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Abstract

A wavelet approach is presented for estimating a partially linear model (PLM). We /nd
an estimator of the PLM by minimizing the square of the l2 norm of the residual vector while
penalizing the l1 norm of the wavelet coe2cients of the nonparametric component. This approach,
an extension of the wavelet approach for nonparametric regression problems, avoids the restrictive
smoothness requirements for the nonparametric function of the traditional smoothing approaches
for PLM, such as smoothing spline, kernel and piecewise polynomial methods. To solve the
optimization problem, an e2cient descent algorithm with an exact line search is presented.
Simulation results are given to demonstrate e6ectiveness of our method.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Considering the following regression model:

yi = xTi � + f(ti) + �i; i = 1; 2; : : : ; n; (1)

where {yi} are observations, {xi} are known design points and each is a /xed
p-dimensional vector with p6 n, {ti} are values of an extra univariate variable such
as the time at which the observation is made, � is an unknown p-dimensional param-
eter vector, f is an unknown function, and {�i} are random errors assumed to be iid
N(0; �2) distributed. Without loss of generality, we assume t ∈ [0; 1]: The goal is to
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estimate the unknown parameter vector � and nonparametric function f(t) from the
data {(yi; xi; ti)}.
In matrix–vector notation, the model is written as

y= X� + f + ”; (2)

where

y= (y1; : : : ; yn)T; XT = [x1; : : : ; xn];

f = (f(t1); : : : ; f(tn))T; ” = (�1; : : : ; �n)T: (3)

As in most literature, we assume that X has full column rank.
This model has received a considerable amount of research in the past two decades.

One reason is that it is much more Jexible than the standard linear model since it com-
bines both parametric and nonparametric components. Another reason is that it allows
easier interpretation of the e6ect of each variable compared to a completely nonpara-
metric regression. Because of its relation to the classical linear regression model, this
model is called “partially linear model” or “partly linear model” (PLM) in the liter-
ature. Engle et al. (1986) were among the /rst to apply this model in analyzing the
relationship between weather and electricity sales. Recently, the monograph by Hardle
et al. (2000) studies this model exclusively.
All the existing approaches for the PLM are based on di6erent nonparametric regres-

sion procedures. For example, the partial spline solution for model (1) is based on the
fact that the cubic spline is a linear estimator for the nonparametric regression problem.
So, the nonparametric procedure can be naturally extended to handle the PLM. Among
the most important approaches are the spline methods by Eubank et al. (1998), Green
et al. (1985), Green and Silverman (1994, Chapter 4), Heckman (1986), Schimek
(2000) and Wahba (1990, Chapter 6); the kernel methods by Robinson (1988) and
Speckman (1988); the piecewise polynomials method by Chen (1988); and the local
linear smoothing method by Hamilton and Truong (1997).
In this paper, we extend the wavelet nonparametric regression procedure to the PLM,

and develop an iterative algorithm for the l1-penalized least-squares criterion for /tting
the PLM. The main reason for adopting the wavelet approach for the PLM is that an
important assumption by all the existing approaches for f(t) is its high smoothness. But
in reality, the assumption may not be satis/ed. In some practical areas, such as signal
and image processing, objects are frequently inhomogeneous. For the wavelet approach,
it is well known that the hypotheses of degrees of smoothness of the underlying function
f(t) are less restrictive.
The rest of the paper is organized as follows. In Section 2 we give a brief review

about the wavelet nonparametric regression and the discrete wavelet transform (DWT).
We then extend this approach to the PLM and discuss the necessary and su2cient
conditions for the optimal wavelet estimator in Section 3. Based on these conditions,
we propose a descent algorithm in Section 4. In order to demonstrate e6ectiveness of
our method, we give some simulation results in Section 5. Finally, some remarks and
suggestions for future research conclude this article in Section 6.
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2. The background: wavelet nonparametric regression

The classical nonparametric regression problem is to recover f(t) after observing
data {(yi; ti)} from the standard “signal-plus-noise” model

yi = f(ti) + �i; i = 1; : : : ; n;

where f(t) is an unknown function, and {�i} are noises and are usually assumed to
be iid N(0; �2) distributed. Note that this model is a special case of model (1) where
�=0. In order to apply DWT, we assume that {ti} are equally spaced and n is power
of 2.
In vector notation (see (3)), the above model is written

y= f + ”: (4)

The DWT can be represented by an orthogonal matrix W . Applying W to the noisy
observation y, we obtain the wavelet transform of y : w =Wy. Let � =Wf be the
wavelet transform of f , then f =WT� with WT the inverse discrete wavelet transform
(IDWT). Thus from (4) the observed data can be expressed as a linear model on the
wavelet domain

y=WT�+ ”: (5)

The ordinary least-squares estimator of � is simply �̂LS =Wy, i.e., the empirical
wavelet coe2cients. The �̂LS is an unbiased estimator of � and its covariance matrix is
�2I , where I is the n×n identity matrix. The estimator f̂ =WT�̂LS simply interpolates
the observed data y. So it does not denoise at all.
To denoise the data, one usually takes the penalized least-squares approach. By

penalizing some measure of �, such as its norm, one loses unbiasedness of �̂, but
may get smaller variance and covariance matrix Var(�̂), thus obtain a smaller mean
squared error (MSE) overall. Since wavelet coe2cients of f(t) in a wide range of
function space are usually sparse, one usually penalizes the l1 norm of � to get a
sparse solution. For a given ¿ 0, the solution to the penalized least-squares problem

min
�

{
1
2‖y−WT�‖22 + ‖�‖1 = 1

2‖w− �‖22 + ‖�‖1
}
:

is the soft thresholding of w:

�̂S = sgn(w) ◦ (|w| − e)+;

where e = (1; : : : ; 1)T; x+ = (max (x1; 0); : : : ;max (xn; 0))T for any vector x = (x1; : : : ;
xn)T, and ◦ denotes the componentwise product of two vectors. Here we have used
the fact that

sgn(wi)(|wi| − )+ = argmin
�i

1
2 (wi − �i)2 + |�i|; i = 1; : : : ; n:

The choice of the smoothing parameter or the threshold  is crucial. There are
several approaches in the literature. It can be chosen to be the universal threshold
UV = �

√
2 log(n) (Donoho and Johnstone, 1994), or determined by minimizing Stein
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unbiased risk estimate (SURE) (Donoho and Johnstone, 1995), or by the method of
cross validation (Nason, 1996).

For DWT and IDWT, a fast algorithm developed by Mallat (1989) can be used to
perform the transform w =Wy in O(n) operations and a matrix–vector multiplication
is avoided. However, the use of the fast DWT and IDWT requires equally spaced ti’s
and n to be power of 2. This requirement is not a real restriction. Methods exist to
overcome these limitations, allowing the DWT to be applied on unequally spaced data
with any length (Kovac and Silverman, 2000).

3. Wavelet estimation for partially linear model

We now extend the idea of wavelet nonparametric regression in the previous section
to the estimation of the partial linear model (1). We assume equally spaced time points
ti = i=n and n is power of 2 in model (1). In the wavelet domain, the observed data
can be expressed as a linear model

y= X� +WT�+ ”:
If � is known, the model is the same as (5) in the previous section. So our focus

here is to estimate �. By penalizing the l1 norm of �, for a given , one /nds � and
� which minimize the quantity

l(�; �) = 1
2‖y− X� −WT�‖22 + ‖�‖1:

Then, by the orthogonality of the matrix W ,

l(�; �) = 1
2‖Wy−WX� − �‖22 + ‖�‖1

= 1
2‖w−U� − �‖22 + ‖�‖1; (6)

where U = [u1; : : : ; un]T =WX is the DWT of the matrix X .
Notice that l(�; �) is a convex, continuous function of � and � and is bounded

below. Also notice that U is of full column rank. Thus l(�; �) it has /nite minimizers.
Since l(�; �) is not di6erentiable with respect to � when �i = 0 for some i, we need
to use directional derivatives to study the characterization of the minimizers.

De!nition (Rockafellar, 1970, p. 213). Let L denote a function on Rm, and let x be
a point where L(x) is /nite. The “one-sided directional derivative” L′ of L at x with
respect to a direction h is the limit (if it exists):

L′(x; h) = lim
�→0+

L(x+ �h) − L(x)
�

:

Note that

−L′(x;−h) = lim
�→0−

L(x+ �h) − L(x)
�

;

so the one-sided directional derivative L′(x; h) is two-sided if and only if L′(x;−h)
exists and

L′(x;−h) = −L′(x; h):
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In our case, l(�; �) may not have two-sided directional derivative at some points,
for example, at � = 0. The minimizers of L(x) can be characterized according to the
following lemma, which will be used later.

Lemma 1. Let L(x) be a convex function on Rm, having one-sided directional deriva-
tive at any point. Then, x̂ is a minimizer of L(x) if and only if

L′(x̂; h)¿ 0 for all h∈Rm: (7)

Proof. See p.264 of Rockafellar (1970).

With this lemma, we can establish the following theorem to characterize the estimator
of our model.

Theorem 1.

{�̂; �̂} = arg min
{�;�}

l(�; �) = arg min
{�;�}

1
2‖w−U� − �‖22 + ‖�‖1 (8)

if and only if the following conditions hold:

UT(w−U�̂ − �̂) = 0; (9)

�̂= sgn(w−U�̂) ◦ (|w−U�̂| − e)+: (10)

Proof. For convenience, we de/ne the following index sets for a given �∈Rn

I(�) = {i : �i = 0}; UI(�) = {i : �i 	= 0}: (11)

By Lemma 1, it is su2cient to show that conditions (9) and (10) are equivalent to

l′(�̂; �̂; q; t)¿ 0; for all q∈Rp and t ∈Rn;

where

l′(�̂; �̂; q; t) = lim
�→0+

l(�̂ + �q; �̂+ �t) − l(�̂; �̂)
�

:

For �¿ 0, we de/ne the incremental ratio

Vl(�) =
1
�
[l(�̂ + �q; �̂+ �t) − l(�̂; �̂)]:

Simple algebraic operations with (6) and (11) give

Vl(�) =
1
2
�(Uq + t)T(Uq + t) + (Uq + t)T(−w+U�̂ + �̂)

+
∑

i∈I(�̂)

|ti| + 1
�

∑
i∈ UI(�̂)

(|�̂i + �ti| − |�̂i|): (12)
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Notice that for �¿ 0 su2ciently small

sgn(�̂i + �ti) = sgn(�̂i); ∀i∈ UI(�̂);

then we have from (12) that

Vl(�) =
1
2
�(Uq + t)T(Uq + t) + (Uq + t)T(−w+U�̂ + �̂)

+
∑

i∈I(�̂)

|ti| + 
∑

i∈ UI(�̂)

sgn(�̂i)ti: (13)

Taking the limit as � → 0+, we obtain

l′(�̂; �̂; q; t) = (Uq + t)T(−w+U�̂ + �̂) + 
∑

i∈I(�̂)

|ti| + 
∑

i∈ UI(�̂)

sgn(�̂i)ti

= qTUT(−w+U�̂ + �̂) +
∑

i∈I(�̂)

[
−wi + uTi �̂ + sgn(ti)

]
ti

+
∑
i UI(�̂)

[
−wi + uTi �̂ + �̂i + sgn(�̂i)

]
ti: (14)

Then it is easy to verify that l′(�̂; �̂; q; t)¿ 0 for all q∈Rp and t ∈Rn if and only if
the equalities (9) and (10) hold.

Our proof is similar to that for Theorem 2 in Alliney and Ruzinsky (1994), which
gives necessary and su2cient conditions for the solution of min�‖w − U�‖22 + ‖�‖1.
A slightly di6erent result from Theorem 1 was given by Fu (1998) in the context
of penalized regressions comparing bridge versus Lasso, where the result was proved
by mathematical induction on dimension p. Another slightly di6erent result with /xed
large number of linear predictors in the context of high-dimensional generalized linear
models appeared in Klinger (2001), where the detailed proof of the theorem is not
given, although it can be proved by formulating the target function as an equivalent
constraint maximum likelihood problem and characterization of corresponding condi-
tions. The key di6erence between our result and the ones in Fu (1998) and Klinger
(2001) is that the dimension of parameters in our case (Theorem 1) is p + n, which
is greater than sample size n by a constant p, whereas the dimension of parameters in
Fu (1998) and Klinger (2001) is a /xed constant p.
Now we give another remark. We can easily argue that (9) and (10) are necessary

conditions for {�̂; �̂} to be a minimizer of l(�; �) without using Lemma 1. In fact,
when � is known, by the normal equations for linear least-squares estimation, �̂ is a
minimizer of l(�; �) if and only if UT(w−U�̂−�)=0. On the other hand, when � is
known, according to Section 2, �̂ is a minimizer of l(�; �) if and only if �̂= sgn(w−
U�) ◦ (|w−U�| − e)+.
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4. Algorithms for computing the wavelet estimator

From the structure of Eqs. of (9) and (10), naturally we see that we can use the
following naive iterative scheme to /nd the solution:

Back!tting algorithm:
Start with �0 = 0.
For k = 1; 2; : : : until convergence

�k = (UTU)−1UT(w− �k−1) (15)

�k = sgn(w−U�k) ◦ (|w−U�k | − e)+: (16)

The above scheme is in spirit similar to the iterative back:tting algorithm (Hastie
and Tibshirani, 1990), a general algorithm that enables one to /t an additive model
using any regression type /tting mechanisms, hence we call this scheme the back/tting
algorithm.
The back/tting algorithm is simple, but not very e2cient. Based on it, we will derive

a more sophisticated one, a descent iterative algorithm with an exact line search. In
order to do this, we will /rst analyze the back/tting algorithm to /nd the descent
direction implicitly used by the algorithm at each iterative step. Then we will propose
to modify the algorithm with an exact line search, resulting in the line search algorithm.
We will show how to e2ciently compute the steplength used in the line search.
First let us look at the back/tting algorithm more closely. De/ne

r = w−U�:
This is the (transformed) residual at � if we do not have the nonparametric component
in our model. Naturally, the residual at �k is de/ned by

rk = w−U�k : (17)

For later use, we de/ne the following two index sets:

Z(r) = {i : |ri|6 }; UZ(r) = {i : |ri|¿}:
From (16) the ith element of �k satis/es

�ki = sgn(rki )(|rki | − )+ =

{
0; i∈Z(rk);

rki −  sgn(rki ); i∈ UZ(rk);
i = 1; : : : ; n: (18)

Thus

�k = rk − zk ; where zki =

{
rki ; i∈Z(rk);

 sgn(rki ); i∈ UZ(rk);
i = 1; : : : ; n: (19)
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Then from the iteration formula (15) with (19) and (17),

�k+1 = (UTU)−1UT(w− rk + zk) = �k + (UTU)−1UTzk : (20)

Thus qk de/ned by

qk = (UTU)−1UTzk (21)

is a search direction with respect to � at step k. Later we will show qk is a descent
direction if qk 	= 0. But the unit steplength in (20) may not be optimal or even possibly
l(�k+1; �k+1)¿l(�k ; �k). So we would like to incorporate a line search, taking (cf.
(20), (21) and (16))

�k+1 ≡ �k+1(�) = �k + �qk ; (22)

�k+1 ≡ �k+1(�) = sgn(w−U�k+1(�)) ◦ (|w−U�k+1(�)| − e)+: (23)

The optimal steplength � will be determined later. Note that the new de/nition of �k+1

is consistent with (16). Since �k+1 is determined by �k+1, we do not need to know
what the corresponding search direction with respect to � is.
If the search direction qk=0, then {�k ; �k} is a minimizer. In fact, with a line search

in each iteration step, we still have (17), (19) and (21), thus

qk = (UTU)−1UTzk = (UTU)−1UT(rk − �k)
= (UTU)−1UT(w−U�k − �k) = 0:

So {�k ; �k} satis/es condition (9). Since it also satis/es condition (10) (cf. (23)), it
must be a minimizer of l(�; �).
In the following, we will show that qk is a descent direction under the assumption

that qk 	= 0. De/ne
hk = −Uqk : (24)

Then with (22),

rk+1(�) = w−U�k+1(�) = w−U(�k + �qk) = rk + �hk ;

which shows how the residual r is updated when � is updated according to (22), and
from (23)

�k+1(�) = sgn(rk + �hk) ◦ (|rk + �hk | − e)+:

With zk+1(�) = rk+1(�) − �k+1(�) (cf. (19)), we have

J (�)≡ l(�k+1(�); �k+1(�)) =
1
2
‖zk+1(�)‖22 + ‖�k+1(�)‖1

=
n∑
i=1

1
2
(zk+1

i (�))2 + |�k+1
i (�)|:
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Simple calculations give

Ji(�) ≡ 1
2
(zk+1

i )2(�) + |�k+1
i (�)| =




1
2
(rki + �hki )

2; i∈Z(rk + �hk);

1
2
(2|rki + �hki | − 2); i∈ UZ(rk + �hk):

We observe that Ji(�) is a piecewise quadratic, convex, continuously di6erentiable
function of � and

J ′
i (�) =

{
hki (r

k
i + �hki ); i∈Z(rk + �hk);

hki  sgn(r
k
i + �hki ); i∈ UZ(rk + �hk):

(25)

Thus by (19), (24) and (21), we have

J ′(0) =
n∑
i=1

J ′
i (0) =

∑
i∈Z(rk )

hki r
k
i +

∑
i∈ UZ(rk )

hki  sgn(r
k
i )

= (hk)Tzk = −(qk)TUTzk = −(zk)TU(UTU)−1UTzk :

Since qk = (UTU)−1UTzk 	= 0, we must have J ′(0)¡ 0. Thus indeed qk is a descent
direction.
Now we would like to determine the optimal steplength, denoted by �̂. Since J (�)

is a piecewise quadratic, convex, and continuously di6erentiable function of �; �̂ is a
minimizer of J (�) if and only if J ′(�̂)=0. Since qk 	= 0 and U is of full column rank,
hk =−Uqk 	= 0. Then from (25) we observe that J ′(�) is a nondecreasing function of
� and lim�→∞ J (�) = ∞. Since J ′(0)¡ 0, �̂ must be /nite and positive. In order to
/nd the optimal �̂, we de/ne the set

A= {� : |rki + �hki | = ; �¿ 0; hki 	= 0; i = 1; : : : ; n; }: (26)

Note that the number of elements in A is at most 2n. Suppose A has m distinct
elements in the following order

0¡�1¡�2¡ · · ·¡�m:

For convenience, de/ne �0 = 0. If j is the smallest index such that J ′(�j+1)¿ 0, then
�̂ must lie in (�j; �j+1]; or if J ′(�m)¡ 0, then �̂ must lie in (�m;∞). We would like
to compute J ′(�j) from j= 1 until the /rst j such that J ′(�j)¿ 0 in an e2cient way.
From (25) we have

J ′(�) =


 ∑

i∈Z(rk+�hk )

hki r
k
i + 

∑
i∈ UZ(rk+�hk )

hki sgn(r
k
i + �hki )




+�
∑

i∈Z(rk+�hk )

(hki )
2: (27)
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When �∈ (�j; �j+1), the index sets Z(rk + �hk) and UZ(rk + �hk) remain unchanged,
so we use more sensible notation Zj and UZj to replace them, respectively. From (27)
we can write

J ′(�) = cj + �dj; �∈ (�j; �j+1);

where

cj =
∑
i∈Zj

hki r
k
i + 

∑
i∈ UZj

hki sgn(r
k
i + �jhki ); dj =

∑
i∈Zj

(hki )
2: (28)

Here we have used the fact that sgn(rki + �hki ) = sgn(rki + �jhki ) for i∈ UZj. Since cj
and dj are constants, J ′(�) is a linear function in (�j; �j+1). But J ′(�) is continuous
at any �, so we can compute J ′(�j+1) by J ′(�j+1) = cj + �j+1dj.
In order to compute J ′(�j+1) quickly, we need an e2cient way to compute cj and

dj, which in fact can be obtained by updating cj−1 and dj−1. Notice that when � moves
from the interval (�j−1; �j) to the interval (�j; �j+1), each index ij corresponding to �j
(i.e., |rkij +�jhij |=) moves from one type of index sets to the other (i.e., if ij ∈Zj−1,
then ij ∈ UZj, and if ij ∈ UZj−1, then ij ∈Zj), but the other indices do not. Thus from
(28) we then have

cj = cj−1 + hkij r
k
ij − hkij sgn(r

k
ij + �j−1hkij); dj = dj−1 + (hkij)

2; if ij ∈ UZj−1;

cj = cj−1 − hkij r
k
ij + hkij sgn(r

k
ij + �j−1hkij); dj = dj−1 − (hkij)

2; if ij ∈Zj−1:

If there are more than one ij corresponding to �j, we simply use a for loop to repeat
the above updating process to get the /nal cj and dj. We see that updating cj and dj
is very simple. But we need the initial c0 and d0 (see (28)):

c0 =
∑
i∈Z0

hki r
k
i + 

∑
i∈ UZ0

hki sgn(r
k
i ); d0 =

∑
i∈Z0

(hki )
2;

where it is easy to show that

Z0 = {i: |rki |¡} ∪ {i: |rki | = ; rki h
k
i 6 0};

UZ0 = {i: |rki |¿} ∪ {i: |rki | = ; rki h
k
i ¿ 0}:

Since J ′(�) is continuous at �= 0, we can also compute c0 using

c0 = J ′(0) =
∑

i∈Z(rk )

hki r
k
i + 

∑
i∈ UZ(rk )

hki sgn(r
k
i ):

If j is the smallest index such that J ′(�j+1)¿ 0, then the optimal steplength �̂
satis/es

�̂= −cj=dj:

Otherwise J ′(�m)¡ 0 and then

�̂= −cm=dm:

Note that updating cj and dj once needs only O(1) operations. If the updating
process is repeated l times (note l6m6 2n), then we need O(l) operations. If we
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sort the set A by the binary insertion sorting algorithm at the beginning of the line
search process, we need O(m logm) operations. Thus the whole line search will also
need O(m logm) operations. There is another approach instead of sorting. For each
j¿ 1, before computing cj and dj by the updating process, we /nd �j, the smallest
element among the remaining elements in A after �1; : : : ; �j−1 have been found in
the previous updating processes. This requires O(m − j) operations. Thus the whole
line search process requires O(ml) operations. Note that the second approach is more
e2cient than the /rst one when l6 logm.

We are now ready to summarize the whole algorithm.

Line search algorithm:
Given the data y and X and a tolerance �.
Compute the DWT of y and X :w=Wy and U =WX
Compute �1 = (UTU)−1UTw
For k = 1; 2; : : :
Compute the search direction qk = (UTU)−1UTzk , where zk is computed by (19)
Compute the optimal steplength �̂= argmin

�
J (�)

Set �k+1 = �k + �̂qk

If
‖�k+1 − �k‖2

‖�k‖2
6 �, set �̂ = �k+1

compute �̂= sgn(w−U�̂) ◦ (|w−U�̂| − e)+ and its IDWT f̂ =WT�̂
stop

Now we give some remarks about this algorithm. In computing �1 and qk , we can
use the QR factorization of U :

U =Q1R;

where Q1 ∈Rn×p has orthonormal columns, i.e, QT
1Q1 = I , and R∈Rp×p is a non-

singular upper triangular matrix. The QR factorization of U can be computed by the
Householder transformations in O(mp2) operations (see for example Golub and van
Loan (1996, Chapter 50)). Then we can obtain �1 and qk by solving the upper trian-
gular systems

R�1 =QT
1w; Rqk =QT

1 z
k :

With the QR factorization of U , computing �1 or qk needs O(mp) operations. Notice
that our algorithm needs to compute the QR factorization only once. This makes the
algorithm attractive.
Note that �1 is simply the ordinary least-squares estimator. If |r1|= |w−U�1|¡e,

then �1=0 (see (18)), z1=r1 (see (19)), and q1=0 (see (21)). Thus �1 is the optimal
estimator. This means the � part should not be included into the model or  is so big
that the � is penalized too much.
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5. Numerical simulations

In this section, we give some simulation results. All the calculations were carried out
in MATLAB 6.5 on a Pentium III running Windows 2000. For the DWT, we used the
WaveLab developed by the team from the Statistics Department of Stanford University
(http://www-stat.stanford.edu/∼wavelab).
We generated the test problems as follows. For the nonparametric component we

select di6erent functions

f(t) = cfi(t); max
t∈[0;1]

fi(t) = 1; i = 1; 2; 3; 4

f1(t) = 4:26(exp (−3:25t) − 4exp (−6:5t) + 3exp (−9:75t));

f2(t) =




4t2(3 − 4t) if 06 t6 0:5;

4
3 t(4t

2 − 10t + 7) − 1:5 if 0:5¡t6 0:75;

16
3 t(t − 1)2 if 0:75¡t6 1:

f3(t) = ‘Bumps′;

f4(t) = ‘Doppler′: (29)

Here f1, given in Schimek (2000), is a smoothing function; f2, given in Nason (1996),
is a piecewise polynomial with discontinuity; f3, given in Donoho (1994), is a function
with many bumps; and f4, given in Donoho (1994), is a function with changing
frequencies. Fig. 1 displays the plots of these functions.
With p= 2, we took  1 = 0:5 and  2 = 1 for the regression coe2cients and gener-

ated xi1 and xi2 independently from N(0; 1) following Heckman (1986). We simulated
” as a white noise vector following N(0; In). For DWT, the /lter we used is the
Daubechies /lter with 8 vanishing moments. We chose c=9 in (29) to have a reason-
able signal-to-noise ratios of the nonparametric and parametric component. The sample
sizes we took were n= 32, 64, 128 and 256. For each sample size, 100 replicates of
data with di6erent X and ” were generated. With the simulated data, we then used
the proposed algorithm to estimate the true  1 and  2. In our algorithm, the universal
threshold UV = �

√
2 log (n) was used, and the termination tolerance � was set to be

10−6.
The estimates of � by the proposed wavelet method were compared with those by

partial spline approach. Discussions on the partial spline approach can be found in
Wahba (1990, Chapter 6) and Green and Silverman (1994, Chapter 4). Gu (2002,
Section 4.1) gave one example for /tting the partial spline models using Gu’s ssanova
facilities in the R package GSS. We used Gu’s implementation of partial spline ap-
proach in our simulation. We called ssanova running in the R for Windows from
MATLAB program. The R command for /tting the partial spline model was

fit <- ssanova(y∼t, partial=cbind(x1,x2,) method=“u”; varht=1):

The smoothing parameter was chosen by the unbiased risk estimator criterion, and
the variance estimate was the speci/ed value. Note that the computational complexity

http://www-stat.stanford.edu/~wavelab
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Fig. 1. Plots of the nonparametric function f(t).

of ssanova was O(n3); this was the main reason that we chose relatively small sample
sizes here.
For each setting, we obtained 100 estimates  ̂1 and  ̂2. Fig. 2 gives the box plots

of the estimated regression coe2cients  ̂1. The x-axis labels in the box plot read as
follows: ‘1W’ denotes the case for n = 32 using the wavelet approach; ‘1S’ denotes
the case for n= 32 using the partial spline approach; and so on. Since the results for
 ̂2 are similar to those for  ̂1, we omit them for brevity.

We also report the observed mean squared errors (MSE) here:

MSEi =
1
100

100∑
j=1

( ̂ij −  i)2; i = 1; 2:

Figs. 3 and 4 display log(1000×MSE1) and log(1000×MSE2), respectively, where
the solid line and the dotted line denote the rescaled MSE by the wavelet method and
the partial spline method, respectively.
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Fig. 2. Box plots of the estimates  ̂1.

From these plots, we see that on average, both the wavelet method and the par-
tial spline method gave fairly good estimates of  1 and  2. Reduction of the range
of estimates with growing sample size is clearly identi/ed in these /gures. For the
irregular function like ‘Bumps’, the wavelet method slightly outperforms the partial
spline method in terms of the observed MSE. But for the smooth function like f1, the
partial spline method slightly outperforms the wavelet method. It should be pointed out
that the smoothing parameter for the partial spline method was chosen optimally in the
expected MSE sense by minimizing the unbiased risk estimator, while the threshold for
the wavelet method here was not. A data driven method for choosing a good threshold
in the wavelet estimation of the PLM will be a subject of future research.
In order to get some ideas about the computational e2ciency of the line search

algorithm, we counted the number of iterations of the algorithm for various cases. For
brevity, we considered only f1 and f2. The data y and X were constructed the same
way as before for n=128; 256; 512; 1024; p=2; 20; 40;  i=0:5i, i=1; : : : ; p, and c=9
and 90. For comparison, we also counted the number of iterations for the back/tting
algorithm. As before, for each case, we generated 100 replicates of the data. The mean
number of iterations for each case was given in Table 1, where “LS” stands for “Line
Search” and “BF” stands for “BackFitting”.
From Table 1, we see that the proposed linear search algorithm converges quickly.

When both c and p are small, the back/tting algorithm also converges quickly, costing
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Fig. 3. Rescaled MSE of  ̂1.

only a few more iterations. But when c and p are large, the line search can bring a
signi/cant reduction in the number of iterations. For example, with n = 128, p = 40
and f = 90f2, on average, the back/tting algorithm took 47.86 iterations, while the
linear search algorithm took only 23.65 iterations. Note that our line search is quite
simple and does not cost much. When n increases, the number of iterations for both
algorithms decreases. The reason is that with n increasing the initial estimate of �,
which is the ordinary least squares estimate, is closer to the optimal estimate of �.
When c increases from 9 to 90, the nonparametric function is more dominant, so that
the ordinary least squares estimate is moving further away from the optimal estimate,
leading in the increase in the number of iterations.

6. Concluding remarks

To formalize the notion of sparsity of the discrete wavelet transform of functions
in a wide range of function spaces (such as Besov spaces), wavelet nonparametric
regression usually penalizes the l1 norm of the population wavelet coe2cients. For the
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penalized wavelet regression estimates of a partially linear model, we derived the nec-
essary and su2cient conditions for the minimum solution. Based on these conditions,
we developed a descent iterative algorithm. The threshold can be taken to be the uni-
versal threshold or determined by a data-driven method. The Monte Carlo simulation
results con/rmed that this wavelet approach (with the universal threshold) has good
performance and can give slightly better results than the partial spline approach for
some irregular functions. Complete comparisons between this wavelet approach with
di6erent thresholds and other approaches need further study.
Future developments include methods for non-equally spaced designs. In the wavelet

nonparametric regression context, many approaches have been developed to handle this
situation. These methods are mostly based on interpolation or approximation, either in
the original function domain or in the wavelet domain. Most recently, Antoniadis and
Fan (2001) introduced the nonlinear regularized wavelet estimators by using a large
class of penalty functions. It will be of interest to extend this regularized Sobolev
interpolator to the partially linear models.
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Table 1
The mean number of iterations

n p f = 9f1 f = 90f1 f = 9f2 f = 90f2

LS BF LS BF LS BF LS BF

128 2 4.50 7.09 5.94 12.25 4.50 6.59 5.86 13.59
256 2 3.99 5.72 5.06 8.95 3.93 5.51 5.12 9.70
512 2 3.62 4.90 4.49 7.16 3.75 4.98 4.46 7.50
1024 2 3.38 4.21 3.95 5.76 3.27 4.26 4.09 6.34

128 20 7.68 10.45 13.33 25.60 7.29 9.77 13.46 26.76
256 20 5.69 7.17 8.19 13.96 5.57 7.02 8.79 15.74
512 20 4.71 5.57 6.22 9.73 4.68 5.55 6.69 10.53
1024 20 4.00 4.66 5.06 7.25 4.00 4.72 5.32 7.87

128 40 9.91 14.27 23.17 45.85 9.33 13.54 23.65 47.86
256 40 6.43 8.57 10.26 18.85 6.28 8.27 10.92 21.07
512 40 5.01 6.10 7.04 11.59 4.97 6.16 7.44 12.63
1024 40 4.00 4.94 5.69 8.25 4.02 4.97 6.00 9.09

In real world applications, we are most likely to encounter correlated data. Johnstone
and Silverman (1997) proposed the level-dependent thresholding approach for data with
correlated noise in the wavelet nonparametric regression. This can be naturally extended
to the partially linear regression settings. But it will be more computationally intensive.
In order to make inference about the linear coe2cients, it is important to derive the

asymptotic distribution of the penalized estimators. It is also of interest to study the
asymptotic behavior of the estimator for the nonparametric part. The rate of conver-
gence of these estimators is another important problem we would like to investigate in
the future.
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