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Abstract.

The Global Positioning System (GPS) is a satellite based navigation system. GPS
satellites transmit signals that allow one to quite accurately estimate the location
of GPS receivers. In GPS a typical technique for kinematic position estimation is
differential positioning where two receivers are used, one receiver is stationary and its
exact position is known, the other is roving and its position is to be estimated. We
describe the physical situation and give the mathematical model based on the difference
of the measurements at the stationary and roving receivers. The model we consider
combines both the code and carrier phase measurements. We then present a recursive
least squares approach for position estimation. We take full account of the structure
of the problem to make our algorithm efficient, and use orthogonal transformations
to ensure numerical reliability of the algorithm. Real data test results suggest our
algorithm is effective. An additional benefit of this approach is that the drawbacks
of double differencing are avoided. The paper could also serve as a straightforward
introduction for numerical analysts to an interesting area of GPS.

AMS subject classification: 62L12, 65F20, 65F25
Key words: Global Positioning System, recursive least squares, orthogonal transfor-

mations

1 Overview of GPS and Geometry of the Problem

First we give a brief overview for those numerical analysts who are not familiar
with the Global Positioning System (GPS). GPS is a satellite based positioning
and navigation system. Its basic constellation consists of 24 satellites, all with
very accurate clocks, and each continuously transmitting radio waves at fixed
frequencies, which a receiver can use to determine its own position. The satellites
are moving with respect to the earth, but their positions at any given time can
be obtained quite accurately by the receiver, using information transmitted by
the satellites. A GPS receiver usually has a much less accurate clock, but can use
the measured time a radio signal from a satellite takes to reach it to estimate the
satellite to receiver distance. Combining distances from several satellites with
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Figure 1.1: Geometry for two Receivers and one Satellite.

satellite positions can lead to an estimate of the receiver’s position. In principle
at least three visible satellites are needed to estimate the three coordinates of
the receiver’s position. But because the receiver’s clock error can be relatively
large (we are timing signals traveling at about 3 × 1010 cm/sec), it has to be
treated as an unknown. Thus at least four satellites are required. We would
like more in order to obtain a better least squares (LS) estimate of the receiver’s
position. Usually 6 to 8 satellites are visible from an open area on the earth’s
surface.

Here we are interested in kinematic position estimation (this term implies a
moving object, such as a car or an aircraft). A typical technique for obtaining
highly accurate position estimates is relative positioning, see for example [11,
§4.8]. In this case two receivers s and r are used (see Figure 1.1): s is stationary
and is set up at a surveyed site whose exact position is known, while r is roving
and its position is to be estimated. The purpose of using two receivers is to
eliminate some common errors in the GPS signal measurements obtained by
the two receivers. We want to find the baseline vector x ∈ R3, i.e. the vector
pointing from receiver s to receiver r. If this is known, the position of the roving
receiver will be known. In real-time applications there is a radio link between
the two receivers so that the information about the stationary receiver and the
signal measurements it receives can be sent to the roving receiver.

We need the following quantities to describe the geometry at a given time,
that is, the relative positions of satellites and receivers (see Figure 1.1):

ei the unit vector from the midpoint of the baseline to satellite i,
ρis the range in wavelengths from receiver s to satellite i,
λ the wavelength (for the L1 carrier signal used here, λ ≈ 19 cm),
his the vector from receiver s to satellite i, so ‖his‖ = λρis.
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Note that ‖ · ‖ ≡ ‖ · ‖2, superscripts indicate satellites, subscripts receivers.
Since x = his − hir and ‖2his − x‖ei = 2his − x = his + hir, we have

(‖2his − x‖ei)Tx = ‖his‖2 − ‖hir‖2 = (‖his‖ − ‖hir‖)(‖his‖+ ‖hir‖),

giving

(ωiei)Tx = λ(ρis − ρir),(1.1)

ωi ≡ ‖2his − x‖
‖his‖+ ‖his − x‖

, ei =
2his − x
‖2his − x‖

.(1.2)

We will have available a close approximation to his. The true baseline vector x
will not be known, but we will see that at each step we will have an estimate of
it, and this will be used to evaluate ωiei above.

The stationary and roving receivers obtain measurements of ρis and ρir respec-
tively. Thus if there were no errors, measurements from m satellites would give
m equations of the form (1.1). Just as in the case where one receiver is used
for positioning, at least m ≥ 4 visible satellites are required here to estimate
x, since the difference of the two receivers’ clock errors has to be treated as an
unknown.

The signals which give ρis and ρir above are called code signals. Unfortunately
these only give mediocre position accuracy (to at best a few metres accuracy).
Receivers can also use what are called carrier signals. These give much greater
accuracy, but are more complicated to use, in that they do not supply ρis or
ρir directly. Instead, at time t, they supply what is called the carrier phase
measurement, for example φis(t), where in the absence of errors

(1.3) ρis(t) = φis(t) + αis.

Here αis is an unknown, time independent quantity called the ambiguity. Thus
at a given time t, instead of having m equations of the form (1.1) for x(t), in
the absence of errors the carrier signals would give m equations of the form

[λ−1ωi(t)ei(t)T ,−1]
[
x(t)
αi

]
= φis(t)− φir(t),

where αi ≡ αis − αir is a new unknown for each satellite. In reality we also have
to account for noise and inaccurate clocks, just as we do for code signals. Even
with m ≥ 5 visible satellites, measurements are required at several time steps
tk before estimates of the αi and x(tk) can be obtained, and it can take many
time steps to obtain estimates with small errors. This suggests that it would be
useful to find estimates using both the code and the carrier phase measurements
— the code measurements should help to give good answers quickly, while the
carrier phase measurements should help to give greater accuracy.

As well as clock errors there are measurement noises, and the signals suffer
ionospheric and tropospheric refraction errors, among others. We assume the
baseline is short (less than 20km say) so that a satellite signal has almost the
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same ionospheric refraction error, and the same tropospheric refraction error,
at the two receivers. We almost always difference the two signal measurements
from the same satellite at the two receivers, see ρis − ρir in (1.1), to essentially
eliminate these two refraction errors. This also eliminates the satellite clock
error. This technique is called single differencing (see [6]).

One can choose a particular satellite to be the “reference satellite”, then differ-
ence the single differenced measurements from the reference satellite with those
from the other satellites. This is called double differencing (see [2]). Double
differencing can eliminate the two receivers’ clock errors. Double differencing is
widely used in GPS computations, but it has some drawbacks. For example it
is numerically slightly dubious, it makes the double differenced measurements
correlated, and it gives unnecessary prominence to the reference satellite. In [4]
we presented an orthogonal transformation approach for carrier phase measure-
ments which avoided the first two drawbacks, while maintaining all the advan-
tages of double differencing.

The approach presented in [4] is numerically reliable and efficient. The main
purpose of this paper is to extend that approach to the combined case where
both carrier phase and code measurements are used for positioning. This leads
to the mathematical model (3.8) corresponding to time step tk. There xk is the
baseline, βk is the difference of the two receivers’ clock errors, and a is the vector
of ambiguity differences αi. In Section 4 we design a recursive QR factorization
to obtain the LS estimates of the xk for a sequence of such time steps. In [4] we
avoided double differencing the measurements, but we still had to involve double
differenced ambiguities or their equivalents. Since more information is available
here, we are able to avoid some problems like the reference satellite issue, which
previously complicated the handling of rising and setting satellites.

This paper has been written to be easily accessible for any reader with a basic
knowledge of numerical linear algebra, and is organized as follows. We continue
to use the geometry of Figure 1.1, but will now pay careful attention to the errors
that occur in the measurements used to replace ρis and ρir in (1.1). In Section 2
we give some GPS background. In Section 3 we derive the mathematical model
we use for position estimation. In Section 4 we show how to use orthogonal
transformations to make full use of the structure of the model to compute the
LS estimates of the positions. In Section 5 we give the results of tests with real
data. A summary and some remarks are given in Section 6.

We will use v ∼ N (v̄, V ) to indicate that v is a normally distributed random
vector with expected value v̄ and covariance V .

2 Some GPS details

In this section we give some GPS details needed to put our approach in con-
text. The reader can safely skip this section on the first reading. Each GPS
satellite continuously transmits two carrier radio waves L1 and L2 with precise
frequencies 1575.42 MHz and 1227.60 MHZ, respectively. Superimposed on the
L1 carrier are the C/A code (coarse acquisition) and the P-code (precision),
while superimposed on the L2 carrier is only the P-code. The C/A code is for
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civilian users, while the P-code is for US military or authorized users.
Currently there are hundreds of GPS receiver models on the market for dif-

ferent applications. GPS receivers for commercial aircraft may cost more than
US$10,000; but easily available pocket-sized receivers may cost less than US$100.
Many receivers are designed to receive only the L1 carrier mainly for economical
reasons. As in [4], we only consider the L1 carrier, but it is easy to extend our
approach to the dual frequency case. Basically there are two kinds of measure-
ments which can be used for positioning: code (also called pseudorange, or code
pseudorange; we will consider the C/A code) and carrier phase. Both measure-
ments are subject to ionospheric refraction errors, tropospheric refraction errors,
the receiver clock error, the satellite clock error, multipath errors (caused by re-
flections), and random measurement noise, see for example [11, §4.1] for more
details. As we mentioned earlier, the code measurement gives an approximation
to the true range between the receiver and the satellite, and can easily be used
for positioning. Using the carrier phase measurement for position estimation is
not nearly so easy, but it is much more accurate than the code measurement.

In [4] only carrier phase data was used for positioning. But it is now common
to use both carrier phase and code data to obtain better results. In fact much
research has been conducted on integrating these two types of measurement.
For example Hatch [7], Ashjaee [1] and Goad [5] studied how to generate the
so-called carrier-smoothed code measurements by using carrier phase and code
measurements. Kleusberg [10], Hwang and Brown [8], Teunissen [12], Jin [9] and
Tiberius [13] investigated how to use carrier phase and code measurements in
GPS kinematic positioning. Most methods assume that a dynamic model for the
roving receiver is available, and then use the standard Kalman filter. The main
differences among these methods are that different information is assumed to be
sent from the stationary receiver to the roving receiver, and different dynamic
models are used. Most methods given in the GPS literature do not address the
computer implementation issue. Even when they do, they usually do not take
full advantage of the structure of the model. In this paper we assume the car-
rier phase and code measurements of the stationary receiver are available at the
roving receiver. We do not use any dynamic model, because for many practical
applications it is hard to model the dynamic behaviour of the roving receiver.
GPS measurements are extremely accurate, and we believe that artificially in-
cluding a dynamic model may degrade the estimation performance, while the
additional computation in each epoch is unnecessarily expensive. However when
a sufficiently accurate dynamic model is known, it can be included in the full
model here, and we believe the approach given here can be extended to this.

3 The mathematical model

Here we give the mathematical model we use for position estimation, however
we omit some minor subtleties in order to simplify the presentation.

Suppose the signal from satellite i arrives at receiver s at epoch k (that is,
at time point tk) and its travel time is tis(tk). At tk the carrier phase mea-
surement φis(tk) (in wavelengths, cf. (1.3)) and the code measurement ρ̃is(tk) (in
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wavelengths) at receiver s for satellite i are (see for example [11, §4.1])

φis(tk)+αis = ρis(tk)− ιis(tk) + τ is(tk) + βi(tk−tis(tk)) + βs(tk) + µis(tk),(3.1)
ρ̃is(tk) = ρis(tk) + ιis(tk) + τ is(tk) + βi(tk−tis(tk)) + βs(tk) + νis(tk),(3.2)

(the signs preceding the ιis(tk) are correct, see [11, (4.25) & p.157]) where the
“units” of each of the following components is “number of wavelengths”:

• φis(tk): the carrier phase measurement at time tk. Initially φis(t1) < 1.

• αis: the ambiguity. φis(t1)+αis is the initial number of wavelengths between
satellite i at time t1 − tis(t1) and receiver s when receiver s starts tracking
the satellite signal at t1. αis is not necessarily an integer. In [13, §3.4.1.1] it
includes initial phase offsets of the receiver-generated carrier signal and the
satellite-generated signal, which are not taken into account in [11] where
αis is assumed to be an integer. αis is unknown, but remains the same while
tracking is continued without loss of lock.

• ρ̃is(tk): the code measurement at time tk.

• ρis(tk): the actual range between receiver s at the signal arrival time tk and
satellite i at the signal departure time tk − tis(tk).

• ιis(tk): the ionospheric range error at time tk.

• τ is(tk): the tropospheric range error at time tk.

• βi(tk−tis(tk)): the satellite clock range error at transmission time tk−tis(tk).

• βs(tk): the receiver clock range error at time tk.

• µis(tk): the carrier measurement noise, including multipath error, at tk.

• νis(tk): the code measurement noise, including multipath error, at time tk.

The model (3.1)–(3.2) is often used in the literature, although there are more
complicated models which take other factors into account, see for example [13].
It might help some readers if we give an intuitive (and approximate) explanation
of the model we use. The code measurement is more straightforward. Suppose
the satellite sent a code message saying when that message was sent, and the
receiver noted the time t it received that message. If the satellite and receiver
clocks were synchronized and there were no errors, the receiver would know
exactly how long that message took to travel from the satellite to the receiver.
Multiplying this time interval by the speed of light in vacuum, and dividing
the result by the L1 wavelength would give ρ̃is(t), the code measurement at
time t, that is, the number of wavelengths that would have been between where
the satellite was when it sent the message, and where the receiver was when it
received the message, if there had been a vacuum between them. Corrections
would be added to this to more closely match reality, see (3.2).

The carrier equation (3.1) is more subtle, and the literature on it is often
difficult to follow. Here we give an amateurish minor extrapolation of the sim-
plified description in [11, §4.1.2]. At a given point in space, the fractional phase
difference between two signals of the same frequency f = 1/T is the fraction of
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a wavelength that one is ahead of the other. Thus cos(2πt/T ) is one quarter
wavelength ahead of sin(2πt/T ). Essentially the receiver generates a sinusoidal
signal to match the frequency of the incoming signal (L1 carrier wave here) from
the satellite. It measures the fractional phase difference φis(t1) between the two
signals at the initial time t1, and tracks how this phase difference φis(tk) changes
with time. Now consider the error free case in vacuum. Initially the range
ρis(t1) (see the definitions above) is just φis(t1) + αis for some unknown number
of wavelengths αis. If the satellite and receiver stayed in the same positions,
each term would stay constant in time. Now suppose the satellite moves one
wavelength further away (radially) from the receiver, then the phase difference
measurement increases by one wavelength, and in general ρis(tk) = φis(tk) + αis
for the same unknown number of wavelengths αis. Corrections are added to this
to more closely match reality, see (3.1).

Subtracting the equation corresponding to receiver r from (3.1) and noticing
−[ιis(tk)−ιir(tk)]+[τ is(tk)−τ ir(tk)]+[βi(tk−tis(tk))−βi(tk−tir(tk))] will be negligible
since the baseline is short, we obtain the single difference carrier equation
(3.3)
φis(tk)−φir(tk) = ρis(tk)− ρir(tk)− (αis−αir) + βs(tk)− βr(tk) +µis(tk)−µir(tk).

Receivers s and r occur in every equation, so we can drop these indices and then
indicate the time epoch k by subscript k if we define
(3.4)
φik ≡ φis(tk)−φir(tk), αi ≡ αis−αir, βk ≡ βs(tk)−βr(tk), µik ≡ µis(tk)−µir(tk).

This with (1.1) gives for (3.3)

φik = λ−1(ωike
i
k)Txk − αi + βk + µik.

By defining ρ̃ik ≡ ρ̃is(tk) − ρ̃ir(tk), we obtain the single difference code measure-
ment equation from (3.2)

ρ̃ik = λ−1(ωike
i
k)Txk + βk + νik.

In the usual model, the µik for different satellites and different epochs are as-
sumed to be unbiased independently distributed noises with the same normal
distribution. So are the νik. Furthermore µik and νjl are assumed to be indepen-
dent. Thus assuming we have m satellites, and writing

yTk ≡ [φ1
k, . . . , φ

m
k ], zTk ≡ [ρ̃1

k, . . . , ρ̃
m
k ], ETk ≡ λ−1[(ω1

ke
1
k), . . . , (ωmk e

m
k )],(3.5)

aT ≡ [α1, . . . , αm], uTk ≡ [µ1
k, . . . , µ

m
k ], vTk ≡ [ν1

k , . . . , ν
m
k ],

and using the standard notation eT ≡ [1, . . . , 1], we have (where typical values
of the standard deviations σφ and σρ are available from the literature):

yk = Ekxk − a+ eβk + uk, uk ∼ N (0, σ2
φIm),(3.6)

zk = Ekxk + eβk + vk, vk ∼ N (0, σ2
ρIm).(3.7)
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These are the desired single differences of measurements equations given the
physical situation ofm satellites with a known fixed receiver and a roving receiver
whose position is to be estimated. Let σ ≡ σφ/σρ. In order to make the noise
vector in (3.7) have the same standard deviation as that in (3.6), we multiply
(3.7) by σ, then write the resulting equation and (3.6) together

(3.8)
[
yk
σzk

]
=
[
Ek
σEk

]
xk −

[
I
0

]
a+

[
I
σI

]
eβk +

[
uk
σvk

]
,

[
uk
σvk

]
∼ N (0, σ2

φI2m).

4 Efficient and numerically reliable position estimation

Following [4], we will present a recursive LS algorithm by orthogonal transfor-
mations to estimate positions based on the carrier phase and code measurement
equations (3.8). Notice that in Ek, ωike

i
k depends on the baseline xk, see (1.2)

and (3.5). So we may write
Ek ≡ E(xk).

This Ek is known once xk is known. Given an approximation to xk (because E(x)
is not very sensitive to changes in x, our estimate of xk−1 is usually sufficient),
we can compute our approximation to Ek. Then given the measurements yk and
zk, we can obtain a better estimate of xk, and of Ek if necessary. But to save
space here we just assume that the Ek in (3.8) are known, and that the number
of visible satellites does not change during the observation period.

First we eliminate xk and βk from the lower half of (3.8). Define orthogonal

G ≡
[
cI sI
−sI cI

]
, where γ ≡

√
1 + σ2, c ≡ 1/γ, s ≡ σ/γ, so G

[
I
σI

]
=
[
γI
0

]
.

Then applying G to (3.8), we obtain

(4.1)
[
cyk + sσzk
−syk + cσzk

]
=
[
γI
0

]
Ekxk −

[
cI
−sI

]
a+

[
γI
0

]
eβk +

[
cuk + sσvk
−suk + cσvk

]
.

Now we eliminate the clock bias βk. Following [4], let P ∈ Rm×m be a
Householder transformation such that

(4.2) Pe = e1

√
m, P ≡ I − u

( 2
uTu

)
uT , u ≡ e1 − e/

√
m.

Partition P ≡
[
pT

P̄

]
, then multiplying (4.1) by diag(P, I) from the left, we obtain

(4.3)pT (cyk + sσzk)
P̄ (cyk + sσzk)
−syk + cσzk

 =

γpTEkγP̄Ek
0

xk−
cpTcP̄
−sI

 a+

1
0
0

√mγβk+

pT (cuk + sσvk)
P̄ (cuk + sσvk)
−suk + cσvk

.
Notice that only the first equation in (4.3) involves the clock bias term βk,
and we will see later ((4.7) and the line preceding it) that this equation can
be dropped for position estimation. For estimating xk later, we would like to
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transform γP̄Ek to upper triangular form. Let the QR factorization of γP̄Ek
be (we assume m ≥ 4 so that γP̄Ek almost always has full column rank, see for
example [4, §3.2])
(4.4)

QTk (γP̄Ek) =
[
Rk
0

]
, QTk =

[
Uk
Vk

]
, 3× (m− 1)Uk, (m− 4)× (m− 1)Vk.

Multiplying (4.3) by diag(1, QTk , Im) from the left gives
(4.5)
pT (cyk+sσzk)
UkP̄ (cyk+sσzk)
VkP̄ (cyk+sσzk)
−syk + cσzk

=


γpTEk
Rk
0
0

xk−

cpT

cUkP̄
cVkP̄
−sI

a+


1
0
0
0

√mγβk+

pT (cuk+sσvk)
UkP̄ (cuk+sσvk)
VkP̄ (cuk+sσvk)
−suk+cσvk

.
Denote

ηk ≡ pT (cyk + sσzk), δk ≡ pT (cuk + sσvk),
ȳk ≡ UkP̄ (cyk + sσzk), ūk ≡ UkP̄ (cuk + sσvk),
z̄k ≡ VkP̄ (cyk + sσzk), v̄k ≡ VkP̄ (cuk + sσvk),
gk ≡ −syk + czk, fk ≡ −suk + cσvk.

Then (4.5) can be written as

(4.6)


ηk
ȳk
z̄k
gk

 =


γpTEk
Rk
0
0

xk −

cpT

cUkP̄
cVkP̄
−sI

 a+


1
0
0
0

√mγβk +


δk
ūk
v̄k
fk

 .
Combining these for k = 1, 2, . . . and reordering gives with γk ≡

√
mγβk

(4.7)



η1

...
ηk
ȳ1

...
ȳk
z̄1

g1

...
z̄k
gk



=



1 γpTE1 −cpT
. . . . . .

...
1 γpTEk −cpT

R1 −cU1P̄
. . .

...
Rk −cUkP̄

−cV1P̄
sI
...

−cVkP̄
sI





γ1

γ2

·
γk
x1

x2

·
xk
a


+



δ1
...
δk
ū1

...
ūk
v̄1

f1

...
v̄k
fk



.

Since orthogonal transformations preserve the normal distribution, the trans-
formed noise vector follows the distribution N (0, σ2

φI2km). From the structure of
the coefficient matrix in (4.7) we see estimates of γ1, . . . , γk (and so of β1, . . . , βk)
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could easily be found from the first k equations of (4.7) once the estimates of
x1, . . . , xk and a are available. But the γk and βk are not usually wanted.

In order to obtain LS estimates of the position, we need only find LS estimates
for the sub-model formed by the last k(2m−1) equations of (4.7). Let ak|k denote
the LS estimate of a at epoch k, then we see that ak|k is the LS estimate for the
even smaller sub-model:

(4.8)


z̄1

g1

...
z̄k
gk

 =


−cV1P̄
sI
...

−cVkP̄
sI

 a+


v̄1

f1

...
v̄k
fk

 .

Once ak|k has been computed, we see from (4.7) that x1|k, x2|k, . . . , xk|k, the LS
estimates of x1, x2, . . . , xk at epoch k, can be computed by solving the upper
triangular systems

(4.9) Rjxj|k = ȳj + cUjP̄ ak|k, j = 1, . . . , k.

Now our task is to obtain the estimate ak|k of a from (4.8). We use a recursive
approach. Suppose at epoch k−1 we have computed the following orthogonal
transformations (since s > 0, Sk−1 has full column rank):

TTk−1


−cV1P̄
sI
·

−cVk−1P̄
sI

 =
[
Sk−1

0

]
, TTk−1


z̄1

g1

...
z̄k−1

gk−1

 =
[
bk−1

b̄k−1

]
,(4.10)

where Tk−1 is orthogonal, and Sk−1 is nonsingular upper triangular with the
same number of rows m as bk−1. Then at epoch k after obtaining Vk, z̄k and gk,
we perform the following orthogonal transformations:

T̃Tk

 Sk−1

−cVkP̄
sI

 =
[
Sk
0

]
, T̃Tk

bk−1

z̄k
gk

 =
[
bk

b̂k

]
, b̄k ≡

[
b̄k−1

b̂k

]
,(4.11)

where T̃k is orthogonal, Sk is nonsingular upper triangular, and Sk and bk each
have m rows. The orthogonal transformations can be implemented to take ad-
vantage of the upper triangular structure of Sk−1 and the diagonal structure
of sI. But the matrices T̃k and Tk−1 are neither formed nor stored. By using
similar notation for the transformed noise vector, we get the transformed form
of (4.8):

(4.12)
[
bk
b̄k

]
=
[
Sk
0

]
a+

[
wk
w̄k

]
,

[
wk
w̄k

]
∼ N (0, σ2

φI2k(m−2)).
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Thus by solving the upper triangular system

(4.13) Skak|k = bk

we obtain ak|k, the LS estimate of a at epoch k. After this we can solve (4.9) to
obtain any xj|k, the estimate of xj at epoch k.

Handling the nonlinearity problem (Ek = E(xk)) is straightforward, see [3].

5 Real data tests

We give real data test results here. The data was provided by VIASAT Geo-
Technology Inc, a company in Montreal, Canada. The receivers were made by
Canadian Marconi Company. The user who held a receiver was walking in an
open sky environment. The baseline was about 3km. The time interval between
two consecutive epochs was 1 second. We used the position estimates obtained
by VIASAT Geo-Technology software as the “true” positions. Their software
used a complex positioning algorithm, and it is believed that the errors in its
estimates were about a few centimetres, so the “Error” in Figure 5.1 is suspect
by at least this amount. It is also affected by a “bias” in the data, see Section 6.
For comparison, we computed the position estimates not only by the algorithm
presented in Section 4 (we took σ = 0.001 in the computation), but also by
the algorithm based only on carrier phase measurements presented in [4] and an
algorithm based only on code measurements as well. The algorithm based only
on code measurements is straightforward. In fact, from the code measurement
equation (3.7), we compute the estimate of xk (and βk) by a simple LS method.
The errors of the position estimates by the three algorithms are shown in Figure
5.1. There were 6 visible satellites and there were no rising or setting satellites
during this testing period (this determined the testing period).

Figure 5.1 shows that using both code and carrier phase measurements pro-
vided more accurate position estimates than using code or carrier phase measure-
ments alone. At the beginning the carrier phase based position estimates were
less accurate than the code based ones. But later the former became more accu-
rate, and finally became almost as accurate as the estimates from the combined
measurements. Including the code measurements accelerated the convergence.

6 Summary and remarks

We have presented a recursive LS approach for combining the code and carrier
phase measurements for GPS positioning. Our algorithm is numerically reliable
since we use numerically stable orthogonal transformations. It is also efficient,
since it takes full advantage of the structure of the problem. In [3] this approach
is extended to compute estimates of error covariance matrices, and to handle
rising and setting satellites.

In some receivers, including those that gave the data we used, there is a hard-
ware delay that is slightly different for the code and carrier phase measurements,
and this is sometimes referred to as a hardware bias. In our model we ignored
this possible difference, and this can lead to a small error in our estimates. But
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Figure 5.1: Position estimate errors versus time

this is the model which is described in most of the literature, see for example [11,
§4.1], and even for those receivers with such a hardware bias, the bias appears to
be small enough so that this model still leads to sub-metre accuracy for a fixed
number of visible satellites, see for example Figure 5.1. But to obtain higher
accuracy, or to be able to handle rising and setting satellites accurately when
there is such a bias, it might be necessary to include either a single constant
delay parameter (since the delay difference tends to be fairly constant under
stable conditions), or a time varying delay. However this would lead to a more
complicated algorithm. See Tiberius [13] for a treatment of this problem.

Even though we have ignored the above bias as well as some other possible
refinements to the model, the computed results on the practical test data (which
was subject to such a bias, but restricted to a fixed number of visible satellites)
were very positive for such a simple and efficient algorithm.
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