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ABSTRACT

When GPS signal measurements have outliers, using
least squares (LS) estimation will likely give poor po-
sition estimates. One of typical approaches to han-
dling this problem is to use robust estimation tech-
niques. In this paper, we study the computational
issues of Huber’s M-estimation applied to relative po-
sitioning. First for code based relative positioning, we
use simulation results to show Newton’s method usu-
ally converges faster than the iteratively reweighted
least squares (IRLS) method, which is often used in
geodesy for computing robust estimates of parame-
ters. Then for code and carrier phase based relative
positioning, we present a recursive modified Newton
method to compute Huber’s M-estimates of the posi-
tions. The structures of the model are exploited to
make the method efficient. Numerical stability and
storage issues are also taken into account in designing
the numerical method. Simulation results are given to
illustrate the effectiveness of the method.
1 INTRODUCTION

The typical approach for GPS positioning is the least
squares (LS) estimation. But LS estimation is sensi-
tive to outliers (unspecified large errors) in the mea-
surements, thus it will likely give poor position esti-
mates if the measurements have outliers. There are
a few sources which can lead to outliers in the mea-
surement data. One source is the satellite failure. The
other sources include excessive multipath, ionospheric
delay and diffraction, or the presence of interference
or channel biases. In order to get good position esti-
mates, the outliers have to be appropriately handled.

One approach is to apply the fault detection and iden-
tification procedure (see, e.g., [6] and [13]). This ap-
proach uses some detection & identification techniques
to detect possible unspecified errors in the input data
and isolate the faulty data. Then either the faulty data
are discarded or the model for position estimation is
adjusted to take the unspecified errors into account.
But sometimes detection and identification by regu-
lar methods (see [6] for some typical methods based
on LS residuals) are difficult, in particular when out-
liers appear in multiple observations. Furthermore,
in the case of limited observation data available, the
faulty data can not be simply discarded. Otherwise,
the problem of rank deficiency may arise.

The other approach is to use robust estimation tech-
niques. The aim of robust estimation is to reduce
the influence of outliers on the parameter estimation.
It automatically identifies outliers in the observations
and give the corresponding observations less weight
in estimation. Because of the good statistical prop-
erties and the relatively low computing effort, the M-
estimation techniques, especially the famed Huber’s
M-estimation technique (see Huber [5]), is widely used
in robust estimation. Using robust estimation tech-
niques in GPS position estimation appears quite new,
although the techniques have been used in geodesy for
many years. Recently Yang, He and Xu in [16] pro-



posed an adaptive robust Kalman filter for position
estimation, which is some kind of combination of an
adaptive Kalman filter and Huber’s M-estimation. To
deal with the correlated double differenced measure-
ments, the so-called dependent equivalent weight ma-
trix based on Huber’s weight function was used in their
method (see [15] for more details). Their test results
shows that the robust estimation can effectively resist
the influence of the outliers. More recently Wieser and
Brunner in [14] present a modified Danish method for
short static positioning using double differenced car-
rier phase measurements. Since the standard Danish
method is not applicable to correlated observations, it
was modified to handle correlated double differenced
phase observations. Their test results indicated that
their method performs significantly better than the
least squares method if unfavorable signal distortion
occurs. Like many papers in robust M-estimation in
geodesy, computer implementation of these methods
were not adequately addresses in [16] and [14].

In this paper, we consider applying Huber’s M-
estimation technique to short baseline relative posi-
tioning by using the single differenced code and car-
rier phase measurements. We do not use any dynamic
equations, since it is often difficult to get accurate dy-
namic equations in practice. Our main goal is to ad-
dress the computer implementation issue. We will use
code based short baseline relative positioning as an
example to show Newton’s method is usually faster
than the iteratively reweighted least squares (IRLS)
method, which is widely used in geodesy for robust
M-estimation (see, e.g., [7, Sec 3.8.2], [8], [14]). For
code and carrier phase based short baseline relative
positioning, we will present a recursive modified New-
ton method for computing Huber’s M-estimates. We
make full use of the structure of the positioning model
to make our method efficient. Numerical stability and
storage requirement are also taken into account in de-
signing the numerical method. Although our goal is
not to show how significant Huber’s M-estimation is
to GPS positioning, we give some simulation results
to demonstrate that Huber’s M-estimation can give
(much) better results than LS estimation when there
are outliers.

The paper is organized as follows. In Section 2 we
introduce Huber’s M-estimation for a general linear
model and discuss the strategies of handling a singular-
ity problem. In Section 3 we introduce the mathemat-
ical models for short baseline relative positioning. In
Section 4 we use simulation results to show Newton’s
method is faster than the IRLS method for Huber’s
M-estimation. In Section 5 for code and carrier phase
based positioning we present a recursive modified New-
ton method for computing Huber’s M-estimates, and
give some simulation results. Finally we give a sum-
mary in Section 6.

Throughout this paper, we use bold lower case letters
for vectors and bold upper case letters for matrices.
The unit matrix will be denoted by I or sometimes by
In if its dimension is n by n. The i-th column of the
unit matrix is denoted by ei, while e ≡ (1, 1, . . . , 1)T

(we use ≡ to mean ‘is defined to be’). We use the

norm ‖x‖ =
√

xTx for vectors. E{·} will denote the
expected value, and cov{·} will denote the covariance
matrix, that is cov{x} = E{(x− E{x})(x− E{x})T }.
v ∼ N (v̄,V ) will indicate that v is a normally dis-
tributed random vector with expected value v̄ and co-
variance V .

2 HUBER’S M-ESTIMATION FOR

A GENERAL LINEAR MODEL

In this section, we first describe Huber’s M-estimation
problem for a general linear model, and then introduce
a framework for Newton’s method with a line search to
solve the problem. We discuss advantages and disad-
vantages of different strategies of dealing with a singu-
larity problem which may happen in Newton’s method
and propose to use a new strategy, which is suitable
for solving our estimation problem for code and carrier
phase based relative positioning.

Suppose we have a general linear model

y = Ax + v, (1)

where y = [y1, . . . , ym]T ∈ Rm, A = [a1, . . . ,am]T ∈
Rm×n, and cov{v} = σ2I (σ is assumed to be be
known). Write r(x) ≡ y − Ax, with ith element
ri(x). Huber’s M-estimation problem is the following
optimization problem:

min
x
{F (x) ≡

m
∑

i=1

ρ(ri(x))}, (2)

with the nonnegative, convex, piecewise function (it is
linear, then quadratic, then linear)

ρ(t) ≡
{

1
2 t

2, |t| ≤ γ
γ|t| − 1

2γ
2, |t| > γ

(3)

defined for some tuning constant γ > 0. Often γ is
chosen to be in the interval [1.5σ, 2σ] (see Koch [7,
Sec 3.8.3]). ρ(t) in the form of (3) is called the Huber
function. Note that Huber’s M-estimation is a mixed
l2 and l1 minimization problem. For M-estimation,
there are several other well-known functions such as
the Fair, Talwar, Tukey, and Welsh functions, but the
Huber function is probably the most popular one.



We see from (3) that ρ(t) is a continuous function, with
continuous and nondecreasing first derivative, since

ρ′(t) =

{

t, |t| ≤ γ,
γ sign(t), |t| > γ.

ρ′′(t) =

{

1, |t| ≤ γ,
0, |t| > γ.

(4)
Strictly speaking, ρ(t) has only a right (left) second
derivative at t = −γ (t = γ). But from a practical
point of view, there is no harm in defining ρ′′(±γ) = 1.

The active index set and inactive set at x ∈ Rn are
respectively defined by

ν(x) ≡ {i : |ri(x)| ≤ γ}, ν̄(x) ≡ {i : |ri(x)| > γ}.
If i ∈ ν(x), we say that the i-th equation of the model
(1) is active at x, otherwise we say it is inactive at
x. The active matrix Aν(x) of A at x is defined to
be the matrix formed by the rows of A corresponding
to the active equations at x. Sometimes for simplic-
ity we just use Aν instead of Aν(x) if there is no any
confusion. Define the sign vector

s(x) ≡







s1(x)
...

sm(x)






, si(x) ≡







−1, ri(x) < −γ,
0, |ri(x)| ≤ γ,
1, ri(x) > γ,

and the weight matrix

W (x) ≡ diag(w1(x), . . . , wm(x)),

wi(x) ≡ 1− s2i (x) = ρ′′(ri(x)).

The objective function F (x) in (2) can then be written

F (x) =
1

2
r(x)TW (x)r(x) + γs(x)T [r(x)− 1

2
γs(x)].

(5)

Since ∂r(x)T

∂x
= −AT , differentiating (5) gives the gra-

dient of F (x)

F ′(x) ≡ ∂F (x)

∂x
= −AT (W (x)r(x) + γs(x))

= −
∑

i∈ν(x)

airi(x)− γ
∑

i∈ν̄(x)

aisi(x). (6)

The symmetric nonnegative definite Hessian matrix is
given by

F ′′(x) ≡ ∂2F (x)

∂x∂xT
= ATW (x)A

=
∑

i∈ν(x)

aia
T
i = Aν(x)TAν(x).

A general framework for Newton’s method with a line
search for solving (2) can be described as follows:

Given an initial estimate x

repeat until convergence:
find the search direction h by solving

F ′′(x)h = −F ′(x),
or Aν(x)TAν(x)h = AT [W (x)r(x)+γs(x)], (7)

perform a line search and update x := x + α̂h.

In the following we give some remarks about this gen-
eral framework.

Usually the least squares estimate xLS for the model
(1) is taken to be the initial estimate, so that if
ν̄(xLS) = φ (no outliers),

W (xLS) = Im, s(xLS) = 0,

AT [W (xLS)r(xLS) + γs(xLS)] = ATr(xLS) = 0.

Notice that AT r(xLS) = 0 are the normal equations
and from (7) we see h = 0. Thus xLS solves (2). Any
h satisfying (7) with a nonzero F ′(x) is a strictly de-
scent direction for the functional F at x, since

hTF ′(x) = −hTAν(x)TAν(x)h < 0. (8)

It can be shown that there is a minimizer x of F (x)
such that Aν(x)TAν(x) is nonsingular (see, e.g., Mad-
sen and Nielsen [9]). When Aν(x)TAν(x) is nonsin-
gular, it is positive definite and the Cholesky factoriza-
tion of Aν(x)TAν(x) can be used to solve (7). Specif-
ically speaking, if Aν(x)TAν(x) has the Cholesky fac-
torization (see e.g., Björck [2, Sec 2.2.2])

Aν(x)TAν(x) = RTR, (9)

where R is upper triangular, then h can easily be ob-
tained by solving two triangular systems

RT h̃ = AT [W (x)r(x) + γs(x)], Rh = h̃.

The Cholesky factor R of Aν(x)TAν(x) can also be
obtained from the QR factorization of Aν(x). In fact,
if Aν(x) has the QR factorization (see e.g., [2, Sec
1.3])

Aν(x) = [Q, Q̄]

[

R

0

]

= QR, (10)

[Q, Q̄] orthogonal, R upper triangular,

then we have

Aν(x)TAν(x) = RTQTQR = RTR. (11)

Since forming Aν(x)TAν(x) may lose information (see
e.g., [2, p.44]), for numerically stability, we prefer to
find R by the QR factorization (10). The main compu-
tational cost in each iteration is then that of comput-
ing the QR factorization (10). Since the active matri-
ces for two consecutive iterates usually differ by just



a few rows, updating/downdating techniques for the
QR factorization can be used to compute (10) during
the iterations for efficiency. For details of the updat-
ing/downdating of the QR factorization, see, e.g., [2,
Sec 3.2].

If during the iterative process there are more than
m − n large residuals beyond the tuning constant γ,
then the number of rows of Aν(x) is smaller than
the number of its columns, so Aν(x)TAν(x) is sin-
gular. There are several strategies to handle this
problem. For example, in Antoch and Ekblom [1], if
Aν(x)TAν(x) is found to be singular, then it is re-
placed by Aν(x)TAν(x) + εI. The shortcoming with
this approach is that updating/downdating of the ma-
trix factorization is expensive when the matrix be-
comes a singular matrix from a nonsingular matrix,
or vice versa, since it is expensive to go from the fac-
torization of Aν(x)TAν(x) to Aν(x)TAν(x) + εI, or
vice versa. In O’Leary [10], the strategy is to use a very
large tuning constant at the beginning, then gradually
decrease the value of the tuning constant to the de-
sired value over the first 4 steps of the iteration. But
no implementation details for this strategy were given
in [10], nor was a guarantee given that this strategy
would always work.

In this paper we propose the following strategy to han-
dle the singularity problem. If the active matrix Aν(x)
is not of full column rank, we choose the row vector
from those aTi with i ∈ ν̄(x) according to some crite-
rion and add this row vector to Aν(x). We continue
this process until the updated Aν(x) has full column
rank. For simplicity, the updated Aν(x) is still called
an active matrix. For a general matrix A such as that
in GPS code based relative positioning (see Section 4),
a sensible criterion is that the chosen row vector cor-
responds to the smallest residual in magnitude. In
practice, we may know when the updated Aν(x) will
become full column rank. For GPS code based relative
positioning, when the updated Aν(x) becomes square,
we can reasonably assume that it is nonsingular. For
GPS code and carrier phase based relative positioning,
the matrix A has some special structure, and we will
show how to choose row vectors to make the updated
Aν(x) have full column rank in Section 5. After a
full column rank Aν(x) is found, we solve (7) for the
search direction h. Note that although now Aν(x)
may not be the true active matrix at x any more, we
still have (8) and thus h is a descent direction.

The optimal step length α̂ in the line search can be
found exactly in theory. Write

φ(α) ≡ F (x + αh) =

m
∑

i=1

ρ(yi − aTi (x + αh)).

Since φ(α) is the sum of nonnegative, convex, piece-
wise defined functions of α, with each piece being
either quadratic or linear, see (2)–(4), it too is a
nonnegative, convex, piecewise defined function with
each piece being quadratic (possibly linear). Therefore
φ′(α) must be piecewise, with each piece linear (possi-
bly constant), and we can find exactly a minimizer α̂
of φ(α), i.e.,

α̂ = argmin
α

φ(α).

This α̂ is a zero of φ′(α). An efficient method for com-
puting α̂ can be found in Madsen and Nielsen [9].

The commonly used method for solving the robust M-
estimation problem in geodesy is the IRLS method
(see, e.g., Koch [7]). Note that (7) can also be written

ATW (x)Ah = AT [W (x)r(x) + γs(x)]. (12)

If we replace W (x) on the left hand side of (12) by
D(x) = diag(d1, . . . , dm) with di = 1 if |ri(x)| ≤ γ or
di = γ/|ri(x)| if |ri(x)| > γ, then we can easily verify
that (12) can be written

ATD(x)Axnew = ATD(x)y, (13)

where xnew = x + h. The iterative method in which
the iteration sequence defined by (13) (i.e., xnew is
a new iterate) is just the IRLS method for Huber’s
M-estimation. Choosing different D(x) in (13) will
lead other robust M-estimation methods, such as the
Danish method. Although it is easy to understand
and implement the IRLS method, we cannot use up-
dating/downdating techniques to factorize ATD(x)A
quickly to solve the linear systems (13) during the it-
erations. Furthermore usually the IRLS method has
a linear convergence rate, while Newton’s method has
quadratic convergence rate (see [11, Sec 5.4 & Sec 5.6]).

3 MATHEMATICAL MODELS

In this paper we consider relative positioning based
on code and carrier phase measurements from L1. Ide-
ally when the distance between the stationary receiver
and roving receivers is short, the signals received by
the two receivers from the same satellite has almost
the same ionospheric refraction and tropospheric re-
fraction. Then the single difference code and carrier
phase measurement equations for satellite i at epoch
k can be written (cf. [4])

ρik = (eik)
Txk + cδtk + µik, (14)

φik = (eik)
Txk + cδtk + λN i + νik, (15)

where all terms are in the units of meters, and

• ρik is the single differenced code measurement;



• φik is the single differenced carrier phase mea-
surement;

• xk is the base line vector pointing from the sta-
tionary receiver to the roving receiver;

• eik is the unit vector pointing from the midpoint
of the baseline to satellite i;

• c is the speed of light;

• δtk is the single differenced receiver clock error;

• λ is the wavelength of L1 carrier, λ ≈ 19 cm;

• N i is the single differenced ambiguity including
the single differenced initial phase of the receiver
generated signals;

• µik is single differenced noise including multipath
for the code measurement;

• νik is single differenced noise including multipath
for the carrier phase measurement.

Suppose there are m visible satellites. Define

y
ρ
k =







ρ1k
...
ρmk






, y

φ
k =







φ1k
...
φmk






, Ek =







(e1k)
T

...
(emk )T






,

βk = cδtk, a = λ







N1

...
Nm






, v

ρ
k =







µ1k
...
µmk






, v

φ
k =







ν1k
...
νmk






.

Then from (14) and (15) we have

y
ρ
k = Ekxk + βke + v

ρ
k, (16)

y
φ
k = Ekxk + βke + a + v

φ
k , (17)

where as in GPS literature, we assume

v
ρ
k ∼ N (0, σ2ρIm), v

φ
k ∼ N (0, σ2φIm),

and v
ρ
k,v

ρ
l ,v

φ
k , and v

φ
l are uncorrelated to each other

for any epochs k and l (k 6= l). Notice that in Ek,
eik depends on the baseline vector xk. Once xk is
known, Ek will be known. In other words, the above
measurement equations are nonlinear. But Ek is not
sensitive to changes in xk, since the distance from a
satellite to any of the two receivers is far larger than
the baseline. So we can use an approximation to xk,
say, our estimate of xk−1 at epoch k − 1, to compute
the approximation to Ek. Usually this approximation
is good enough. But if we want, after obtaining an
estimate of xk at epoch k, we can recompute Ek, and
do more iterations if necessary. For the first epoch,
we set the initial estimate of x1 to be a zero vector
and then compute the corresponding E1 (i.e., we take
ei1 to be the unit vector pointing from the stationary
receiver to satellite i). Since E1 computed by this ini-
tial x1 is not very accurate, it is recomputed one more
time when the new estimate of x1 is obtained from
our computational method. So from now on, we just
assume all Ek are known.

4 COMPUTATION FOR CODE

BASED POSITIONING

In this section, we apply Newton’s method to code
based relative positioning directly. The purpose of
this section is to use simulation results to show that
for computing Huber’s M-estimates Newton’s method
converges faster than the IRLS method, which is often
used in geodesy, and demonstrate that Huber’s esti-
mation gives better position estimates than the LS es-
timation when there are outliers in the measurements.

All our computations were performed in MATLAB 6.5
on a Celeron PC running Windows XP. The 24 GPS
satellite constellation data in YUMA ephemeris for-
mat for the week of June 30th to July 6th 1998 was
used in the simulations. The roving receiver was as-
sumed to be on board an aircraft circling horizontally
with center directly above the reference station at a
constant speed of 100m/s. The baseline was 1 km.
For each epoch, a set of code measurement data from
8 satellites were used. The time interval between two
consecutive epochs was 1 second. At each epoch, the
single differenced code measurements were constructed
by

y
ρ
k = ȳk + cδtke + v

ρ
k + bρ, (18)

where the i-th component of ȳk is the difference of the
true range between satellite i and the stationary re-
ceiver and the true range between satellite i and the
roving receiver, δtk is the difference between the clock
offsets of the stationary receiver and the roving re-
ceiver, both which were modeled by white noise input
to a second order Markov process based on [12, p.417],
v
ρ
k ∼ N (0, σ2ρI) with σρ = 1m, and bρ is the outlier

vector.

We used the IRLS method and Newton’s method to
compute Huber’s M-estimates of the positions. For
consistency, both methods used the same stopping cri-
terion: the iteration process stops when the difference
between the position estimates at two consecutive it-
eration steps is less than 0.1m. Thus the position es-
timates computed with both methods have the same
numerical accuracy. The tuning constant γ was set to
be 1.5. We used 8 visible satellites and took the out-
lier vector bρ = [0, 12, 0, 0, 8, 0, 0, 0]T for each epoch.
In order to reduce random effect on the results, we



performed 100 simulation runs for the same satellite
geometry, and each run had 200 epochs.

Figure 1 displays the average number of iterations for
Newton’s method and the IRLS method at each epoch.
From this figure, we see indeed Newton’s method con-
verges much faster than the IRLS method.

Figure 2 shows the average position error in Huber’s
M-estimates at each epoch, which were computed by
Newton’s method, and the average position errors in
the LS estimates which were computed by using the
QR factorization method (see e.g., [2, Sec 2.4]). For
comparison, Figure 2 also gives the average position
errors in the LS estimates when the measurements
do not have the outliers. We observe that Huber’s
M-estimation can reduce the effect of outliers—giving
better position estimates than the LS estimation, al-
though the estimates are not as good as the LS esti-
mates without outliers.
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5 COMPUTATION FOR CODE

AND CARRIER PHASE BASED

POSITIONING

5.1 Numerical method

In order to make the code noise vector have the same
covariance matrix as the carrier phase noise vector,
multiply (16) by σ ≡ σφ/σρ, and then combine it with
(17), leading to

[

y
φ
k

σy
ρ
k

]

=

[

e Ek

σe σEk

] [

βk
xk

]

+

[

I

0

]

a +

[

v
φ
k

σv
ρ
k

]

, (19)

where

[

v
φ
k

σv
ρ
k

]

∼ N (0, σ2φI2m). Define

yk ≡
[

y
φ
k

σy
ρ
k

]

, Bk ≡
[

e Ek

σe σEk

]

,

zk ≡
[

βk
xk

]

, C ≡
[

I

0

]

, vk ≡
[

v
φ
k

σv
ρ
k

]

.

Then (19) can be rewritten

yk = Bkzk + Ca + vk, vk ∼ N (0, σ2φI2m). (20)

Combining these equations for k = 1, 2, . . . gives











y1
...

yk−1
yk











=











B1 C

. . .
...

Bk−1 C

Bk C

























z1

...
zk−1
zk
a















+











v1

...
vk−1
vk











,

(21)
or equivalently (with obvious notation)

y[k] = [B[k],C [k]]

[

z[k]

a

]

+v[k] ≡ A[k]x[k]+v[k]. (22)

Suppose there are at least 4 visible satellites at any
epoch. It is reasonable to assume that any 4 rows of
[e,Ej ] for any j is nonsingular (this assumption will
be used later). Of course [e,Ej ] will have full column
rank. Then it is straightforward to show that A[k] has
full column rank.

At an estimate of x[k], we can find the corresponding
active matrix of A[k]. For convenience, we also call
[Bν

j ,C
ν ] which is formed by the rows of [Bj ,C] corre-

sponding to the active equations the active matrix of
[Bj ,C] at the estimate, and call Bν

j the active matrix
of Bj at the estimate.

For each epoch k, we could directly apply Newton’s
method to (22) to compute Huber’s M-estimate of x[k].
But obviously this is not computationally efficient. At



epoch k, when we compute Huber’s M-estimate of x[k],
we should use the results available at epoch k−1. Also
the structure of A[k] should be carefully exploited. In
Chang [3], a recursive modified Newton method is pro-
posed to compute Huber’s M-estimates for a model
more general than (21), which may arise from other
applications. We would like to apply the techniques
presented in [3] to the model (21), where Bj and C

have some special structures.

From the general framework for Newton’s method, we
see that at epoch k the main cost of computing Huber’s
M-estimate is the cost of finding the R-factor of the
QR factorization of the active matrix Aν

[k] (see (10))
in each iteration step. As we mentioned in Section 2,
for computational efficiency, updating and downdating
techniques of the QR factorization of the active matrix
Aν

[k] have to be used. During the iterations at epoch
k, a measurement equation at any previous epoch may
become an active equation from an inactive equation
or vice versa. This makes updating/downdating of the
QR factorization of the active matrices much compli-
cated. Furthermore the Q-factors of all [Bj ,C] have
to be stored for updating and downdating use at later
epochs. When k is large, this may cause a computer
memory problem. Thus we would like to modify New-
ton’s method. When we compute Huber’s M-estimate
of x[k] at epoch k, we do not update the active matrix
of [Bj ,C] at Huber’s M-estimate of x[j] obtained at
epoch j for j = 1, . . . , k − 1, and only update the ac-
tive matrix of [Bk,C] at each iterate. In other words,
in each iteration step at epoch k we will use a mod-
ified active matrix (whose first k − 1 row blocks will
not be changed during the iterations) to replace the
true active matrix Aν

[k] at the iterate. Then updat-
ing/downdating of the QR factorization of the modi-
fied active matrix will be much simpler than that of
the actual active matrix and may cost much less. The
details of the computation will be given later. With
the above modification we can easily show that we will
still obtain a descent direction at iterates (unless the
convergence has been reached), since we actually use a
new symmetric positive definite matrix to replace the
left hand side of (7) without changing the definition of
the right hand side of (7).

For later use, here we describe the computation of the
QR factorization of [Bk,C]. Notice that [Bk,C] has
a special structure, which should be used in the com-
putation for efficiency. Define the orthogonal matrix

G ≡
[

cI −sI
sI cI

]

,

where

γ ≡
√

1 + σ2, c ≡ 1/γ, s ≡ σ/γ.
Then multiplying [Bk,C] by GT from the left gives

GT
[

Bk C
]

=

[

cI sI
−sI cI

] [

e Ek I

σe σEk 0

]

=

[

γe γEk cI
0 0 −sI

]

. (23)

Use the Householder transformations (see e.g., [2, Sec
2.3]) to compute the QR factorization:

HT
k

[

γe γEk cI
0 0 −sI

]

=

[

Rk R̂k

0 R̄k

]

, (24)

where Hk ∈ R2m×2m is the product of m + 4 House-
holder transformations, Rk is a 4× 4 nonsingular up-
per triangular matrix, and R̄k is a (2m−4)×m upper
triangular matrix. Here the Householder transforma-
tions can be implemented to take advantage of the the
structure of the matrix. Combining (23) and (24) gives
the QR factorization of [Bk,C]:

[

QT
k

Q̄
T

k

]

[

Bk C
]

=

[

Rk R̂k

0 R̄k

]

, [Qk, Q̄k] ≡ GHk,

(25)

where [Qk, Q̄k] is orthogonal, and QT
k and [Rk, R̂k]

have the same number of rows. Here the Q-factor
[Qk, Q̄k] needs to be formed and stored. It will be
used during the iteration process at epoch k. But af-
ter epoch k, it will not be used any more and can be
discarded.

In the following we will discuss the computation at
epoch k.

First we consider the initial case k = 1. Note that the
model is

[

y
φ
1

σy
ρ
1

]

=

[

e E1 I

σe σE1 0

]





β1
x1

a



+

[

v
φ
1

σv
ρ
1

]

,

or y1 = [B1,C]

[

z1

a

]

+ v[1] = A[1]x[1] + v[1].

We can apply Newton’s method given in Section 2
to the above model directly to compute Huber’s M-
estimate, with the initial estimate taken to be the LS
estimate, which can be computed by the QR factor-
ization of [B1,C] (cf. (25)). From the structure of
the matrix C, we observe that Huber’s M-estimation
cannot reduce the influence of outliers in carrier phase
measurements, since outliers will be absorbed into the
unknown ambiguities, i.e., we cannot distinguish out-
liers and ambiguities (This is also true for k > 1 if
all carrier phase measurement equations at different
epochs have the same outlier vector). So the residu-
als for the carrier phase measurement equations at an



iterate are likely small and all the carrier phase mea-
surement equations are likely active. Also in theory
there is Huber’s estimate at which the active matrix
of A[1] has full column rank (see the statement after
equation (8)), so all carrier phase measurement equa-
tions must be active at the estimate, otherwise from
the structure of C we observe that the active matrix
will have at least one zero column. In our implemen-
tation, we force the active matrix at any iterate to
include all the m row vectors corresponding to the m
carrier phase measurement equations. If the number
of rows of an active matrix is less than m + 4 (the
number of its columns), then the active matrix does
not have full column rank and we use the strategy pro-
posed in Section 2 to handle this singularity problem.
Specifically we add to the active matrix the row vec-
tors corresponding to the code measurement equations
which are not active and have the smallest residuals
such that the new active matrix (which is actually not
true active matrix) becomes square, then it is easy to
show it is nonsingular under our earlier assumption
that any 4 rows of [e,Ej ] is nonsingular.

Now we consider the general case k > 1. Let Hu-
ber’s M-estimate of x[j] at any epoch j be denoted by
x[j|j] = [zT1|j , . . . , z

T
j|j ,a

T
j ]
T and let the active matrix

of [Bj ,C] at x[j|j] by [Bj|j ,Cj ]. At the end of epoch
k − 1, we obtain

A[k−1|k−1] ≡ [B[k−1|k−1],C [k−1|k−1]]

≡







B1|1 C1

. . .
...

Bk−1|k−1 Ck−1






, (26)

where we assume that Bj|j (for j = 1, . . . , k − 1) has
full column rank (we will discuss how to ensure this
later), so A[k−1|k−1] has full column rank. For compu-
tational efficiency, we will use A[k−1|k−1] in lieu of true
active matrices of A[k−1] at later iterates for comput-
ing descent directions, and will not update A[k−1|k−1]

any more.

Suppose at the end of epoch k − 1, we have obtained
the QR factorization of A[k−1|k−1]:

[

QT
[k−1|k−1]

Q̄
T

[k−1|k−1]

]

A[k−1|k−1]

=

















R1|1 R̂1|1

. . .
...

Rk−1|k−1 R̂k−1|k−1

R̃[k−1]

0

















,

(27)

where [Q[k−1|k−1], Q̄[k−1|k−1]] is orthogonal, and Rj|j

for j = 1, . . . , k − 1 and R̃[k−1] are nonsingular upper
triangular. Here the Q-factor [Q[k−1|k−1], Q̄[k−1|k−1]]
is not used in computation and so is not formed and
stored.

At epoch k, let the initial estimate for x[k] be denoted
by

x
(0)
[k|k] ≡ [(z

(0)
1|k)

T , . . . , (z
(0)
k−1|k)

T , (z
(0)
k|k)

T , (a
(0)
k )T ]T .

Naturally we take

z
(0)
j|k = zj|k−1, j = 1, . . . , k − 1, a

(0)
k = ak−1.

For the initial estimate of zk, noting that the measure-
ment equations at epoch k are yk = Bkzk+Ca+vk,
we take

z
(0)
k|k = argmin

zk

‖(yk −Cak−1)−Bkzk‖2. (28)

Using the QR factorization (25), we can easily find

z
(0)
k|k in (28) by solving the upper triangular system

Rkz
(0)
k|k = QT

k (yk −Cak−1).

After finding z
(0)
k|k, we can obtain the modified active

matrix of A[k] at x
(0)
[k|k]:

A
(0)
[k|k] ≡











B1|1 C1

. . .
...

Bk−1|k−1 Ck−1

B
(0)
k|k C

(0)
k











,

(29)

where [B
(0)
k|k,C

(0)
k ] is the active matrix of [Bk,Ck] at

x
(0)
[k|k]. If [B

(0)
k|k,C

(0)
k ] corresponds to measurements

from less than 4 different satellites, then from the
structure of Bk (note Bk =

[

e Ek

σe σEk

]

) we can con-

clude that B
(0)
k|k does not have full column rank. So

A
(0)
[k|k] does not have full column rank. In order to

handle this problem, we use the strategy proposed in
Section 2. Specifically, we add to the active matrix

[B
(0)
k|k,C

(0)
k ] the row vectors from the rest of [Bk,C]

corresponding to other satellites and smallest residuals

so that the row vectors of the updated [B
(0)
k|k,C

(0)
k ] cor-

responds to 4 different satellites. Then we can easily

show that the updated B
(0)
k|k has full column rank un-

der the earlier assumption that any 4 rows of [e,Ej ] for
any j is nonsingular. In our later iterations at epoch k,
we always use this strategy to ensure that the active
matrices of Bk have full column rank. We then use
A

(0)
[k|k] in lieu of the true active matrix of A[k] at x

(0)
[k|k]

for computing the search direction h
(0)
[k] at x

(0)
[k|k], i.e.,



we would like to solve the following linear system for

h
(0)
[k] (cf. (7)):

(

A
(0)
[k|k]

)T
A

(0)
[k|k]h

(0)
[k]

=
(

A
(0)
[k|k]

)T [
W (x

(0)
[k|k]) · r

(

x
(0)
[k|k]

)

+ γs
(

x
(0)
[k|k]

)]

.
(30)

In order to solve (30), we seek the QR factoriza-

tion of A
(0)
[k|k]. Applying the QR downdating tech-

nique to (25), we can obtain the QR factorization of

[B
(0)
k|k,C

(0)
k ]:

[

(Q
(0)
k|k)

T

Q̄
(0)
k|k)

T

]

[

B
(0)
k|k C

(0)
k

]

=





R
(0)
k|k R̂

(0)

k|k

0 R̄
(0)
k|k



 . (31)

Then using the QR factorizations (27) and (31), we
obtain from (29) that













QT
[k−1|k−1]

(Q
(0)
k|k)

T

Q̄
T

[k−1|k−1]

(Q̄
(0)
k|k)

T













A
(0)
[k|k]

=



























R1|1 R̂1|1

. . .
...

Rk−1|k−1 R̂k−1|k−1

R
(0)
k|k R̂

(0)

k|k

R̃[k−1]

0

R̄
(0)
k|k



























.

(32)

The next step is to compute the following QR factor-
ization by Householder transformations:

(Q̃
(0)

[k] )
T

[

R̃[k−1]

R̄
(0)
k|k

]

=

[

R̃
(0)

[k]

0

]

. (33)

In the implementation, the special structures of R̃[k−1]

and R̄
(0)
k|k are used for computational efficiency. Here

again the Q-factor Q̃[k] does not need to be formed and
stored. From (32) and (33), we see that there exists

an orthogonal matrix [Q
(0)
[k|k], Q̄

(0)
[k|k]] such that

[

(Q
(0)
[k|k])

T

(Q̄
(0)
[k|k])

T

]

A
(0)
[k|k]=























R1|1 R̂1|1

. . .
...

Rk−1|k−1 R̂k−1|k−1

R
(0)
k|k R̂

(0)

k|k

R̃
(0)

[k]

0























.

(34)
This is the QR factorization of A
(0)
[k|k]. Here we do not

form or store the Q-factor. Solving (30) by using the
QR factorization (34), we obtain the search direction

h
(0)
[k] . Then applying the line search technique, we get

the next iterate x
(1)
[k|k].

Now we can continue the iteration process. After

obtaining x
(1)
[k|k], we can determine the active matrix

[B
(1)
k|k,C

(1)
k ] of [Bk,C] at x

(1)
[k|k]. The modified active

matrix A
(1)
[k|k] of A[k|k] at x

(1)
[k|k] is then obtained by re-

placing [B
(1)
k|k,C

(1)
k ] at the bottom of A

(0)
[k|k] in (29) with

[B
(1)
k|k,C

(1)
k ]. Then we just repeat the process in the

previous paragraph to get a new iterate x
(2)
[k|k]. When

the iteration converges, we finally obtain the Huber’s
M-estimate at epoch k: x[k|k] = [zT1|k, . . . , z

T
k|k,a

T
k ]
T .

Then we start the computation for epoch k + 1.

Here we give a remark. In (21) all measurement equa-
tions from epoch 1 to epoch k are used for estimation
at epoch k. We obtain not only the estimate for the
position at epoch k, but also the estimates for posi-
tions at all previous epochs—this is called smoothing.
The computation cost at each epoch increases when
k increases. So does the storage requirement. This
may cause problems, especially for real time applica-
tions, when k becomes too large. In practice, after
certain epochs, we may use only a fixed number of lat-
est measurements for positioning. Our method with
some modification can still be applied.

5.2 Simulation results

To demonstrate the performance of our method, we
give some simulation results here. The simulation sce-
nario is the same as that described in Section 4. The
code measurements were constructed as (18) and car-
rier phase measurements were constructed as follows:

y
φ
k = ȳk + eβk + a + v

φ
k + bφ,

where ȳk and βk are the same as given in (18), the
i-th element of a is λN i with N i being the difference
of the number of integer cycles between satellite i and
the roving receiver and that between satellite i and the
stationary receiver at epoch 1, v

φ
k ∼ N (0, σ2φI) with

σφ = 0.01m, and bφ is the outlier vector.

We used the modified Newton method to compute Hu-
ber’s M-estimates of the positions. In each epoch, the
iteration process stops when the difference between the
position estimates at two consecutive iteration steps is
less than 0.001m. The tuning constant γ was still set
to be 1.5. For comparison, we also computed the LS



estimates of the positions by a recursive LS method
proposed in [4].

We used 8 visible satellites and took the out-
lier vectors bρ = [0, 10, 0, 0, 0, 0, 0, 0]T and bφ =
[0, 0.1, 0, 0, 0, 0, 0, 0]T for each epoch. One exception
was that bφ was not added to the single differenced
carrier phase measurements in the first epoch, since
otherwise the Huber’s M-estimation could not reduce
the influence of the outliers in the carrier phase mea-
surements for the reason we mentioned in Section 5.1.
In order to reduce random effect on the results, we
performed 100 simulation runs for the same satellite
geometry, and each run had 500 epochs.

Figure 3 shows the average position errors in Huber’s
M-estimates and in LS estimates at each epoch. As for
the code based relative positioning, we observe that
Huber’s M-estimation can reduce the effect of outliers
and give better position estimates than the LS esti-
mation. Both errors tends to decrease with epoch in-
creasing. Figure 3 also gives the average smoothed
position errors, where the smoothed position estimate
at epoch k (k < 500) is the estimate of the position ob-
tained at epoch 500. As it is expected, the smoothed
position estimates are better than the corresponding
regular position estimates, since more information was
used by the former. We see that the smoothed posi-
tion estimates at different epochs have almost the same
accuracy. This is because the same estimate of the am-
biguity vector was involved in the estimation of these
positions.

Figure 4 displays the average number of iterations for
the modified Newton method. For the initial a few
epochs, the number of iterations is relatively large.
But it drops dramatically later. For most epochs, it
takes only 2 to 3 iterations.
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Figure 3: Average errors in the position estimates
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Figure 4: Average number of iterations for the modi-
fied Newton method

6 SUMMARY

The IRLS method is often used in Geodesy for ro-
bust M-estimation. For Huber’s M-estimation, we pro-
posed to use Newton’s method instead, since updat-
ing/downdating techniques can be used to solve lin-
ear systems quickly during the iterations and also it
usually converges faster than the IRLS method. We
showed by simulations that for code based relative po-
sitioning, Newton’s method indeed converges faster
than the IRLS method. For code and carrier phase
based relative positioning, we showed how to use the
structures of the model to design an efficient modified
Newton method for recursively computing Huber’s M-
estimates. When we designed the numerical method,
we also took numerical stability and storage require-
ment into account. Simulation results indicated the
proposed numerical methods are effective. In the fu-
ture, we will consider applying the proposed methods
to real data and test the effectiveness of the methods
to real applications.
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