a stationary receiver and the receiver clock
error at time stef, andy is the so-called ambiguity vector which is invariant with time.
It may also arise in other applications, such as photogrammetry and geodetic survey (see,
e.g.,Bjorck, 1996 Section 6.3 and references therein).

In the ideal situation, the meaf{ep;} = 0 and the covariance matrix cfyy} = a?l.
Then the least squares (LS) estimation for model (1) gives the best linear unbiased estimator
of k. For a fixedk, there are a few algorithms available for computing the LS estimate
of B (see, e.g.Cox, 1990; Golub et al., 1979; Golub and Plemmons, }9B6r an
incrementak, a recursive version of the algorithm propose@ilub et al. (1979]see also
Bjorck, 1996 Section 6.3) can easily be developed. But sometimes the measurements are
contaminated, leading to outliers. It is well known that the LS estimator is sensitive to large
outliers. A typical approach to handle this estimation problem is to use robust M-estimation
techniques (selduber, 1981). In this paper, we would like to apply the well-known Huber’s
M-estimation technique. We will assume that there are at most a few outliers at each time
step, asis the case in GPS. Our goal is to present an efficient recursive algorithm to compute
Huber's M-estimates by exploiting the structures of (1). To our knowledge, there has not
been any work on the computation of Huber’'s M-estimates for this block-angular model.

This paper is organized as follows. In Section 2, we introduce Huber’'s M-estimation for
a general linear model and give a general framework for Newton’s method with an exact
line search to solve the problem. A new strategy is proposed to handle a possible singularity
problem occurring in Newton’s method. In Section 3, we present a recursive Newton method
to compute Huber’'s M-estimates for model (1). We show how to use updating/downdating
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techniques for matrix factorizations to compute a Newton direction in an efficient way. To
simplify the computation and reduce the computational cost and memory requirement, we
propose to compute a modified Newton direction in each iteration step. In Section 4, we give
numerical test results to illustrate the performance of our algorithms. Finally a summary is
given in Section 5.

Throughout this paper we use bold lowercase letters for vectors and bold uppercase letters
for matrices.

2. Introduction to Huber's M-estimation

In this section, we first describe Huber's M-estimation problem for a general linear
regression problem, and then introduce a general framework for Newton’s method with
a line search to solve the problem. We discuss advantages and disadvantages of different
strategies dealing with a singularity problem which may happen in Newton’s method and
propose a new strategy which is suitable for solving our estimation problem.

Suppose we have a linear model

y=Xp+e, )

wherey = [y1, ..., yul" € Z", X =[X1,...,%X,]" € Z#"P, B € #P ande € #". Write
r(f) =y — Xp, with ith elementr; (f). Huber’'s M-estimation problem is the following
optimization problem:

min(F (§) = > pri(B)}. )
i=1
with the nonnegative, convex, piecewise function (it is linear, then quadratic, then linear)
1.2
_ |32 ltI<ec, 4
p={20 P, @

defined for some tuning constant- 0. p(¢) in the form of (4) is called the Huber function
(here we have taken the scaling factor in the original Huber objective function to be 1, asin
some literature, see, e.@ntoch and Ekblom, 1995; Madsen and Nielsen, 1990; O’Leary,
1990. Note that Huber’'s M-estimation is a mixégand/; minimization problem. There
are several other well-known functions such as the Fair, Talwar, Tukey, and Welsh functions,
but the Huber function is probably the most popular one.

We see from (4) thap(z) is a continuous function, with continuous and nondecreasing
first derivative, since

t 7] <e,
csignt), |t >c,
Strictly speakingp(r) has only a right (left) second derivativerat —c (t = ¢). But from

a practical point of view, there is no harm in definip§+c) = 1.
The active index set and nonactive sefat %" are, respectively, defined by

v =i lriBl<cl, VP ={i:lri(Pl>c}.

1 JtI<c,

P = { o) = {O, e 5)
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The active matrixX* of X at # is defined to be the remaining matrix Xfafter the rows
whose indexes in(f) are deleted. Define the sign vector

-1 ri(p)<—c,
B =[s1(B), ..., sa(PI",  si(B) = i 0, [rn(PI<ec,
1, ri(p)>c

and the weight matrix

W(B) = diagwi(P), . ... wa(B).  wi(B) =1—s7(B) = p"ri(B)).

The functionF (B) in (3) can then be written

F(B)=3tT(BYW (B (B) + cST(B) [r(B) — 3cs(B)] - (6)
Sincedr(p)"/op = —XT, differentiating (6) gives the gradient &f(p)
oF
F'(B) = % = —XTWPRIB) +esBl=— D xiri(B)—c Y Xisi(P).
iev(P) iev(p)

The symmetric nonnegative definite Hessian matrix is given by

F'(p) =

PFP ot T
=X'WPHX= XiX; .
pop” l.e%)

A general framework for the Newton method with a line search for solving (3) can be
described as follows:

Given an initial estimatg,
repeat until convergence:
solve the following equation for the search directian

F'(Bh=—F'(B), or XW(HXh=XT[W(PB)r(B) + cs(P)], @)

perform a line search and updgte =p + ah.

In the following we give some remarks about this general scheme.
Usually the LS estimatg| s for model (2) is taken to be the initial estimate, so that if
v(BLs) = ¢ (no outliers),

W(BLs) =1, S(BLs) =0, XT[W(BLs)r(BLs) + cs(Brs)l = X"r(BLs) =0.

Notice thatXr(fLs) = 0 are the normal equations and from (7) we bee 0. Thusfs
solves (3).

Any h satisfying (7) with anonzeroF’(p) is astrictly descent direction for the functional
F at 8, since

hTF'(B) = —hTX"W(B)Xh = —[W(B)Xh|/3 < 0. 8)

It can be shown that there is a minimiz&of F () such thatX"W(g)X is nonsingular
(see, e.gQshorne, 1985. 272). WherX"W(p)X is nonsingular, it is positive definite and
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the Cholesky factorization of"W()X can be used to solve (7). The Cholesky factor can
be obtained from the QR factorization of the active maxhof X at f due toX "W($)X =
(X")TX". Since the active matrices for two consecutive iterates usually differ by just a few
rows, updating/downdating techniques for matrix factorizations (see,Bidyck, 1996
Chapter 3) should be used for efficiency.

But if during the iterative process there are more than p large residuals beyond
the tuning constart, so that more than — p diagonal elements &V(p) are zero, then
XTW(B)X is singular, i.e., the active matri’ at  does not have full column rank. There
are several strategies for handling this problem, see below.

In the so-called H-algorithnuber and Dutter (1974)sedX "X instead ofXTW(f)X.
This approach has another advantage: only one matrix factorization is needed for solving
the linear equations (see (7)) to obtain the search directions. The W-algorithm, which is
also called the iteratively reweighted LS algorithm (see, élgher, 1981; Osborne, 1985
Sections 5.4, 5.6), replac@4 p) by diagds, . .., d,) withd; =1if |r;|<cord;=c/|r; (B)|
if |r;] > c. This approach is often used by practical people. But both algorithms may have
slow convergence.

In the algorithm given byvladsen and Nielsen (1990ater modified byChen and Pinar
(1998) if the equation in (7) is consistent (i.e., it has solutioms)s taken to be a basic
solution or a minimum 2-norm solution, otherwisés taken to be the solution of

Hh = XTW(B)r(p) + cs(p)l,

whereH is chosen to be a positive definite matrix, eXfW(#)X + Jl with a small constant

0. The (modified) Madsen and Nielsen algorithm has finite convergence and is quite efficient
as reported iMadsen and Nielsen (199®ut checking consistency is numerically difficult

and also the computational cost is too large if the mafrig large or structured, because a
pivoting strategy in the matrix factorizations has to be used.

In Antoch and Ekblom (1995)f X"W()X is found to be singular, then it is replaced by
XTW(B)X + 5l. The shortcoming with this approach (and the previous approach as well) is
that updating/downdating of the matrix factorization is expensive when the matrix becomes
a singular matrix from a nonsingular matrix,wice versasince it is expensive to go from
the factorization o)X "W(B)X to X"W(B)X + 41, or vice versa

In O’Leary (1990) the strategy is to use a very large tuning constant at the beginning,
then gradually decrease the value of the tuning constant to the desired value over the first
four steps of the iteration. This strategy avoids the pivoting issue and is useful in the cases
where the matrix is large, sparse and structured, g in (1). But no implementation
details for this strategy were given @'Leary (1990) nor was a guarantee given that this
strategy would always work.

In this paper, we use the following strategy to handle this singularity problem. If the
active matrixX" is not of full column rank, we choose the row vector from thmﬁewith
i € v(B) which corresponds to the smallest residual in magnitude and add this row vector
to X". We continue this process until the upda¥chas full column rank. In practice for a
general matrixX, when the updated’ becomes square, it is usually nonsingular. Then we
solve (cf. (7))

X)X = XTIW(B)r(B) + cs(P)]



10 X.-W. Chang / Computational Statistics & Data Analysis 50 (2006) 5—-20

for the search direction. Notice that we did not change the actual weight maifi) and
the sign vectos(f) because we did not change the tuning constant. It is easy to observe
that the resultindn is a descent direction.

The step lengtlt in the line search can be found exactly in theory. Write

$(@) = F(B+ah)y =) p(yi — X (B+oh)).

i=1

Since¢ (o) is the sum of nonnegative, convex, piecewise defined functionswith each

piece being either quadratic or linear, see (3)—(5), it too is a nonnegative, convex, piecewise
defined function with each piece being quadratic (possibly linear). Theréfargmust be
piecewise, with each piece linear (possibly constant), and we can find exactly a minimizer
aof ¢p(n),i.e.,

& =arg rr;in o).

This & is a zero of¢’ («). We can also see that sinhds a strict descent direction fé at
B. ¢'(0) <0, and sinceh(x) is convex,¢’ («) is increasing. Sinc&h # 0, () — oo as
o — 00. Soa must be positive and finite. For the efficient computatio,aseeMadsen
and Nielsen (1990)
Finally we would like to mention that recursively computing the M-estimates for the gen-
eral linear model (2) has been considereAimoch and Ekblom (1995vhich investigates
how to use the M-estimate for (2) to compute the new M-estimate when one more equation
is added to (2).

3. Finding Huber’'s M-estimates for the block-angular model

The main cost in computing the Huber M-estimate for the general linear model (2) is
the cost of solving (7), or the cost of finding the Cholesky factoX®V(g)X, in each
iteration. In the block-angular model (1), the matrigg have a special structure. We will
show in this section how to use this structure to efficiently compute the Cholesky factors
during the iterations. We first discuss the computation from iterationi $tejperation step
i + 1 at time stegk in Section 3.1, then discuss the computation from time kteptime
stepk + 1 in Section 3.2. During the iteration process at each time step, we may need to
update or downdate the active matrices of previous time steps. This makes the computation
very complicated. In order to overcome this, we propose to compute a modified Newton
direction in Section 3.3.

3.1. Computation from iteration step i to iteration stegp 1

SinceX[x has full column rank, alK;, j =1, ..., k must have full column rank. There
is a minimizerfx k) such that the corresponding active matrixgf; has full column rank,
so the corresponding active matb'(>§ of X; must have full columnrankj =1,...,k. In
our algorithm we always assume that the active matﬁ(ijeduring the iterations have full
column rank. This can be ensured by using the strategy we proposed in Section 2.
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Suppose at time step the iterata@f,’;)‘k] and the active matrix&)lk] of Xy at iteration
stepi are, respectively, denoted by

ﬁg-lli (i) @)
l l
o o X1k L1k
1 N 1 _ .
ﬂ[k\k] ﬁ(i) ’ X[k\k] =
ik 70
,y(i) klk klk
Suppose{Xi’ll, Z(’lk] has the orthogonal factorization:
(DT @ pd
[ Qfl‘f ) } (X0 20 =k Rl g g )
(Q]\k / ! 0 Rs'll)k

where[Q;.i‘),{, lek] is orthogonaIR("k is nonsingular upper triangular. Here the structure

of lek depends on the dimensiong x (p; + po) of [X;, Z;]. Inthe equwalent of (9)
for [X;, Z;] (see (16)) ifn; <p; + po, R; is a full matrix, then heréijlk is left as a
full matrix too, i.e., we do not make it have any special structure; othelﬂ)siss upper

triangular, so we makéyl)k to be upper triangular or upper trapezoidal. Here the Q-factor
will be formed and stored for later updating/downdating use. Then we have

— (1) —_
(Q1|k
B X (@) 7
(i) yT 1k 1k
(Qk|k . .
D)\ T . :
Qi)' M) 50
. Xklk Zk|k
NG
L (le|k)T o
- () A (1) —
Rl|k R1|k
NN
R, R
= k|k _/(<i|;c (10)
R1|k
i)
L Ry

Suppose we have the following QR factorization (remember the matrix has full column
rank):

I_?(i)

| rRY = (D) = (D) . .

Qup) : = ([)k] ., Qg orthogonal Ry, nonsingular upper triangular
I_?(i)
K|k

(11)
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Here the Q-factor is not formed or stored because it may be too large kvheoomes
large. If the condition number d?{&)] is known to be acceptable, then for efficiency we may

compute the R-factd?{g{)] by the Cholesky factorization:
‘ (i) (@) @) @)
= T_ 1 =~ (1 'I'~ l
> (R R = Ry "Ry, (12)
=1
where the structure cf_iy‘)k should be used in formin@fzy‘)k)Tl_?;"‘)k. Even when the matrices

I_?(,-il),( in (11) are upper triangular, (12) is more efficient in floating point operations than (11)
whenk > 3. ' _
Then from (10) and (11) there is an orthogonal ma{t@{(k)‘k], Qf,i)lk]] such that

0) =30

Rll|k Rijk

(QFQM])T} (i . .
A xX® - — @ p®» |, 13
|:(QF;c)|k])T 1K Rk R"!" (13)

F~2(1)

k]

0

Note that we only compute the R-factor here. Thus we have

T Wy rl) @) Ty )
KW B X1 = K X

- pO\T .

(Ryp) - i

(1) ~ (i)

Rl\k Rllk

- )T LR /D

(Rz(cl&c) Rix Rk

= (i)

) T NORTEEOR: R
LRy Rep) (R

With this factorization, we then solve the corresponding linear system (cf. (7)) to find the
search direction. After the line search, we obtain the new iteﬁ%ﬁﬁ). Then we start
iteration step + 1.

At iteration stepi + 1, we useﬂf};ﬁ to find the corresponding active matm{m?.
From the orthogonal factorization @X;i‘),{, Zyl)k] (see (9)) we can use standard QR up-
dating/downdating techniques to compute the orthogonal factorization of the new active
matrix [XUFY Zg.ilzl)], which is usually different fronﬁXS"l)k, Z§i|)k] by at most a few rows,

Jjlk : : : . .
at least when the iterate is close to the solution. We mentioned before ihat i5; + po

thenﬁyl)k is a full matrix, so the goal of the updating/downdating is only to keep the upper
triangular structure dR(.i),c. Whenn; > p; + po, Ryll is trapezoidal or upper triangular, and

this structure needs to be kept in the updating/downdating process. After the above updat-
ing/downdating process, we can compute the version of (12)fot. Since we assumed

that there are at most a few outliers in each time step, often the active m@l@@gszyl)k]
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do not change fof < k, so we seldom need to perform the above updating/downdating pro-
cess for the orthogonal factorization (9) fpk k. Therefore most terms in the summation
in (12) usually do not change, and the version of (12) ferl can efficiently be computed.

3.2. Computation from time step k to time step 1

Suppose at the end of time stepve have converged to Huber's M-estimate

T T . TT
By = By - - B w11
Then we can obtain the full column rank active matrixfaty:

Xk Zajk
Xiki) = ’ : (14)

Xik  Zik
Using the results obtained in the previous iteration step, we compute the R-fadtq[.pf

by the techniques we have already mentioned in the last paragraph of Section 3.1 and we
have (cf. (13))

Rajk R
Ikl :
|: =T ] Xikik) = Rk Qk\k . (15)
Qrxiig R
[k]
0

At time stepk + 1, let the initial estimate fofx+1) be denoted by

0 _ O T O T p© T ,,0 \TqT
Bicrasn) = [Bypgd) - Brprn) > Briapsn) - g 1
Naturally we take
0 s @ _
ﬁj|k+1—ﬁj|kv j=1 ...k, Yi+1 = Yk

For the initial estimate of;1, we take

0 .
lf;(cll|k+1 = argﬁmm” Vi1 — Zi+27%) — Xir1Brrall2-
k+1

Compute the orthogonal factorization [0 1, Zy41] € #"+1* (Pk+1Fpo).

Qi1 Rit1 Rert
_ X Z = = , 16
[QLJ [Xkt1 Zig1] [ 0 Rk+l] (16)

where[Q; 1, Qkﬂ] is orthogonal,Rx1 is nonsingular upper triangular, arid;1 —
Pi+1) X po Rer1isafull matrixifrng1— pra1 < po, or upper triangular otherwise. From this
we can easily obtaiﬂfﬁllkﬂ. Notice that if we only wanted to obtaﬁﬂllkﬂ, we would
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only need to compute the QR factorizationXf, 1. But for later updating/downdating uses,
we compute (16). After findinﬂ,(fi:llkﬂ, we can obtain the active matrix

Xk

X
k+1lk+1]
[ | Xklk

x©

0)
Where[XkHlkH, z!

Z 0
k+1k+1 k+1lk+1

k+1‘k+1] is the active matrix ofXy1, Zx+1] for the measurement equa-

tions obtained at time stép+ 1. Applying QR downdating techniques to (16), we obtain

the orthogonal factorization 6Ky, , 1. Z 1)

0 T 0
(Qk+1\k+1) YO _ | Rt
0) [ k+1k+1> k+l|k+1]
Qi) 0
Then we have
Qk|k]
(0) T
Qi1+ X©
QTkuc [k-+1]k+1]
(0)
(Qerzis) .
mRajk Rix
Rek Rek
Rk+1|k+1 Rk+llk+1
Rk
(0)0
L Ris1k+1-

The next step is to compute the QR factorization:

© Rk R
(Qk mi |: ©) i| = [ LN
el Rit 11 0

©)
Rk+l|k+l :|

(0) :
Rttt

17)

(18)

(19)

Here again the Q-factor does not need to be stored. From (18) and (19), we see that there
exists an orthogonal matr[@f/?)+1|k+1]v Qf,?illkﬂ]] such that

" Rk

©) T '
Q k+1|k+1]) %) _ R
[k+1lk+1] —

(Q k+1|k+1]

©)
Ritikrr Reresa

~(0)

=0
Rit1)
0
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leading to

T 0)
Xk gWB G g 1) X1k

— DT —_
Rijk
- T
Rk
0 T
(Reiaps1)
AT T 0 1 =0 7
LRy R (Rigaperd)” Ry -
Rk Rk
x Rek Rk
(0) ~(0)
Ritaksr Reraer
Q(O)
— [k+1]

Now we can continue the iterations at time sktep 1.

3.3. A modified Newton direction

From Section 3.1 we observe that in each iteration at timelstde active matrix of
[Xj, Z;]1forany j <k may need to be updated, and thus also its QR factorization (see (9)).
The worst case is that at each iteration step each term on the left-hand side of (12) needs
to be re-computed in computing the Cholesky factorization. This rarely happens, but the
possibility of such a scenario makes the implementation complicated. Also we have to keep
the Q-factors of the QR factorizations (9) for updating use. This may cause storage problem
whenkis large.

One modification is that we change the definition of the coefficient matrix of (7) to make
the updating/downdating of its factorization much easier. Specifically, at the end of each
time step, we freeze the active matrix corresponding to the measurement equations obtained
at the current time step, i.e., this active matrix will not be updated any more in later time
steps. Thus at time step+ 1, the ‘active’ matrixXpx; of X, which was formed by all
‘active’ matrices obtained at each time step up to and including timeksteqdl not be
updated, so thd;; andR;k (j=1,...,k) andli[k] in (18) will not be updated, and only
the QR factorization (17) corresponding to the measurement equations obtained at time step
k+1 needs updating and the QR factorization (19) needs re-computing during the iterations.
Thus we do not need to hold the Q-factor of the QR factorization (9) of any previous time
steps in memory. The above procedure changes the definition of the coefficient matrix of
(7). But we would like to emphasize that the right-hand side of (7), which is determined by
the given tuning constant and the current iterate, is still defined as before. This will ensure
that h obtained by solving (7) with the redefined symmetric positive definite coefficient
matrix is still a descent direction, which is now a modified Newton direction.
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4. Numerical tests

In this section, we give some numerical test results to illustrate the performance of our
algorithms. All computations were implemented using MATLAB.
We generated the test problems as follows.#erl, 2, ..., 100, we took

Xi : 20 x 4 random matrix Z; : 20 x 10 random matrix
Br=11....0"ex* y=[1....1" €% (20)

where the random matrices were generated by the MATLAB functoidn . The mea-
surement vectoy, was constructed first by

Vi = XiPr + Zry + ek,

where the noise vectar; was generated byandn multiplied by ¢ = 0.01, i.e.,ex ~

aN (0, ). Then two outliers 20N (0, 1) were added to two elements gf which were
randomly chosen for eadh The tuning constart was chosen to be.3s. We performed

1000 simulation runs, where each run had 100 time steps. The termination criterion for

both the Newton method and the modified Newton method at timekstep) /ff,’{];}) -

[ff,’()‘k]||2/||ﬁf,’c)|k] o <107°, wherei is the iteration step. For comparison, we also computed
the LS estimate of; at time stefk by a recursive LS method, which was easily developed
based orGolub et al., 1979

Fig. 1 displays the absolute errors (in 2-norm) in Huber's M-estimate (by the Newton
method) and the LS estimate gf obtained at time steg (for k =1, ..., 100) for one
sample data (note the true valueffis given in (20)). It also gives the results for the LS
estimates without the added outliers in the measurement veEigrs2 gives theaverage
errors for 1000 replications. We can see that when there are outliers, Huber's M-estimate is

10° : .

o LS

- = Huber

— LS (no outliers)
10-1 L

Error

102}

-3 L L L L L L L L L
10 10 20 30 40 50 60 70 80 90 100
Time steps

Fig. 1. Errors in the estimates ff at time stefk (1 sample).
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100 T T T T T T T T T
LS

= = Huber
= |S (no outliers)

101

Error

10-2 1‘

“‘----.---~ ------ e R e L LT ™ -

3 s s s s s s s s s
10 10 20 30 40 50 60 70 80 90 100
Time steps

Fig. 2. Average errors in the estimatesfipfat time stegk (1000 replications).

101

“““ LS
- = Huber
—— LS (no outliers)

102 |,

Error

103 |

10 * y y y y y y y ’
0 10 20 30 40 50 60 70 80 90 100
Time steps

Fig. 3. Errors in the estimates pfat time stefk (1 sample).

more accurate than the corresponding LS estimate, and can significantly reduce the effect
of outliers. In our simulations, we also tested different values of the outliers. The results
indicated that the larger the outliers, the better Huber's M-estimates, compared with the LS
estimates. Fronfigs. 1and2 we see that although Huber's M-estimate is not as good as
the corresponding LS estimate without outliers, the former is a good approximation to the
latter. The above observations can also be made Figs 3and4, which give errors in the

three estimates for. But Fig. 3shows that the errors for the three estimategafe much
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Fig. 4. Average errors in the estimatesyadt time stegk (1000 replications).
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Fig. 5. Number of iterations (1 sample).

more smooth and tend to decrease with time step increasing. It is easy to understand this.
Note that the vectoy is the same at each time step, wifileare different for different time
stepsk. When more measurement equations are available, we can expect the estimates for
y to become more accurate. Similar observations to the above for the estimazndie
made for the estimatel; . (k= j, j + 1,...) of B; for any fixed,.

Fig. 5displays the number of iterations of the Newton method and its modified version for
each time step for the one sample of d&ig. 6gives the average number of iterations of the



X.-W. Chang / Computational Statistics & Data Analysis 50 (2006) 5—20 19
16 - - - -
=+ Newton
14t
12

Number of iterations

0O 10 20 30 40 50 60 70 80 90 100
Time steps

Fig. 6. Average number of iterations (1000 replications).

two methods for the 1000 replications. We see that for the initial few time steps, the modified
method took more iterations (the two methods had the same number of iterations for the
first time step), but later the difference between the two methods in terms of the number of
iterations becomes smaller and smaller. After 50 time steps, there is almost no difference.
From Section 3.3 we know that the modified Newton method has a few advantages over
the Newton method. The former is much simpler, requires less storage, and also has the
potential to cost much less in each iteration stéigs. 5and6 suggest that the modified
Newton method has no significant drawback, compared with the Newton method.

We also tested the case where the outliers were added to the same positions in the mea-
surement vectors for all the time steps and observed no significant difference in the results
compared with the previous case.

5. Summary

We considered applying Huber's M-estimation techniques to a block-angular linear
model, which needs to be estimated recursively as more data accrues. The main cost of
a Newton method is the computation of the Newton search direction. We showed how to
take advantage of the structure of the block-angular matrices to efficiently compute this
by using updating/downdating techniques for matrix factorizations. However, it is possi-
ble that factors from previous time steps might need updating/downdating. To reduce the
computational burden and the storage requirement, we proposed to compute a modified
Newton direction, which only needs updating/downdating of two simple QR factorizations
involving the matrices at the current time step (see (17) and (19)). Numerical test results
showed that the method with this modification took some extra iterations for only initial
time steps, but later on it took almost the same number of iterations as the original method.
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The test results also showed that Huber's estimation can significantly reduce the influence
of outliers for our estimation problem. In the future we would like to study the convergence
of the modified Newton method and apply it to GPS.
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