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Abstract
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1. Problem

In this paper, we consider the following block-angular linear model:
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or equivalently

y[k] = X[k]�[k] + ε[k], k = 1, 2, . . . ,

where forj =1, 2, . . ., yj ∈ Rnj is the measurement vector obtained at (usually time) stepj,

Xj ∈ Rnj ×pj , Zj ∈ Rnj ×p0, �j ∈ Rpj and� ∈ Rp0 are parameter vectors,εj is a random
error vector, and fork = 1, 2, . . ., the block-angular matrixX[k] has full column rank. Note
that vector� does not change with time. This model arises from the global positioning
system (GPS) (see, e.g.,Chang and Paige,2003), where�k includes the coordinates of the
relative position of a roving GPS receiver to a stationary receiver and the receiver clock
error at time stepk, and� is the so-called ambiguity vector which is invariant with time.
It may also arise in other applications, such as photogrammetry and geodetic survey (see,
e.g.,Björck, 1996, Section 6.3 and references therein).

In the ideal situation, the meanE{ε[k]} = 0 and the covariance matrix cov{ε�k
} = �2I .
Then the least squares (LS) estimation for model (1) gives the best linear unbiased estimator
of �[k]. For a fixedk, there are a few algorithms available for computing the LS estimate
of �[k] (see, e.g.,Cox, 1990; Golub et al., 1979; Golub and Plemmons, 1980). For an
incrementalk, a recursive version of the algorithm proposed inGolub et al. (1979)(see also
Björck, 1996, Section 6.3) can easily be developed. But sometimes the measurements are
contaminated, leading to outliers. It is well known that the LS estimator is sensitive to large
outliers. A typical approach to handle this estimation problem is to use robust M-estimation
techniques (seeHuber, 1981). In this paper, we would like to apply the well-known Huber’s
M-estimation technique. We will assume that there are at most a few outliers at each time
step, as is the case in GPS. Our goal is to present an efficient recursive algorithm to compute
Huber’s M-estimates by exploiting the structures of (1). To our knowledge, there has not
been any work on the computation of Huber’s M-estimates for this block-angular model.

This paper is organized as follows. In Section 2, we introduce Huber’s M-estimation for
a general linear model and give a general framework for Newton’s method with an exact
line search to solve the problem. A new strategy is proposed to handle a possible singularity
problem occurring in Newton’s method. In Section 3, we present a recursive Newton method
to compute Huber’s M-estimates for model (1). We show how to use updating/downdating
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techniques for matrix factorizations to compute a Newton direction in an efficient way. To
simplify the computation and reduce the computational cost and memory requirement, we
propose to compute a modified Newton direction in each iteration step. In Section 4, we give
numerical test results to illustrate the performance of our algorithms. Finally a summary is
given in Section 5.

Throughout this paper we use bold lowercase letters for vectors and bold uppercase letters
for matrices.

2. Introduction to Huber’s M-estimation

In this section, we first describe Huber’s M-estimation problem for a general linear
regression problem, and then introduce a general framework for Newton’s method with
a line search to solve the problem. We discuss advantages and disadvantages of different
strategies dealing with a singularity problem which may happen in Newton’s method and
propose a new strategy which is suitable for solving our estimation problem.

Suppose we have a linear model

y = X� + ε, (2)

wherey = [y1, . . . , yn]T ∈ Rn, X = [x1, . . . , xn]T ∈ Rn×p, � ∈ Rp andε ∈ Rn. Write
r(�) ≡ y − X�, with ith elementri(�). Huber’s M-estimation problem is the following
optimization problem:

min
�

{F(�) ≡
n∑

i=1

�(ri(�))}, (3)

with the nonnegative, convex, piecewise function (it is linear, then quadratic, then linear)

�(t) ≡
{ 1

2t2, |t |�c,

c|t | − 1
2c2, |t | > c,

(4)

defined for some tuning constantc > 0.�(t) in the form of (4) is called the Huber function
(here we have taken the scaling factor in the original Huber objective function to be 1, as in
some literature, see, e.g.,Antoch and Ekblom, 1995; Madsen and Nielsen, 1990; O’Leary,
1990). Note that Huber’s M-estimation is a mixedl2 andl1 minimization problem. There
are several other well-known functions such as the Fair, Talwar, Tukey, and Welsh functions,
but the Huber function is probably the most popular one.

We see from (4) that�(t) is a continuous function, with continuous and nondecreasing
first derivative, since

�′(t) =
{

t, |t |�c,

c sign(t), |t | > c,
�′′(t) =

{
1, |t |�c,

0, |t | > c.
(5)

Strictly speaking,�(t) has only a right (left) second derivative att = −c (t = c). But from
a practical point of view, there is no harm in defining�′′(±c) = 1.

The active index set and nonactive set at� ∈ Rn are, respectively, defined by

�(�) ≡ {i : |ri(�)|�c}, �̄(�) ≡ {i : |ri(�)| > c}.
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The active matrixX� of X at � is defined to be the remaining matrix ofX after the rows
whose indexes in̄�(�) are deleted. Define the sign vector

s(�) ≡ [s1(�), . . . , sn(�)]T, si(�) ≡
{−1, ri(�) < − c,

0, |ri(�)|�c,

1, ri(�) > c

and the weight matrix

W(�) ≡ diag(w1(�), . . . , wn(�)), wi(�) ≡ 1 − s2
i (�) = �′′(ri(�)).

The functionF(�) in (3) can then be written

F(�) = 1
2rT(�)W(�)r(�) + csT(�)

[
r(�) − 1

2cs(�)
]
. (6)

Since�r(�)T/�� = −XT, differentiating (6) gives the gradient ofF(�)

F ′(�) ≡ �F(�)

��
= −XT[W(�)r(�) + cs(�)] = −

∑
i∈�(�)

xi ri(�) − c
∑

i∈�̄(�)

xi si(�).

The symmetric nonnegative definite Hessian matrix is given by

F ′′(�) ≡ �2
F(�)

����T = XTW(�)X =
∑

i∈�(�)

xixT
i .

A general framework for the Newton method with a line search for solving (3) can be
described as follows:

Given an initial estimate�,
repeat until convergence:

solve the following equation for the search directionh:

F ′′(�)h = −F ′(�), or XTW(�)Xh = XT[W(�)r(�) + cs(�)], (7)

perform a line search and update� : =� + �̂h.

In the following we give some remarks about this general scheme.
Usually the LS estimate�LS for model (2) is taken to be the initial estimate, so that if

�̄(�LS) = � (no outliers),

W(�LS) = In, s(�LS) = 0, XT[W(�LS)r(�LS) + cs(�LS)] = XTr(�LS) = 0.

Notice thatXTr(�LS) = 0 are the normal equations and from (7) we seeh = 0. Thus�LS
solves (3).

Any h satisfying (7) with anonzeroF ′(�) is astrictlydescent direction for the functional
F at�, since

hTF ′(�) = −hTXTW(�)Xh = −‖W(�)Xh‖2
2 < 0. (8)

It can be shown that there is a minimizer� of F(�) such thatXTW(�)X is nonsingular
(see, e.g.,Osborne, 1985, p. 272). WhenXTW(�)X is nonsingular, it is positive definite and
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the Cholesky factorization ofXTW(�)X can be used to solve (7). The Cholesky factor can
be obtained from the QR factorization of the active matrixX� of X at� due toXTW(�)X =
(X�)TX�. Since the active matrices for two consecutive iterates usually differ by just a few
rows, updating/downdating techniques for matrix factorizations (see, e.g.,Björck, 1996,
Chapter 3) should be used for efficiency.

But if during the iterative process there are more thann − p large residuals beyond
the tuning constantc, so that more thann − p diagonal elements ofW(�) are zero, then
XTW(�)X is singular, i.e., the active matrixX� at� does not have full column rank. There
are several strategies for handling this problem, see below.

In the so-called H-algorithm,Huber and Dutter (1974)usedXTX instead ofXTW(�)X.
This approach has another advantage: only one matrix factorization is needed for solving
the linear equations (see (7)) to obtain the search directions. The W-algorithm, which is
also called the iteratively reweighted LS algorithm (see, e.g.,Huber, 1981; Osborne, 1985,
Sections 5.4, 5.6), replacesW(�) by diag(d1, . . . , dn) with di =1 if |ri |�c ordi =c/|ri(�)|
if |ri | > c. This approach is often used by practical people. But both algorithms may have
slow convergence.

In the algorithm given byMadsen and Nielsen (1990), later modified byChen and Pinar
(1998), if the equation in (7) is consistent (i.e., it has solutions),h is taken to be a basic
solution or a minimum 2-norm solution, otherwiseh is taken to be the solution of

Hh = XT[W(�)r(�) + cs(�)],
whereH is chosen to be a positive definite matrix, e.g.,XTW(�)X+�I with a small constant
�. The (modified) Madsen and Nielsen algorithm has finite convergence and is quite efficient
as reported inMadsen and Nielsen (1990). But checking consistency is numerically difficult
and also the computational cost is too large if the matrixX is large or structured, because a
pivoting strategy in the matrix factorizations has to be used.

In Antoch and Ekblom (1995), if XTW(�)X is found to be singular, then it is replaced by
XTW(�)X + �I . The shortcoming with this approach (and the previous approach as well) is
that updating/downdating of the matrix factorization is expensive when the matrix becomes
a singular matrix from a nonsingular matrix, orvice versa, since it is expensive to go from
the factorization ofXTW(�)X to XTW(�)X + �I , or vice versa.

In O’Leary (1990), the strategy is to use a very large tuning constant at the beginning,
then gradually decrease the value of the tuning constant to the desired value over the first
four steps of the iteration. This strategy avoids the pivoting issue and is useful in the cases
where the matrixX is large, sparse and structured, likeX[k] in (1). But no implementation
details for this strategy were given inO’Leary (1990), nor was a guarantee given that this
strategy would always work.

In this paper, we use the following strategy to handle this singularity problem. If the
active matrixX� is not of full column rank, we choose the row vector from thosexT

i with
i ∈ �̄(�) which corresponds to the smallest residual in magnitude and add this row vector
to X�. We continue this process until the updatedX� has full column rank. In practice for a
general matrixX, when the updatedX� becomes square, it is usually nonsingular. Then we
solve (cf. (7))

(X�)TX�h = XT[W(�)r(�) + cs(�)]
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for the search directionh. Notice that we did not change the actual weight matrixW(�) and
the sign vectors(�) because we did not change the tuning constant. It is easy to observe
that the resultingh is a descent direction.

The step lengtĥ� in the line search can be found exactly in theory. Write

�(�) ≡ F(� + �h) =
n∑

i=1

�(yi − xT
i (� + �h)).

Since�(�) is the sum of nonnegative, convex, piecewise defined functions of�, with each
piece being either quadratic or linear, see (3)–(5), it too is a nonnegative, convex, piecewise
defined function with each piece being quadratic (possibly linear). Therefore�′(�) must be
piecewise, with each piece linear (possibly constant), and we can find exactly a minimizer
�̂ of �(�), i.e.,

�̂ = arg min
�

�(�).

This �̂ is a zero of�′(�). We can also see that sinceh is a strict descent direction forF at
�, �′(0) < 0, and since�(�) is convex,�′(�) is increasing. SinceXh �= 0, �(�) → ∞ as
� → ∞. So �̂ must be positive and finite. For the efficient computation of�̂, seeMadsen
and Nielsen (1990).

Finally we would like to mention that recursively computing the M-estimates for the gen-
eral linear model (2) has been considered inAntoch and Ekblom (1995), which investigates
how to use the M-estimate for (2) to compute the new M-estimate when one more equation
is added to (2).

3. Finding Huber’s M-estimates for the block-angular model

The main cost in computing the Huber M-estimate for the general linear model (2) is
the cost of solving (7), or the cost of finding the Cholesky factor ofXTW(�)X, in each
iteration. In the block-angular model (1), the matricesX[k] have a special structure. We will
show in this section how to use this structure to efficiently compute the Cholesky factors
during the iterations. We first discuss the computation from iteration stepi to iteration step
i + 1 at time stepk in Section 3.1, then discuss the computation from time stepk to time
stepk + 1 in Section 3.2. During the iteration process at each time step, we may need to
update or downdate the active matrices of previous time steps. This makes the computation
very complicated. In order to overcome this, we propose to compute a modified Newton
direction in Section 3.3.

3.1. Computation from iteration step i to iteration stepi + 1

SinceX[k] has full column rank, allXj , j = 1, . . . , k must have full column rank. There
is a minimizer�[k|k] such that the corresponding active matrix ofX[k] has full column rank,
so the corresponding active matrixX�

j of Xj must have full column rank,j = 1, . . . , k. In
our algorithm we always assume that the active matricesX�

j during the iterations have full
column rank. This can be ensured by using the strategy we proposed in Section 2.
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Suppose at time stepk, the iterate�(i)
[k|k] and the active matrixX(i)

[k|k] of X[k] at iteration
stepi are, respectively, denoted by

�
(i)
[k|k] ≡




�
(i)
1|k
...

�
(i)
k|k

�
(i)
k


 , X(i)

[k|k] ≡



X(i)
1|k Z(i)

1|k
. . .

...

X(i)
k|k Z(i)

k|k


 .

Suppose[X(i)
j |k, Z(i)

j |k] has the orthogonal factorization:

[
(Q(i)

j |k)
T

(Q̄
(i)

j |k)T

]
[ X(i)

j |k Z(i)
j |k ] =

[
R(i)

j |k R̂
(i)

j |k
0 R̄

(i)

j |k

]
, j = 1, . . . , k, (9)

where[Q(i)
j |k, Q̄

(i)

j |k] is orthogonal,R(i)
j |k is nonsingular upper triangular. Here the structure

of R̄
(i)

j |k depends on the dimensionsnj × (pj + p0) of [ Xj , Zj ]. In the equivalent of (9)

for [ Xj , Zj ] (see (16)) ifnj �pj + p0, R̄j is a full matrix, then herēR
(i)

j |k is left as a

full matrix too, i.e., we do not make it have any special structure; otherwiseR̄j is upper

triangular, so we makēR
(i)

j |k to be upper triangular or upper trapezoidal. Here the Q-factor
will be formed and stored for later updating/downdating use. Then we have



(Q(i)
1|k)

T

. . .

(Q(i)
k|k)

T

(Q̄
(i)

1|k)T

. . .

(Q̄
(i)

k|k)T







X(i)
1|k Z(i)

1|k
. . .

...

X(i)
k|k Z(i)

k|k




=




R(i)
1|k R̂

(i)

1|k
. . .

...

R(i)
k|k R̂

(i)

k|k
R̄

(i)

1|k
...

R̄
(i)

k|k




. (10)

Suppose we have the following QR factorization (remember the matrix has full column
rank):

(Q̃
(i)

[k])T




R̄
(i)

1|k
...

R̄
(i)

k|k


 =

[
R̃

(i)

[k]
0

]
, Q̃

(i)

[k] orthogonal, R̃
(i)

[k] nonsingular upper triangular.

(11)
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Here the Q-factor is not formed or stored because it may be too large whenk becomes

large. If the condition number of̃R
(i)

[k] is known to be acceptable, then for efficiency we may

compute the R-factor̃R
(i)

[k] by the Cholesky factorization:

k∑
j=1

(R̄
(i)

j |k)TR̄
(i)

j |k = (R̃
(i)

[k])TR̃
(i)

[k], (12)

where the structure of̄R
(i)

j |k should be used in forming(R̄
(i)

j |k)TR̄
(i)

j |k. Even when the matrices

R̄
(i)

j |k in (11) are upper triangular, (12) is more efficient in floating point operations than (11)
whenk�3.

Then from (10) and (11) there is an orthogonal matrix[Q(i)
[k|k], Q̄

(i)

[k|k]] such that

[
(Q(i)

[k|k])
T

(Q̄
(i)

[k|k])T

]
X(i)

[k|k] =




R(i)
1|k R̂

(i)

1|k
. . .

...

R(i)
k|k R̂

(i)

k|k
R̃

(i)

[k]
0




. (13)

Note that we only compute the R-factor here. Thus we have

XT[k]W(�
(i)
[k|k])X[k] = (X(i)

[k|k])
TX(i)

[k|k]

=




(R(i)
1|k)

T

. . .

(R(i)
k|k)

T

(R̂
(i)

1|k)T · · · (R̂
(i)

k|k)T (R̃
(i)

[k])T







R(i)
1|k R̂

(i)

1|k
. . .

...

R(i)
k|k R̂

(i)

k|k
R̃

(i)

[k]


 .

With this factorization, we then solve the corresponding linear system (cf. (7)) to find the
search direction. After the line search, we obtain the new iterate�

(i+1)
[k|k] . Then we start

iteration stepi + 1.
At iteration stepi + 1, we use�(i+1)

[k|k] to find the corresponding active matrixX(i+1)
[k|k] .

From the orthogonal factorization of[X(i)
j |k, Z(i)

j |k] (see (9)) we can use standard QR up-
dating/downdating techniques to compute the orthogonal factorization of the new active
matrix [X(i+1)

j |k , Z(i+1)
j |k ], which is usually different from[X(i)

j |k, Z(i)
j |k] by at most a few rows,

at least when the iterate is close to the solution. We mentioned before that ifnj �pj + p0

thenR̄
(i)

j |k is a full matrix, so the goal of the updating/downdating is only to keep the upper

triangular structure ofR(i)
j |k. Whennj > pj +p0, R̄

(i)

j |k is trapezoidal or upper triangular, and
this structure needs to be kept in the updating/downdating process. After the above updat-
ing/downdating process, we can compute the version of (12) fori + 1. Since we assumed
that there are at most a few outliers in each time step, often the active matrices[X(i)

j |k, Z(i)
j |k]
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do not change forj < k, so we seldom need to perform the above updating/downdating pro-
cess for the orthogonal factorization (9) forj < k. Therefore most terms in the summation
in (12) usually do not change, and the version of (12) fori + 1 can efficiently be computed.

3.2. Computation from time step k to time stepk + 1

Suppose at the end of time stepk, we have converged to Huber’s M-estimate

�[k|k] = [�T
1|k, . . . ,�T

k|k, �T
k ]T.

Then we can obtain the full column rank active matrix at�[k|k]:

X[k|k] ≡

X1|k Z1|k

. . .
...

Xk|k Zk|k


 . (14)

Using the results obtained in the previous iteration step, we compute the R-factor ofX[k|k]
by the techniques we have already mentioned in the last paragraph of Section 3.1 and we
have (cf. (13))

[
QT[k|k]
Q̄

T
[k|k]

]
X[k|k] =




R1|k R̂1|k
. . .

...

Rk|k R̂k|k
R̃[k]
0


 . (15)

At time stepk + 1, let the initial estimate for�[k+1] be denoted by

�
(0)
[k+1|k+1] ≡ [(�(0)

1|k+1)
T, . . . , (�

(0)
k|k+1)

T, (�
(0)
k+1|k+1)

T, (�
(0)
k+1)

T]T.

Naturally we take

�
(0)
j |k+1 = �j |k, j = 1, . . . , k, �

(0)
k+1 = �k.

For the initial estimate of�k+1, we take

�
(0)
k+1|k+1 = arg min

�k+1

‖(yk+1 − Zk+1�k) − Xk+1�k+1‖2.

Compute the orthogonal factorization of[Xk+1, Zk+1] ∈ Rnk+1×(pk+1+p0):[
QT

k+1

Q̄
T
k+1

]
[ Xk+1 Zk+1 ] =

[
Rk+1 R̂k+1

0 R̄k+1

]
, (16)

where [Qk+1, Q̄k+1] is orthogonal,Rk+1 is nonsingular upper triangular, and(nk+1 −
pk+1)×p0 R̄k+1 is a full matrix ifnk+1−pk+1�p0, or upper triangular otherwise. From this
we can easily obtain�(0)

k+1|k+1. Notice that if we only wanted to obtain�(0)
k+1|k+1, we would
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only need to compute the QR factorization ofXk+1. But for later updating/downdating uses,
we compute (16). After finding�(0)

k+1|k+1, we can obtain the active matrix

X(0)
[k+1|k+1] ≡




X1|k Z1|k
. . .

...

Xk|k Zk|k
X(0)

k+1|k+1 Z(0)
k+1|k+1


 ,

where[X(0)
k+1|k+1, Z(0)

k+1|k+1] is the active matrix of[Xk+1, Zk+1] for the measurement equa-
tions obtained at time stepk + 1. Applying QR downdating techniques to (16), we obtain
the orthogonal factorization of[X(0)

k+1|k+1, Z(0)
k+1|k+1]:[

(Q(0)
k+1|k+1)

T

Q̄
(0)

k+1|k+1)
T

]
[X(0)

k+1|k+1, Z(0)
k+1|k+1] =

[
R(0)

k+1|k+1 R̂
(0)

k+1|k+1

0 R̄
(0)

k+1|k+1

]
. (17)

Then we have


QT[k|k]
(Q(0)

k+1|k+1)
T

Q̄
T
[k|k]

(Q̄
(0)

k+1|k+1)
T


 X(0)

[k+1|k+1]

=




R1|k R̂1|k
. . .

...

Rk|k R̂k|k
R(0)

k+1|k+1 R̂
(0)

k+1|k+1

R̃[k]
0

R̄
(0)

k+1|k+1




. (18)

The next step is to compute the QR factorization:

(Q̃
(0)

[k+1])T
[

R̃[k]
R̄

(0)

k+1|k+1

]
=

[
R̃

(0)

[k+1]
0

]
. (19)

Here again the Q-factor does not need to be stored. From (18) and (19), we see that there

exists an orthogonal matrix[Q(0)
[k+1|k+1], Q̄

(0)

[k+1|k+1]] such that

[
(Q(0)

[k+1|k+1])
T

(Q̄
(0)

[k+1|k+1])T

]
X(0)

[k+1|k+1] =




R1|k R̂1|k
. . .

...

Rk|k R̂k|k
R(0)

k+1|k+1 R̂
(0)

k+1|k+1

R̃
(0)

[k+1]
0




,
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leading to

XT[k+1]W(�
(0)
[k+1|k+1])X[k+1]

=




RT
1|k

. . .

RT
k|k

(R(0)
k+1|k+1)

T

R̂
T
1|k · · · R̂

T
k|k (R̂

(0)

k+1|k+1)
T (R̃

(0)

[k+1])T




×




R1|k R̂1|k
. . .

...

Rk|k R̂k|k
R(0)

k+1|k+1 R̂
(0)

k+1|k+1

R̃
(0)

[k+1]




.

Now we can continue the iterations at time stepk + 1.

3.3. A modified Newton direction

From Section 3.1 we observe that in each iteration at time stepk, the active matrix of
[Xj , Zj ] for anyj �k may need to be updated, and thus also its QR factorization (see (9)).
The worst case is that at each iteration step each term on the left-hand side of (12) needs
to be re-computed in computing the Cholesky factorization. This rarely happens, but the
possibility of such a scenario makes the implementation complicated. Also we have to keep
the Q-factors of the QR factorizations (9) for updating use. This may cause storage problem
whenk is large.

One modification is that we change the definition of the coefficient matrix of (7) to make
the updating/downdating of its factorization much easier. Specifically, at the end of each
time step, we freeze the active matrix corresponding to the measurement equations obtained
at the current time step, i.e., this active matrix will not be updated any more in later time
steps. Thus at time stepk + 1, the ‘active’ matrixX[k|k] of X[k], which was formed by all
‘active’ matrices obtained at each time step up to and including time stepk, will not be
updated, so thatRj |k andR̂j |k (j = 1, . . . , k) andR̃[k] in (18) will not be updated, and only
the QR factorization (17) corresponding to the measurement equations obtained at time step
k+1 needs updating and the QR factorization (19) needs re-computing during the iterations.
Thus we do not need to hold the Q-factor of the QR factorization (9) of any previous time
steps in memory. The above procedure changes the definition of the coefficient matrix of
(7). But we would like to emphasize that the right-hand side of (7), which is determined by
the given tuning constant and the current iterate, is still defined as before. This will ensure
that h obtained by solving (7) with the redefined symmetric positive definite coefficient
matrix is still a descent direction, which is now a modified Newton direction.
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4. Numerical tests

In this section, we give some numerical test results to illustrate the performance of our
algorithms. All computations were implemented using MATLAB.

We generated the test problems as follows. Fork = 1, 2, . . . , 100, we took

Xk : 20× 4 random matrix, Zk : 20× 10 random matrix,

�k = [1, . . . , 1]T ∈ R4, � = [1, . . . , 1]T ∈ R10, (20)

where the random matrices were generated by the MATLAB functionrandn . The mea-
surement vectoryk was constructed first by

yk = Xk�k + Zk� + εk,

where the noise vectorεk was generated byrandn multiplied by � = 0.01, i.e.,εk ∼
�N(0, I ). Then two outliers 20�N(0, 1) were added to two elements ofyk which were
randomly chosen for eachk. The tuning constantc was chosen to be 1.5�. We performed
1000 simulation runs, where each run had 100 time steps. The termination criterion for
both the Newton method and the modified Newton method at time stepk is ‖�(i+1)

[k|k] −
�

(i)
[k|k]‖2/‖�(i)

[k|k]‖2�10−5, wherei is the iteration step. For comparison, we also computed
the LS estimate of�k at time stepk by a recursive LS method, which was easily developed
based onGolub et al., 1979.

Fig. 1 displays the absolute errors (in 2-norm) in Huber’s M-estimate (by the Newton
method) and the LS estimate of�k obtained at time stepk (for k = 1, . . . , 100) for one
sample data (note the true value of�k is given in (20)). It also gives the results for the LS
estimates without the added outliers in the measurement vectors.Fig. 2gives theaverage
errors for 1000 replications. We can see that when there are outliers, Huber’s M-estimate is
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10-1

100

Time steps

E
rr

or

LS 
Huber 
LS (no outliers)

Fig. 1. Errors in the estimates of�k at time stepk (1 sample).
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Fig. 2. Average errors in the estimates of�k at time stepk (1000 replications).

0 10 20 30 40 50 60 70 80 90 100
10-4

10-3

10-2

10-1

Time steps

E
rr

or

LS 
Huber
LS (no outliers)

Fig. 3. Errors in the estimates of� at time stepk (1 sample).

more accurate than the corresponding LS estimate, and can significantly reduce the effect
of outliers. In our simulations, we also tested different values of the outliers. The results
indicated that the larger the outliers, the better Huber’s M-estimates, compared with the LS
estimates. FromFigs. 1and2 we see that although Huber’s M-estimate is not as good as
the corresponding LS estimate without outliers, the former is a good approximation to the
latter. The above observations can also be made fromFigs. 3and4, which give errors in the
three estimates for�. But Fig. 3shows that the errors for the three estimates of� are much
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Fig. 4. Average errors in the estimates of� at time stepk (1000 replications).
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Fig. 5. Number of iterations (1 sample).

more smooth and tend to decrease with time step increasing. It is easy to understand this.
Note that the vector� is the same at each time step, while�k are different for different time
stepsk. When more measurement equations are available, we can expect the estimates for
� to become more accurate. Similar observations to the above for the estimates of� can be
made for the estimates�j |k (k = j, j + 1, . . .) of �j for any fixedj.

Fig. 5displays the number of iterations of the Newton method and its modified version for
each time step for the one sample of data.Fig. 6gives the average number of iterations of the
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Fig. 6. Average number of iterations (1000 replications).

two methods for the 1000 replications. We see that for the initial few time steps, the modified
method took more iterations (the two methods had the same number of iterations for the
first time step), but later the difference between the two methods in terms of the number of
iterations becomes smaller and smaller. After 50 time steps, there is almost no difference.
From Section 3.3 we know that the modified Newton method has a few advantages over
the Newton method. The former is much simpler, requires less storage, and also has the
potential to cost much less in each iteration step.Figs. 5and6 suggest that the modified
Newton method has no significant drawback, compared with the Newton method.

We also tested the case where the outliers were added to the same positions in the mea-
surement vectors for all the time steps and observed no significant difference in the results
compared with the previous case.

5. Summary

We considered applying Huber’s M-estimation techniques to a block-angular linear
model, which needs to be estimated recursively as more data accrues. The main cost of
a Newton method is the computation of the Newton search direction. We showed how to
take advantage of the structure of the block-angular matrices to efficiently compute this
by using updating/downdating techniques for matrix factorizations. However, it is possi-
ble that factors from previous time steps might need updating/downdating. To reduce the
computational burden and the storage requirement, we proposed to compute a modified
Newton direction, which only needs updating/downdating of two simple QR factorizations
involving the matrices at the current time step (see (17) and (19)). Numerical test results
showed that the method with this modification took some extra iterations for only initial
time steps, but later on it took almost the same number of iterations as the original method.
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The test results also showed that Huber’s estimation can significantly reduce the influence
of outliers for our estimation problem. In the future we would like to study the convergence
of the modified Newton method and apply it to GPS.

Acknowledgements

The author would like to thankYing Guo for carrying out the numerical simulations, and
Chris Paige for his valuable comments and suggestions. The author is also grateful to two
referees for their thoughtful and helpful suggestions which improved the paper.

References

Antoch, J., Ekblom, H., 1995. Recursive robust regression: computational aspect and comparison. Comput. Statist.
Data Anal. 19, 115–234.
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