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ABSTRACT

For kinematic relative GPS positioning the often used
approach is to establish a discrete linearized state-
space model, and then apply a standard Kalman fil-
tering technique to estimate the positions. However,
there are a few shortcomings with this approach. Since
the integer ambiguities are constant (suppose there
are no cycle slips), the state-space model for position-
ing is special. In order to apply a standard Kalman
filtering technique, this approach enlarges the time-
variant state vectors (e.g., position-velocity vectors) to
include the integer ambiguities. This not only makes
the estimation problem larger—leading to higher com-
putational cost, but also results in singular covariance
matrices for the process noise vectors in the process
equations since the covariance matrix corresponding
to the integer ambiguity vector is a zero matrix. Then

some standard Kalman filtering techniques, such as
the square root information filter cannot be applied.
The typical method people have used to handle this
singularity problem is to artificially assign a small co-
variance matrix to the ambiguity vector. But this is
an approximation and does not look elegant in theory.

In order to avoid the above problems, for short baseline
kinematic relative positioning, we present a compu-
tationally efficient and numerically reliable approach.
Our approach can be regarded as an extension of the
standard information square root filtering technique.
The basic idea is to write all available measurement
equations (we use both code and carrier phase mea-
surements based on L1 signals) and process equations
together to form a large linearized model, which has
special structures. Then based on this model, we
develop a recursive algorithm to compute the least
squares estimates of positions and velocities. We ob-
tain not only the estimate of the current position (this
is called filtering), but also the estimates of previous
positions (this is called smoothing). Our algorithm is
computationally efficient and numerically reliable.

One thing which makes the estimation problem much
more complicated and also more interesting is that the
integer ambiguity vector may change due to cycle slips,
loss of signals, and satellite rising/setting. In this pa-
per we show how to handle this problem in our algo-
rithm. Unlike the typical literature in GNSS, we give
details about the algorithm so that people can imple-
ment it without difficulties.

1 INTRODUCTION

The often used approach to kinematic relative GPS
positioning is to employ differencing techniques to
establish linearized state-space models and then ap-
ply the Kalman filtering techniques to estimate the
receiver positions (and velocities et al), see, e.g.,
[8, 9, 11, 12, 13, 14, 17, 19]. The state-space model



can be written as:

yk = Akxk + Bkz + vk, vk ∼ N (0,Σv
k), (1)

xk+1 = F kxk + uk+1, uk+1 ∼ N (0,Σu
k+1), (2)

for k = 1, 2, . . ., where (1) and (2) are referred to as
the measurement (or observation) equation and the
process (or state) equation, respectively, xk is the vec-
tor including position, velocity et al, z is the integer
ambiguity vector, Ak, Bk and F k are known matrices,
and vk and uk+1 are the random measurement noise
vector and process noise vector, respectively, follow-
ing normal distributions. In order to apply a standard
Kalman filtering technique, a typical approach is to
stack xk and z as a state vector, so the above model
is transformed to:

yk =
[

Ak Bk

]

[

xk

z

]

+ vk, vk ∼ N (0,Σv
k), (3)

[

xk+1

z

]

=

[

F k 0

0 I

] [

xk

z

]

+

[

uk+1

wk+1

]

, (4)

[

uk+1

wk+1

]

∼ N
(

0,

[

Σ
u
k+1 0

0 0

])

. (5)

This approach not only (unnecessarily) makes the esti-
mation problem larger so that the computational cost
will be higher, but also results in a singular covariance
matrix for each process noise vector (note that the
noise covariance matrix of wk+1 is a zero matrix in
(5)) so that some standard Kalman filter techniques,
such as the square root information filter (see, e.g.,
[10]) cannot be applied. To overcome this singular-
ity problem, the typical method (see, e.g., [12, 14])
is to artificially assigned a scaled identity matrix δI
(δ is a small positive scalar) as the covariance matrix
to wk+1. But this approximation does not conform
with the physical characteristic of the integer ambigu-
ity vector and may cause a numerical problem if δ is
too small or lead to a loss of accuracy of the position
estimates if it is not small enough.

In this paper, for short baseline kinematic positioning
we propose a new approach to avoid the above difficul-
ties. We combine all the measurement equations (for
L1 signals) and process equations to form a linearized
state-space model. Based on the model, we design a
recursive approach to compute the least squares (LS)
estimates of the positions. Computing the correspond-
ing error covariance matrices of the estimates are also
considered. We exploit the structure of the model to
make the algorithm computationally efficient and use
orthogonal transformations to make it numerically re-
liable, and also take the storage efficiency into consid-
eration. This approach avoids the mentioned draw-
backs of the current approach and is an extension of
the recursive least squares (RLS) method presented

in [4], which used only the code and carrier measure-
ment equations for positioning, and an extension of
the square root information filter given in [16].

The rest of this paper is organized as follows. In Sec-
tion 2 we present the state-space model. In Section
3 we use orthogonal transformations which make full
use of the structures of the model to compute the LS
estimates of the positions and velocities, and the cor-
responding error covariance matrices, and show how to
handle satellites rising and setting. Finally a summary
is given in Section 4.

Throughout this paper bold upper case letters are used
to denote matrices and bold lower case letters are used
to denote vectors. The unit matrix is denoted by I and
its ith column by ei, while e ≡ [1, 1, . . . , 1]T (we use ≡
to mean “is defined to be”). The 2-norm of a vector
or a matrix is denoted by ‖ · ‖2. The jth column of a
matrix A is denoted by A(:, j), the (i, j) entry of A by
A(i, j), and the ith entry of a vector a by a(i). The
mean and covariance are denoted by E{·} and cov{·},
respectively. For a random vector x which is normally
distributed with mean u and covariance Σ, we denote
it by x ∼ N (u,Σ).

2 THE MATHEMATICAL MODEL

In this section, we establish a state-space model for
short baseline kinematic relative positioning based on
the measurement equations and process equations.

In kinematic relative positioning, one receiver is set
up at a surveyed site whose exact position is known,
and the other receiver is roving and its positions are to
be estimated. We assume that the carrier phase and
code measurements of the reference receiver are avail-
able at the roving receiver. We also assume the base-
line is short such that the ionospheric reflection and
tropospheric reflection can (almost) be canceled after
applying the between-receiver single-difference tech-
nique. We consider only the L1 carrier since many
receivers can only receive the L1 signal. But it is easy
to extend our approach to the dual frequency case.

For short baseline relative positioning, in [4], we de-
rived the following single differenced carrier phase and
code measurement equations corresponding to satellite
i at epoch k

φi
k = λ−1(ωi

kei
k)T bk + N i + βφ

k + νi
k, (6)

ρi
k = λ−1(ωi

kei
k)T bk + βρ

k + µi
k, (7)

where the units of each of the terms in above equa-
tions are number of wavelengths, φi

k and ρi
k are the

single differenced carrier phase measurement and code
measurement, respectively; λ is the wavelength of the



L1 carrier; bk is the baseline vector pointing from the
reference receiver to the roving receiver; ωi

k satisfies

ωi
k = ‖2hi

r − bk‖2/(‖hi
r‖2 + ‖hi

r − bk‖2), (8)

with hi
r being the vector pointing from the reference

receiver to satellite i (note that ωi
k is close to 1); ei

k is
the unit vector pointing from the midpoint of the base-
line to satellite i; N i is the single differenced integer
ambiguity; βφ

k is the single differenced receiver clock
error (including hardware delay and initial phase) for
the carrier phase measurement; βρ

k is the single differ-
enced receiver clock error (including hardware delay)
for the code measurement; and νi

k and µi
k are the sin-

gle differenced noises (including multipath errors) for
the carrier phase measurement and the code measure-
ment, respectively. We have an important assumption
(see [19, Sec 3.4]) for (6) and (7) that all the carrier
phase noises νi

k (or code noises µj
l ) for different satel-

lites and different epochs are unbiased independently
distributed with the same normal distribution, and νi

k

and µj
l are also assumed to be independent.

Suppose there are m visible satellites and define

y
φ
k ≡





φ1
k

·
φm

k



 , y
ρ
k ≡





ρ1
k

·
ρm

k



 , Ek ≡ λ−1





(ω1
ke1

k)T

·
(ωm

k em
k )T



 ,

(9)

a ≡





N1

·
Nm



 , v
φ
k ≡





ν1
k

·
νm

k



 , v
ρ
k ≡





µ1
k

.
µm

k



 .

We can combine m single differenced carrier-phase
measurement equations (6) and m single differenced
code measurement equations (7) together to give

y
φ
k = Ekbk + a + βφ

k e + v
φ
k , v

φ
k ∼ N (0, σ2

φIm), (10)

y
ρ
k = Ekbk + βρ

ke + v
ρ
k, v

ρ
k ∼ N (0, σ2

ρIm), (11)

where we assume that the standard deviations σφ and
σρ are known.

Note that in Ek, ωi
kei

k depends on the baseline bk.
In other words, (10) and (11) are actually nonlinear
equations in terms of bk. We write

Ek ≡ E(bk). (12)

This Ek is known once bk is known. Since E(bk) is not
very sensitive to changes in bk, with receiver’s dynamic
available, it is usually sufficient to use the predicted
estimate bk|k−1 of bk (see the end of Section 3.1) to
compute E(bk|k−1) and use it to replace Ek in (10)

and (11). Then, when y
ρ
k and y

φ
k are available, we

can obtain a better estimate of bk by the method to
be given later. We could use the better estimate to

re-compute an approximation to Ek and estimate bk

again if necessary. Thus from now we just assume that
the Ek in (10) and (11) are known.

In the single differenced measurement equations (10)
and (11), there are still the unknown errors βρ

k and

βφ
k . A typical way to remove these errors is by using

the double difference technique. However, double dif-
ference makes the measurements correlated. Thus, we
just follow [3] and [4] to use orthogonal transforma-
tions to eliminate these errors, leaving the measure-
ment equations still uncorrelated.

We first eliminate βφ
k in the carrier-phase measure-

ment equation (10). Let P ∈ Rm×m be a Householder
transformation (see, e.g., [6, p209]) such that

Pe =
√

me1, P ≡ I − 2uuT

uT u
, u = e1 −

e√
m

. (13)

Partition P ≡
[

pT

P̄

]

, where

P̄ =
[ e√

m
, Im−1 −

eeT

m −√
m

]

.

Multiplying both sides of (10) by P from the left, we
obtain
[

pT y
φ
k

P̄ y
φ
k

]

=

[

pT Ek

P̄ Ek

]

bk +

[

pT

P̄

]

a+

[√
mβφ

k

0

]

+

[

pT v
φ
k

P̄ v
φ
k

]

.

(14)
Since only the first equation in (14) includes the term

βφ
k , it can be dropped off for position estimation to

give:
P̄ y

φ
k = P̄ Ekbk + P̄ a + P̄ v

φ
k , (15)

where P̄ v
φ
k ∼ N (0, σ2

φIm−1). We have used the simple
Householder transformation instead of the often used
double difference technique to eliminate the unknown
error βφ

k , leaving the transformed measurements still
uncorrelated. Since P̄ is (m − 1) × m, it does not
have full column rank and we will not be able to get
a unique estimate of a. If we set P̄ a as a new vector,
we would lose the integer nature of a. So following
[3] and [4] we introduce the double differenced integer
ambiguity (DDIA) vector z:

z = [N2 − N1, N 3 − N1, . . . , Nm − N1]T , (16)

where without loss of generality we choose satellite 1
as the reference satellite. Note that z is still a vector
of integers. Define

G ≡ Im−1 −
eeT

m −√
m

, J ≡ [−e, Im−1]. (17)

It is easy to verify from (13) that G is nonsingular and

P̄ = GJ , P̄ a = GJa = Gz. (18)



Thus (15) becomes

P̄ y
φ
k = P̄Ekbk + Gz + P̄ v

φ
k . (19)

Similarly, we can eliminate βρ
k from the code measure-

ment equation (11) and obtain

P̄ y
ρ
k = P̄Ekbk + P̄ v

ρ
k, (20)

where P̄ v
ρ
k ∼ N (0, σ2

ρIm−1).

In order to combine (19) and (20), we define

yk ≡
[

σ−1
φ P̄ y

φ
k

σ−1
ρ P̄ y

ρ
k

]

, Hk ≡
[

σ−1
φ P̄Ek

σ−1
ρ P̄Ek

]

, (21)

B ≡
[

σ−1
φ G

0

]

, vk ≡
[

σ−1
φ P̄ v

φ
k

σ−1
ρ P̄ v

ρ
k

]

,

Thus we can rewrite (19) and (20) as

yk = Hkbk + Bz + vk, vk ∼ N (0, I2(m−1)). (22)

In this measurement equation, we used the geocen-
tric Cartesian coordinate system. However, we would
like to work with the local geodetic coordinate system
later. This can easily be done by pre-multiplying bk

by the orthogonal transformation matrix which trans-
forms the coordinates in the geocentric Cartesian co-
ordinate system to the coordinates in the local geode-
tic coordinate system (N,E,U) with the reference re-
ceiver as the origin, and by post-multiplying Hk by
the transpose of the orthogonal transformation matrix
in (22). For details on the transformations of coor-
dinates in different coordinate systems, see, e.g., [12,
Secs 6.2, 7.1]. To simplify the notation, we just as-
sume that the components of bk ≡ [xk, yk, zk]T in (22)
are already the coordinates in the local geodetic coor-
dinate system.

Now we would like to introduce the process equations.
There are different types of process equations to model
the dynamics of receivers, see, e.g., [1, 2]. In this pa-
per, we adopt the following process equations which
are suitable for short baseline relative positioning with
low dynamics (see, e.g., [2, Chap 6], [12, Sec 10.3.3],
[14, Appendix L])

xk+1 = F̄ xk + ūk+1, ūk+1 ∼ N (0,Σū), (23)

for k = 1, 2, . . ., where

xk = [xk, ẋk, yk, ẏk, zk, żk]T

with ẋk, ẏk, żk being the velocities in each direction,
the transition matrix F̄ satisfies

F̄ =





C 0 0

0 C 0

0 0 C



 , C =

[

1 T
0 1

]

,

with T being the time interval between two consecu-
tive epochs, and the noise covariance matrix

Σ
ū =





qxW 0 0

0 qyW 0

0 0 qzW



 , W =

[

T 3/3 T 2/2
T 2/2 T

]

with qx, qy and qz being the power spectral densities
of the process noise.

In order to make the state vector bk in the measure-
ment equation (22) the same as the state vector xk in
the process equation (23), we modify the matrix Hk

to include three zero columns:

Ak ≡ [Hk(:, 1),0, Hk(:, 2),0, Hk(:, 3),0],

thus (22) can be rewritten as

yk = Akxk + Bz + vk, vk ∼ N (0, I2(m−1)). (24)

In order to design a recursive algorithm for position-
velocity estimation, we need to have an estimate and
its error covariance matrix for the initial state vector
x1. The usual assumption is that we have

E{x1} = x1|0, cov{x1|0 − x1} = Σ1|0,

which can be rewritten as

x1|0 = x1 − ū1, E{ū1} = 0, cov{ū1} = Σ1|0. (25)

In practice, we can choose x1|0 and Σ1|0 by the follow-
ing strategy. At the beginning (k = 1), we may have
some idea about the location of the roving receiver, so
can give an initial estimate of b1. If we do not have
any good information about the location of the roving
receiver, we can take a zero vector as an initial esti-
mate of b1. Let the initial estimate of b1 be denoted by
[x1|0, y1|0, z1|0]

T . For each velocity component, we take
zero as an initial estimate. Thus the initial estimate
of x1 is

x1|0 = [x1|0, 0, y1|0, 0, z1|0, 0]T .

Following [1], we take the error covariance matrix Σ1|0

of x1|0 to be a diagonal matrix. Due to the large un-
certainty of x1|0, the diagonal elements of Σ1|0 should
usually take large values. The choice of specific values
depends on a specific application.

The equations (23)–(25) give the mathematical model
for our positioning algorithm.

3 A RECURSIVE LS ALGORITHM

If a good process model for the roving receiver is not
available, [4] has already shown how to use only mea-
surement equations (see (22)) to design an efficient and
numerically reliable recursive LS algorithm for posi-
tioning. Now we would like to extend this approach



to the case where the process model (23) which is as-
sumed to be an accurate model is available. In the
extension, we will use the ideas given in [16], which
presented a square-root information filter (a variant
of the standard Kalman filter) to compute the LS es-
timates for a standard state-space model (formed by
equation (1) with no the Bkz term and equation (2)).

3.1 Position Estimation

Following [16], we first transform (23) and (25) so that
the process noise vectors will be identically distributed
with zero mean and unit covariance matrices as the
measurement noise vectors in (24). Suppose we have
the Cholesky factorizations

Σ
−1
1|0 = UT

1 U1, (Σū)−1 = UT U , (26)

where U1 and U are upper triangular. Notice that
the time-invariant process noise covariance matrix Σ

ū

is in a block-diagonal form, so we can easily obtain

U =





UW /
√

qx 0 0

0 UW /
√

qy 0

0 0 UW /
√

qz



 ,

where

UW =

[

6/(T
√

3T ) −
√

3/
√

T

0 1/
√

T

]

.

Multiplying both sides of (25) and (23) by U1 and U

from the left, respectively, leading to

c ≡ U1x1|0 = U1x1 − U1ū1 ≡ U1x1 + u1, (27)

Uxk+1 = UF̄xk + Uūk+1 ≡ −Fxk − uk+1, (28)

for k = 1, 2, . . ., where

u1 ∼ N (0, I6), uk+1 ∼ N (0, I6).

At epoch k, we combine all available process equations
(27) and (28 and measurement equations (24) to form
the following linear model

























c

y1

0

y2

0

·
·

yk

























=

























U1 0

A1 B

F U 0

A2 B

F · 0

· ·
· U ·

Ak B





































x1

x2

·
xk

z













+

























u1

v1

u2

v2

·
·

uk

vk

























(29)
or

y(k) = A(k)x(k) + v(k), v(k) ∼ N (0, I). (30)

Notice that since U1 and U are nonsingular, A(k) has
full column rank.

For numerical stability, we use the QR factorization
method to find the LS estimate of x(k) in (30) (see [6,
Sec 5.3]). Suppose we find an orthogonal matrix Q

such that

(Q(k))T A(k) =

[

(Q
(k)
1 )T

(Q
(k)
2 )T

]

A(k) =

[

R(k)

0

]

, (31)

where R(k) is nonsingular upper triangular. Then the
linear model (30) can be transformed to

[

(Q
(k)
1 )T y(k)

(Q
(k)
1 )T y(k)

]

=

[

R(k)

0

]

x(k) +

[

(Q
(k)
1 )T v(k)

(Q
(k)
1 )T v(k)

]

,

where transformed noise vector still has zero mean and

unit covariance matrix, i.e.,

[

(Q
(k)
1 )T v(k)

(Q
(k)
1 )T v(k)

]

∼ N (0, I).

Then the LS estimate x̂
(k) satisfies

R(k)x̂
(k) = (Q

(k)
1 )T y(k),

and its error covariance matrix is

cov{x(k) − x̂
(k)} = [(R(k))T R(k)]−1. (32)

Now we give details for computing (31). We will fol-
low [4] and [16] to make full use of special structure of

A(k). First we set

R̂1 ≡ U1, Ĉ1 ≡ 0.

For each j we find an orthogonal matrix Q̄
T

j to zero
Aj as follows:

Q̄
T

j

[

R̂j Ĉj

Aj B

]

=

[

R̄j C̄j

0 M j

]

, (33)

where R̄j is nonsingular upper triangular and Q̄j is

orthogonal. Considering the structures of R̂j ∈ R6×6,
Aj ∈ R(2m−2)×6 and B ∈ R(2m−2)×(m−1) in (33),
we use Givens rotations to eliminate the non-zero ele-
ments of Aj columnwise from the left to the right and
for each column from the bottom to the top. For each
non-zero element in the ith row (2 ≤ i ≤ 2m − 2) of
Aj , we combine it with the (i − 1)th element in the
same column to construct the rotation. For each non-
zero element in the first row of Aj , we combine it with

the corresponding diagonal entry of R̂j in the same
column to construct the rotation. We give part of the
process for m = 6 schematically in Figure 1, where
the letters indicate the order of the zero elements be-
coming non-zeros in Ak by the Givens rotations and
these elements will be eliminated later; the numbers in
squares indicate the order of these zero elements in B

becoming non-zeros after the Givens rotations. Note



that the last m − 1 rows of B are all zeros before ap-
plying the rotations, thus after the rotations, the last
m−4 rows of Mk are zeros. It is easy to know a total
of 6m rotations are needed.
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Figure 1: Scheme of transformation (33)

After the transformation (33), another orthogonal ma-
trix Q̃j is designed such that

Q̃
T

j





R̄j 0 C̄j

0 0 M j

F U 0



 =





Rj Rj,j+1 Cj

0 0 M j

0 R̂j+1 Ĉj+1



 , (34)

where Rj and R̂j+1 are both upper triangular. We
also use Givens rotations to zero F ∈ R6×6 by tak-
ing advantage of the upper triangular structure of
R̄j ∈ R6×6 and U ∈ R6×6. The transformation on
the first two block columns of (34) is schematically
shown in Figure 2, where the number in a circle in-
dicates the element is eliminated in the ith rotation,
while the number in a square indicates this element is
generated by the ith rotation.

When we apply the above transformations to A(k), we
also apply them to y(k) in (29) or (30). The transfor-
mations are denoted by

Q̄
T

j

[

ĉj

yj

]

=

[

c̄j

dj

]

, Q̃
T

j





c̄j

dj

0



 =





cj

dj

ĉj+1



 , (35)

where ĉ1 ≡ c.
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Figure 2: Scheme of transformation (34)

Therefore, finally we have transformed (29) to

























c1

d1

c2

d2

·
·

c̄k

dk

























≈

























R1 R12 C1

0 M1

R2 R23 C2

0 M2

· ·
· ·

R̄k C̄k

0 Mk





































x1

x2

·
xk

z













(36)

where to simplify the presentation, we have omitted
the transformed noise vector, which still has zero mean
and a unit covariance matrix since we used orthogonal
transformations, and so we used “≈” instead of “=”.
Later, we will continue to use this notation when we
transform the model by orthogonal transformations.

Reordering the equations in (36), we obtain two sub-
models:









c1

·
ck−1

c̄k









≈









R1 R12 C1

· · ·
Rk−1 Rk−1,k Ck−1

R̄k C̄k





















x1

x2

·
xk

z













.

(37)








d1

·
dk−1

dk









≈









M1

·
Mk−1

Mk









z. (38)

Obviously we need to first estimate z by (38) and then
estimate xk, . . . , x1 by (37).

The estimate of the DDIA vector z can be computed
in a recursive fashion. Suppose at epoch k−1 we have



computed the following orthogonal transformations

T T

k−1









M 1

M 2

·
Mk−1









=

[

Sk−1

0

]

, T T

k−1









d1

d2

·
dk−1









=

[

fk−1

f̄k−1

]

,

where T T

k−1 is orthogonal, and Sk−1 is nonsingular
upper triangular. Then at epoch k, with the newly
obtained Mk and dk (cf. (33) and (35)) we use House-
holder transformations to compute

T̃
T

k

[

Sk−1

Mk

]

=

[

Sk

0

]

, T̃
T

k

[

fk−1

dk

]

=

[

fk

f̂k

]

, f̄k ≡
[

f̄k−1

f̂k

]

.

(39)
In the above transformations, for computational effi-
ciency, we have to make full use of the structures of
Sk−1 (which is upper triangular) and Mk (whose last
m−4 rows are zero). Note that we never form or store
T k−1 and T̃ k. Then (38) is transformed to

[

fk

f̄k

]

≈
[

Sk

0

]

z. (40)

So we can compute the estimate zk|k of z by solving
the (m − 1) × (m − 1) upper triangular system

Skzk|k = fk. (41)

Then from (37) we can obtain the estimate xk|k of xk

and estimates xj|k of xj for j = k − 1, k − 2, . . . , 1 by
solving triangular linear systems:

R̄kxk|k = c̄k − C̄kzk|k (42)

Rjxj|k = cj − Rj,j+1xj+1|k − Cjzk|k. (43)

In other words, at epoch k, we can obtain not only the
estimate of the current position, which is called the fil-
tered estimate, but also the estimates of the previous
positions, which are called the smoothed estimates. In
real-time applications, smoothed estimates are usually
not required, then at epoch k, only R̄k, C̄k, c̄k, Sk and
fk should be temporarily stored for position estima-
tion at next epoch.

Before we finish this section, we would like to mention
that we need to get the predicated estimate xk|k−1 of
xk before we use the measurement equation (24) to
obtain the filtered estimate xk|k. After we obtain the
filtered estimate xk−1|k−1 of xk−1, from the process
equation (23) (with k replaced by k − 1), we can im-
mediately obtain

xk|k−1 = F̄ xk−1|k−1.

The first, third, and fifth elements of xk|k−1 just form
the predicated estimate bk|k−1 of the baseline vector
bk. This bk|k−1 is used to compute an approximation
to Ek to deal with the nonlinearity problem, see the
discussion given in Section 2.

3.2 Computing Error Covariance

Matrices

In order to have some idea about the errors of the es-
timates, we need to compute the corresponding error
covariance matrices cov{xj|k − xj} for j = 1, 2, . . . , k
at epoch k.

We first consider j = k. Combine the kth block equa-
tion of (37) and the top part of (40) to give

[

c̄k

fk

]

≈
[

R̄k C̄k

0 Sk

] [

xk

z

]

. (44)

Note that (44) determines the estimate zk|k of z

and the estimate xk|k of xk. In order to obtain
cov{xk|k −xk}, we decouple xk and z in (44) by mul-
tiplying an orthogonal ZT

k|k to the coefficient matrix

from the left to zero the C̄k block (see [3, 4]):

ZT

k|k

[

R̄k C̄k

0 Sk

]

=

[

Rk|k 0

Nk|k Sk|k

]

, (45)

where Givens rotations are used to take advantage of
the upper triangular structures of R̄k and Sk and pro-
duce upper triangular Rk|k. We zero C̄k columnwise
from the left to the right, and for each column we start
from the bottom to the top. Only one element of C̄k

and one corresponding diagonal entry of Sk are used
to construct one rotation. Since C̄k is 6 × (m − 1),
a total of 6(m − 1) rotations are needed. Thus after
applying ZT

k|k to (44) from the left, we obtain

[

ck|k

fk|k

]

≈
[

Rk|k 0

Nk|k Sk|k

] [

xk

z

]

. (46)

Then obviously xk|k, which satisfies Rk|kxk|k = ck|k,
has the error covariance matrix:

cov{xk|k − xk} = (RT

k|kRk|k)−1.

For each j < k, we can recursively compute the co-
variance matrix cov{xj|k −xj}. Suppose the (j +1)th
(block) equation in (37) was transformed to the follow-
ing equation when we computed cov{xj+1|k − xj+1}.

cj+1|k ≈ Rj+1|kxj+1, (47)

where Rj+1|k is nonsingular upper triangular. To com-
pute the covariance matrix cov{xj|k − xj}, we stack
the jth block equation in (37), equation (47), and the
top part of (40) together to give:





cj

cj+1|k

fk



 ≈





Rj Rj,j+1 Cj

0 Rj+1|k 0

0 0 Sk









xj

xj+1

z



 . (48)



Note that equation (48) determines the estimates zk|k,
xj+1|k and xj|k. We just use the same method as
we did for the transformation (45). We first use
Cj ∈ R6×(m−1) and Sk to zero Cj , and then use the
transformed Rj,j+1 ∈ R6×6 and Rj+1|k to zero the
former by the Givens rotations. We need a total of
6(m + 5) rotations. Thus (48) is transformed to





cj|k

c̄j+1|k

f j|k



 ≈





Rj|k 0 0

R̄(j+1,j)|k R̄j+1|k C̄j+1|k

N j|k 0 Sj|k









xj

xj+1

z





(49)
From the first block equation in (49) we obtain

cov{xj|k − xj} = (RT

j|kRj|k)−1.

3.3 Fixing the Integer Ambiguities

In Section 3.1, we have computed the real-valued es-
timate zk|k of the double difference integer ambiguity
(DDIA) vector z by (41). However, the elements of
z are integers. If we only use its real-valued estimate
in (42) and (43), we may not be able to obtain high
accurate estimates of the positions quickly. To fix the
obtained real-valued estimate of z to an integer vec-
tor, we can use the original LAMBDA method [18]
or the modified LAMBDA method [5], which is more
computationally efficient.

To use either of these two methods at epoch k, we need
two pieces of information. One is the real-valued vec-
tor zk|k, and the other is the error covariance matrix
Σk of zk|k. From the top part of (40), we obtain

Σk = cov{zk|k − z} = (ST

kSk)−1. (50)

Once zk|k is fixed as a vector of integers and is val-
idated, we can obtain the corresponding position-
velocity estimates (43). Starting from epoch k + 1,
we will not need to estimate z any more. Therefore,
to compute the estimate of xi for any i > k, we di-
rectly use the integer-valued zk|k as the estimate of z

at that epoch. In other words, we solve the following
upper triangular systems (cf. (42) and (43)):

R̄ixi|i = c̄i − C̄izk|k, i > k (51)

Rjxj|i = cj − Rj,j+1xj+1|i − Cjzk|k, (52)

for j = i − 1, . . . , 1 and i > k.

3.4 Handling the Change of Ambiguity

Vector

So far, we have assumed that z has a fixed dimension.
In GPS-based positioning, this means that we have

the same number of satellites in the whole observation
span. However in practice, this is not always true.
When we have a long observation span, the dimension
of the DDIA vector z may change due to satellite ris-
ing and setting. Furthermore, when the signal from a
satellite is missing for some reason at some epoch, the
dimension of z changes (this can be regarded as satel-
lite setting). While later the signal from this satellite
is re-found, the dimension of z changes again (this
can be regarded as satellite rising). We also have as-
sumed that the value of each element of z is constant,
but it changes when there is a cycle slip in the cor-
responding signal (see, e.g., [7, Sec 9.1.2]). Detection
and repair of cycle slips is an important topic in GPS
positioning. We can incorporate a method for cycle
slip detection into our positioning algorithm. We will
not use a method to repair cycle slips since it may not
be easy, therefore when a cycle slip is detected between
two epochs, we just assume there were satellite setting
and rising between these two epochs, although physi-
cally the setting and rising satellites are identical. We
will handle this problem by following [3, 4] where only
measurement equations were used for positioning.

The major complicated task is to update the estimate
of the DDIA vector z from one epoch to the next one.
Once z has been estimated at an epoch, the position
estimate at this epoch can easily be obtained, There-
fore, the problem is to find a way to achieve the equiv-
alents of the transformations (33), (34), (35) and (39).
Since the DDIA vector may be different for different
epochs, we will use zk instead of z and Bk instead of
B in the measurement equation (22) at epoch k.

Note from (16) that every element of the DDIA vector
z has the form Nn−N i, where n corresponds to a non-
reference satellite and i is the reference satellite. It is
important to be aware that we will use the same refer-
ence satellite for every element in every DDIA vector
at a given epoch j and this reference satellite must be
visible at that epoch j, so if it sets between epochs k−1
and k, for some k > j, then (see Case 2 later) we can
choose to use a different reference satellite at epoch
k. When we talk about a DDIA vector at an epoch, a
non-reference satellite means any satellite which is not
the reference satellite at that epoch. If a satellite sets
and rises again, it will be considered as a new satellite.

In the following we list different DDIA vectors we will
use:

• z̃k: (whose elements correspond to) all the non-
reference satellites that are visible for at least
one epoch from epoch 1 to epoch k;

• z̃d
k: all the non-reference satellites that go down

between epoch 1 and epoch k;



• zk: all the non-reference satellites that are visi-
ble at epoch k;

• zr
k: all the non-reference satellites that are visi-

ble at epoch k − 1 and remain at epoch k;

• zu
k : all the non-reference satellites that come up

between epoch k − 1 and epoch k;

• zd
k: all the non-reference satellites that go down

between epoch k − 1 and epoch k.

Note that when a satellite rises, the dimension of z̃k

increases by one, but a setting satellite leaves the di-
mension unchanged. In our constant satellite case, z̃k

was just z in (16). The following are the relationships
between these DDIA vectors which will be used later:

z̃d
k =

[

z̃d
k−1

zd
k

]

, zk =

[

zr
k

zu
k

]

, z̃k =

[

z̃d
k

zk

]

=









z̃d
k−1

zd
k

zr
k

zu
k









.

(53)
Note that zk−1 is a rearrangement of the elements
of zr

k and zd
k, so we can find a permutation matrix

Πk = [Π
(1)
k ,Π

(2)
k ] such that

Π
T

kzk−1 =

[

(Π
(1)
k )

T

zk−1

(Π
(2)
k )

T

zk−1

]

=

[

zd
k

zr
k

]

. (54)

Assume that at the end of epoch k − 1 we have ob-
tained the equivalent of the top part of (40) for epoch
k − 1

f̃k−1 ≈ S̃k−1z̃k−1, (55)

where S̃k−1 is nonsingular upper triangular. We can
partition z̃k−1 as

z̃k−1 =

[

z̃d
k−1

zk−1

]

.

Then with compatible partitioning, we can rewrite
(55) as

[

f
(1)
k−1

fk−1

]

≈
[

S̃
(1)

k−1 S̃
(2)

k−1

0 Sk−1

]

[

z̃d
k−1

zk−1

]

(56)

where both S̃
(1)

k−1 and Sk−1 are nonsingular upper tri-
angular. Notice that if no satellites rise or set from
epoch 1 to epoch k − 1, then the top part of (56) will
disappear and the bottom part is just the top part
of (40) with k replaced with k − 1. In the follow-
ing we will combine (56) with the relevant equations
at epoch k which provide new information about the
DDIA vectors in order to obtain the estimates of the
DDIA vectors. We consider two cases separately.

Case 1 : The reference satellite at epoch k− 1 remains
at epoch k. We still use it as the reference satellite
at epoch k. Suppose at epoch k − 1, we obtained the
equivalent of the bottom part of (37):

c̄k−1 ≈ R̄k−1xk−1 + ¯̃
Ck−1z̃k−1. (57)

At epoch k, we first combine (57) with the process
equation (28) to give

[

c̄k−1

0

]

≈
[

R̄k−1 0
¯̃
Ck−1

F U 0

]





xk−1

xk

z̃k−1



 . (58)

As in (34), we apply the Givens rotations to zero F

in the coefficient matrix in (58). Then (58) is trans-
formed to (cf. (34) and (35))

[

ck−1

ĉk

]

≈
[

Rk−1 Rk−1,k C̃k−1

0 R̂k
ˆ̃
Ck

]





xk−1

xk

z̃k−1



 . (59)

Note that we have decoupled xk−1 from xk and z̃k−1.
Once the estimates of xk and z̃k−1 are obtained, the
estimate of xk−1 can be obtained immediately.

Now we consider to use the measurement equation (24)
at epoch k, which, for the new situation, is written as

yk ≈ Akxk + Bkzk, (60)

where a subscript k has been added to B and z and
the noise vector has been omitted. Our task is to com-
bine the bottom part of (59) and (60), both of which
involve xk and DDIA vectors, to obtain the equivalent
of the bottom two block equations in (36). In order to
do this, we have to rewrite them.

With compatible partitioning (cf. (53)), ˆ̃
Ckz̃k−1 in

(59) can be written as

ˆ̃
Ckz̃k−1 =

[

ˆ̃
C

(1)
k

ˆ̃
C

(2)
k

]

[

z̃d
k−1

zk−1

]

.

For ˆ̃
C

(2)
k zk−1, use (54) to write

ˆ̃
C

(2)
k zk−1 = ˆ̃

C
(2)
k ΠkΠ

T

kzk−1

=
[

ˆ̃
C

(2)
k Π

(1)
k

ˆ̃
C

(2)
k Π

(2)
k

]

[

zd
k

zr
k

]

. (61)

Therefore, we can rewrite the bottom part of (59) as

ĉk ≈
[

R̂k
ˆ̃
C

(1)
k

ˆ̃
C

(2)
k Π

(1)
k

ˆ̃
C

(2)
k Π

(2)
k

]









xk

z̃d
k−1

zd
k

zr
k









.

(62)

Now we rewrite (60). We partition Bk compatibly
with the partitioning of zk in (53), so that we have

Bkzk =
[

B
(1)
k B

(2)
k

]

[

zr
k

zu
k

]

.



Therefore (60) can be rewritten as

yk ≈
[

Ak B
(1)
k B

(2)
k

]





xk

zr
k

zu
k



 . (63)

Combining (62) with (63), we have

[

ĉk

yk

]

≈
[

R̂k
ˆ̃
C

(1)
k

ˆ̃
C

(2)
k Π

(1)
k

ˆ̃
C

(2)
k Π

(2)
k 0

Ak 0 0 B
(1)
k B

(2)
k

]













xk

z̃d
k−1

zd
k

zr
k

zu
k













.

(64)
In order to decouple xk from the DDIA vectors, we
multiply both sides of (64) by a sequence of Givens
rotations from the left to zero Ak, giving (cf. (33),
(35)):

[

c̄k

dk

]

≈
[

R̄k
¯̃
C

(1)
k

¯̃
C

(2)
k

¯̃
C

(3)
k

¯̃
C

(4)
k

0 M̃
(1)

k M̃
(2)

k M̃
(3)

k M̃
(4)

k

]













xk

z̃d
k−1

zd
k

zr
k

zu
k













,

(65)
Note that the bottom block equation of (65) involves
only DDIA vectors.

To compute the estimate of z̃k or give the equivalent
of (55) at epoch k, we want to combine (56) with the
bottom part of (65). In order to do that, we use (54)

and write S̃
(2)

k−1zk−1 and Sk−1zk−1 in (56) as follows:

S̃
(2)

k−1zk−1 =
[

S̃
(2)

k−1Π
(1)
k S̃

(2)

k−1Π
(2)
k

]

[

zd
k

zr
k

]

, (66)

Sk−1zk−1 =
[

Sk−1Π
(1)
k Sk−1Π

(2)
k

]

[

zd
k

zr
k

]

. (67)

Then we stack (56) on the bottom part of (65), and
use (66) and (67) to give:





f
(1)
k−1

fk−1

dk



≈







S̃
(1)

k−1 S̃
(2)

k−1Π
(1)
k S̃

(2)

k−1Π
(2)
k 0

0 Sk−1Π
(1)
k Sk−1Π

(2)
k 0

M̃
(1)

k M̃
(2)

k M̃
(3)

k M̃
(4)

k















z̃d
k−1

zd
k

zr
k

zu
k









.

(68)
Then we perform the following orthogonal transforma-
tions to (68):

T̃
T

k







S̃
(1)

k−1 S̃
(2)

k−1Π
(1)
k S̃

(2)

k−1Π
(2)
k 0

0 Sk−1Π
(1)
k Sk−1Π

(2)
k 0

M̃
(1)

k M̃
(2)

k M̃
(3)

k M̃
(4)

k







=







S̃
(1)

k S̃
(2)

k

0 Sk

0 0






≡

[

S̃k

0

]

,

T̃
T

k





f
(1)
k−1

fk−1

dk



 =







f
(1)
k

fk

f̂k






≡

[

f̃k

f̂k

]

,

where both S̃
(1)

k and Sk are nonsingular upper trian-
gular. This has completed the update and provided
the equivalents of (55) and its expanded form (56) for
epoch k:

f̃k ≈ S̃kz̃k, (69)

or
[

f
(1)
k

fk

]

≈
[

S̃
(1)

k S̃
(2)

k

0 Sk

]

[

z̃d
k

zk

]

, (70)

where we have used the relationships among difference
DDIVs given in (53). We now can compute the LS es-
timates zk|k of zk and z̃d

k|k of z̃d
k by solving

Skzk|k =fk, S̃
(1)

k z̃d
k|k =f

(1)
k −S̃

(2)

k zk|k, z̃k|k =

[

z̃d
k|k

zk|k

]

.

Note that if no satellites rise or set between epochs
k − 1 and k, zd

k and zu
k will have no elements, there-

fore in (54) we can take Πk = Π
(2)
k = I, giving

zk−1 = zr
k = zk.

With the estimated DDIA vectors, we can compute the
filtered estimates and smoothed estimates of position-
velocity vectors. Using (53), from the top part of (65)
we can obtain xk|k by solving

R̄kxk|k = c̄k − ¯̃
Ckz̃k|k, (71)

where
¯̃
Ck ≡ [ ¯̃C

(1)
k , ¯̃

C
(2)
k , ¯̃

C
(3)
k , ¯̃

C
(4)
k ]. (72)

Suppose we have computed the estimate xj+1|k of
xj+1, we will show how to compute the smoothed es-
timates of xj|k of xj . From (59), we see the equivalent
of its first block equation for each epoch j < k can be
written as

cj ≈ Rjxj + Rj,j+1xj+1 + C̃j z̃j . (73)

Since the elements of z̃j are part of z̃k, there exists a
matrix P j|k which is a permutation matrix with pos-
sible zero columns added, such that

z̃j = P j|kz̃k,

so the corresponding estimate z̃j|k of z̃j satisfy

z̃j|k = P j|kz̃k|k.

Then we can compute the smoothed estimate xj|k by
solving

Rjxj|k = cj − Rj,j+1xj+1|k − C̃j z̃j|k. (74)



Finally we would like to discuss how to compute
the error covariance matrices cov{xj|k − xj} for j =
1, 2, . . . , k. First we consider j = k. We combine the
top part of (65) with (69) and use (53) to give

[

c̄k

f̃k

]

≈
[

R̄k
¯̃
Ck

0 S̃k

]

[

xk

z̃k

]

, (75)

where ¯̃
Ck is defined by (72). So we can use the same

approach of estimating the filtered error covariance
matrix cov{xk|k−xk} presented in Section 3.2 to (75).
We find an orthogonal Zk|k to transform (75) to (cf.
(45), (46)):

[

ck|k

f̃k|k

]

≈
[

Rk|k 0

Nk|k S̃k|k

] [

xk

z̃k

]

, (76)

where Rk|k is nonsingular upper triangular. Therefore
we have

cov{xk|k − xk} = (RT

k|kRk|k)−1.

Now we consider how to compute cov{xj|k−xj} in the
order of j = k− 1, k− 2, . . . , 1. Suppose in the process
of finding cov{xj+1|k − x}, we obtained the following
equation (cf. the top block equation in (76)):

dj+1|k = Rj+1|kxj+1. (77)

where Rj+1|k is nonsingular upper triangular. We
combine (73), (77) and (69) together to give:





cj

cj+1|k

f̃k



 =





Rj Rj,j+1 C̃jP j|k

0 Rj+1|k 0

0 0 S̃k









xj

xj+1

z̃k



 . (78)

The above equation has the same structure as (48)
in, so we can adopt the same approach to computing
cov{xj|k − xj} given there. The Givens rotations can
be found to transform (78) to





cj|k

c̄j+1|k

f̃ j|k



 ≈





Rj|k 0 0

R̄(j+1,j)|k R̄j+1|k
¯̃
Cj+1|k

N j|k 0 S̃j|k









xj

xj+1

z̃k



 ,

where Rj|k is nonsingular upper triangular. Thus it
follows that

cov{xj|k − xj} = (RT

j|kRj|k)−1,

Case 2 : The reference satellite (satellite 1, say) of
epoch k − 1 goes down between epochs k − 1 and k.
We can choose any satellite visible at epoch k − 1 and
remaining at epoch k, without loss of generality as-
suming that is satellite 2, to be the reference satellite
at epoch k. Suppose at epoch k, the new measurement
equation is

yk ≈ Akxk + Bkzk, (79)

where zk is the DDIA vector with satellite 2 as the
reference satellite. At the end of epoch k − 1 we have
(55), where z̃k−1 ∈ Rm−1 say,

z̃k−1 ≡ [N2 − N1, N 3 − N1, . . . , Nm − N1]T .

Define the corresponding vector z̄k−1 with satellite 2
as the reference satellite, along with the matrix K

z̄k−1 ≡ [N1 − N2, N3 − N2, . . . , Nm − N2]T ,

K ≡
[

−1 0

−e Im−2

]

.

It is easy to verify that b

KK = I, z̄k−1 = Kz̃k−1. (80)

This implies that we can easily transform a DDIA vec-
tor with one satellite as the reference satellite to an-
other DDIA vector with another satellite as the ref-
erence satellite. Define S̄k−1 ≡ S̃k−1K, then we can
rewrite (55) as

f̃k−1 ≈ S̃k−1z̃k−1 = S̃k−1KKz̃k−1 = S̄k−1z̄k−1.

If we find an orthogonal matrix from the left to tri-
angularize S̄k−1, we get essentially the same situation
as in Case 1, therefore we then can follow the steps in
Case 1 to handle it.

4 Summary

A recursive LS approach was presented for short base-
line kinematic GPS positioning by using combined
carrier phase and code measurements and a process
model. Unlike the approaches using standard Kalman
filter in the literature, our approach gives advantages
in numerical stability and efficiency by using orthog-
onal transformations and taking full advantage of the
structure of the problem.

We gave full computational details for computing
position-velocity estimates (including both filtered and
smoothed position-vector estimates) as well as the cor-
responding error covariance matrices. We also handled
the computation for possible satellite setting and ris-
ing. If a process model in a specific application is not
the same as the one used in this paper, our approach
can be modified without difficulty. Our approach can
also be modified easily to handle dual frequency sig-
nals.
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