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Abstract

When GPS signal measurements have outliers, using least squares (LS) estimation is likely
to give poor position estimates. One of the typical approaches to handling this problem is to
use robust estimation techniques. We study the computational issues of Huber’s M-estimation
applied to relative GPS positioning. First for code-based relative positioning, we use simulation
results to show that Newton’s method usually converges faster than the iteratively reweighted
least squares (IRLS) method, which is often used in geodesy for computing robust estimates of
parameters. Then for code- and carrier-phase-based relative positioning, we present a recursive
modified Newton method to compute Huber’s M-estimates of the positions. The structures of
the model are exploited to make the method efficient, and orthogonal transformations are used
to ensure numerical reliability of the method. Economical use of computer memory is also taken
into account in designing the method. Simulation results show that the method is effective.

Keywords: Relative GPS positioning, Huber’s M-estimation, Netwon’s method for minimization, computer
implementation

1 Introduction

The typical approach to GPS positioning is least squares (LS) estimation. However, LS estimation is sensitive
to outliers (unspecified large errors) in the measurements, thus it will likely give poor position estimates if
the measurements have outliers. There are several gross error sources which can lead to outliers in the
measurement data (e.g., multipath, ionospheric delay and diffraction, interference, channel biases, satellite
failure). In order to get good position estimates, outliers have to be appropriately handled.

One approach is to apply the fault detection and identification procedure (e.g., Brown 1996; Kelly
1998; Teunissen 1990). This approach uses some detection and identification techniques to detect possible
unspecified errors in the input data and isolate the faulty data. Then either the faulty data are discarded or
the model for position estimation is adjusted to take the unspecified errors into account. However, sometimes
detection and identification by regular methods are difficult, in particular when outliers appear in multiple
observations. Furthermore, in the case of limited observational data availablility, the faulty data can not be
simply discarded, otherwise, the problem of rank deficiency will arise.

Another approach is to use robust estimation techniques. The aim of robust estimation is to reduce (but
not completely eliminate) the influence of outliers on the parameter estimation. It automatically identifies
outliers in the observations and gives the corresponding observations less weight in the estimation. Because
of the good statistical properties and the relatively low computing effort, the M-estimation techniques,
especially Huber’s (1964) M-estimation technique, have been widely used in robust estimation (Rieder 1996).

Robust estimation methods have been used in geodesy for many years (e.g., Fuchs 1982; Koth and Yang
1998; Xu 1989; Yang 1991, 1994; Zhu 1996, Zhong 1997; Gui and Zhang 1998; Awange and Aduol 1999; and
others). Recently, these techniques have been applied to GPS positioning. For example, Yang et al. (2001)
proposed an adaptive robust Kalman filter for position estimation, which is some kind of combination of an
adaptive Kalman filter and Huber’s M-estimation. To deal with the correlated measurements, the so-called
dependent equivalent weight matrix based on Huber’s weight function was used in their method (see Yang
1994 for more details). Their test results show that the robust estimation can effectively resist the influence
of the outliers. Wieser and Brunner (2002) present a modified Danish method for short static positioning
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using double-differenced carrier-phase measurements. Since the standard Danish method (Krarup et al.
1980) is not applicable to correlated observations, it was modified to handle correlated double-differenced
carrier-phase observations. Wieser and Brunner’s (2002) test results indicated that their method performs
significantly better than the LS method if unfavorable signal distortion occurs. Like many papers in robust
M-estimation in geodesy, computer implementation of these methods was not considered in Yang et al (2001)
and Wieser and Brunner (2002), since it was not their goal.

However, computational issues are important for software design. Since computational efficiency is
crucial when the amount of data is large or the application is a real-time one, fast algorithms are often
needed. Numerical reliability of the algorithms has to be considered in order to avoid unnecessarily losing
accuracy. One also needs to consider how to economically use computer memory in designing algorithms.

In this paper, we consider applying Huber’s M-estimation technique to relative GPS positioning us-
ing the single-differenced code- and carrier-phase measurements. In the GPS literature, double-differenced
measurements are often used for positioning. However, Huber’s M-estimation technique can not be applied
directly to double-differenced measurements, since the noises in the measurements are correlated. Even if the
correlation were not a problem, it still cannot be applied directly when the signals from the reference satel-
lite have outliers, since all double-differenced measurements will have outliers. In fact, even if we use least
squares estimation, we can work with single-differenced measurements without using the double-differencing
technique, see, e.g., Chang and Paige (2003) and Chang et al (2004).

In this paper, we do not use any dynamic (or state) equations, since it is often difficult to get accurate
dynamic equations in practice. Instead, we could extend our approach to the case where accurate dynamic
equations are available. Our main goal is to address the computational issues. We will use code-based relative
positioning as an example to show Newton’s method is usually faster than the iteratively reweighted least
squares (IRLS) method, which is widely used in geodesy for robust M-estimation (e.g., Koch 1999, Sec 3.8.2;
Koch and Yang 1998; Wieser and Brunner 2002). For code- and carrier-phase-based relative positioning, we
will present a recursive modified Newton method for computing Huber’s M-estimates. Due to the effect of
possible outliers, we will not attempt to fix integer ambiguities. We will make full use of the structure of
the positioning model to make our method efficient, and use orthogonal transformations to ensure numerical
reliability. We will also consider saving computer memory in designing the method. Although our goal is
not to show how significant Huber’s M-estimation is to GPS positioning, we give some simulation results to
demonstrate that Huber’s M-estimation can give (much) better results than LS estimation when there are
outliers.

The paper is organized as follows. In Section 2, we introduce Huber’s M-estimation for a general
linear model and discuss the strategies for handling a singularity problem. In Section 3, we introduce the
mathematical models for relative positioning. In Section 4, we use simulation results to show Newton’s
method is faster than the IRLS method for Huber’s M-estimation. In Section 5, for code- and carrier-phase-
based positioning we present a recursive modified Newton method for computing Huber’s M-estimates, and
give some simulation results. Finally, we give a summary in Section 6.

Notation: Throughout this paper, we use bold lower case letters for vectors and bold upper case letters
for matrices. The vector space of all real m × n matrices is denoted by Rm×n and the vector space of
real n-vectors by Rn. The unit matrix is denoted by I or sometimes by In if its dimension is n by n
and its ith column by ei, while e ≡ [1, 1, . . . , 1]T (we use ≡ to mean ‘is defined to be’). We use the norm

‖x‖ =
√

xT x for vectors. E{·} denotes the expected value, and cov{·} denotes the covariance matrix, that
is cov{x} = E{(x − E{x})(x − E{x})T }. v ∼ N (v̄, V ) indicates that v is a normally distributed random
vector with expected value v̄ and covariance V .

2 Huber’s M-estimation for a general linear model

We first describe Huber’s M-estimation problem for a general linear model, and then introduce a framework
for Newton’s method with a line search to solve the problem (for the general Newton’s method and line search
strategies, see, e.g., Nocedal and Wright 1999). We discuss the advantages and disadvantages of different
strategies for dealing with a singularity problem which may happen in Newton’s method and propose to
use the strategy given in Chang (2005), which is suitable for solving our estimation problem for code- and
carrier-phase based relative positioning.
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Suppose we have a general linear model

y = Ax + v, (1)

where y = [y1, . . . , ym]T ∈ Rm is a measurement vector, A = [a1, . . . , am]T ∈ Rm×n is a design (or model)
matrix with full column rank, x ∈ Rn is an unknown parameter vector to be estimated, and v ∈ Rm is a
random noise vector with cov{v} = σ2I (σ is assumed to be be known). In the ideal situation, the mean
E{v} = 0, but this will not hold when v includes outliers.

For a given vector x ∈ Rn, we define the residual vector r(x) ≡ y−Ax, with ith element ri(x). Huber’s
M-estimate of the parameter vector is the solution of the optimization problem

min
x

{F (x) ≡
m

∑

i=1

ρ(ri(x))}, (2)

where ρ is a nonnegative, convex, piecewise function defined by

ρ(t) ≡
{

1
2 t2, |t| ≤ γ,
γ|t| − 1

2γ2, |t| > γ,
(3)

for some tuning constant γ > 0. Often, γ is chosen to be in the interval [1.5σ, 2σ] (Koch 1999, Sec 3.8.3).
The function ρ(t) in the form of Eq. (3) is called the Huber function. Note that Huber’s M-estimation is a
mixed l2 and l1 minimization problem. For M-estimation, there are several other well-known functions such
as the Fair, Talwar, Tukey, and Welsh functions (Huber 1981), but the Huber function is the most popular
one.

We see from Eq. (3) that ρ(t) is a continuous function, with continuous and nondecreasing first derivative,
since

ρ′(t) =

{

t, |t| ≤ γ,
γ sign(t), |t| > γ,

ρ′′(t) =

{

1, |t| ≤ γ,
0, |t| > γ.

(4)

Strictly speaking, ρ(t) has only a right (left) second derivative at t = −γ (t = γ), but from a practical point
of view, there is no harm in defining ρ′′(±γ) = 1, since it is very unlikely that this slight extension will have
any effect on solving the minimization problem in Eq. (2).

The active index set and the inactive index set at x ∈ Rn are respectively defined by

ν(x) ≡ {i : |ri(x)| ≤ γ}, ν̄(x) ≡ {i : |ri(x)| > γ}. (5)

If i ∈ ν(x), we say that the ith equation of the model in Eq. (1) is active at x, otherwise we say it is inactive
at x. The active matrix Aν(x) of A at x is defined to be the matrix formed by the rows of A corresponding
to the active equations at x. Sometimes for simplicity we just use Aν instead of Aν(x) if there is not any
confusion. We define the sign vector

s(x) ≡ [s1(x), . . . , sm(x)]T , si(x) ≡







−1, ri(x) < −γ,
0, |ri(x)| ≤ γ,
1, ri(x) > γ,

(6)

and the weight matrix

W (x) ≡ diag(w1(x), . . . , wm(x)), wi(x) ≡ 1 − s2
i (x) = ρ′′(ri(x)). (7)

The objective function F (x) in Eq. (2) can then be rewritten as

F (x) =
1

2
r(x)T W (x)r(x) + γs(x)T [r(x) − 1

2
γs(x)]. (8)

Since ∂r(x)T

∂x
= −AT , differentiating Eq. (8) gives the gradient of F (x)

F ′(x) ≡ ∂F (x)

∂x
= −AT (W (x)r(x) + γs(x)) = −

∑

i∈ν(x)

airi(x) − γ
∑

i∈ν̄(x)

aisi(x). (9)
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The symmetric nonnegative definite Hessian matrix is given by

F ′′(x) ≡ ∂2F (x)

∂x∂xT
= AT W (x)A =

∑

i∈ν(x)

aia
T
i = Aν(x)T Aν(x). (10)

A general framework for Newton’s method with a line search for solving Eq. (2) can be described as
follows (e.g., O’leary 1990; Madsen and Nielsen 1990; Antoch and Ekblom 1995):

Given an initial estimate x

Repeat until convergence:
Solve the following linear system for the search direction h:

F ′′(x)h = −F ′(x), or Aν(x)T Aν(x)h = AT [W (x)r(x) + γs(x)], (11)

Perform a line search and update x := x + α̂h (see Eq. 19).

Usually the LS estimate xLS for the model in Eq. (1) is taken to be the initial estimate, so that if the
index set ν̄(xLS) is empty (i.e., no outliers),

W (xLS) = Im, s(xLS) = 0, AT [W (xLS)r(xLS) + γs(xLS)] = AT r(xLS) = 0. (12)

Notice that AT r(xLS) = 0 are the normal equations and from Eq. (11) we see h = 0. Thus, xLS solves Eq.
(2). Any h satisfying Eq. (11) with a nonzero F ′(x) is a strict descent direction for the functional F at x,
since

hT F ′(x) = −hT Aν(x)T Aν(x)h < 0. (13)

It can be shown (e.g., Madsen and Nielsen 1990) that there is a minimizer x of F (x) such that
Aν(x)T Aν(x) is nonsingular. When Aν(x)T Aν(x) is nonsingular, it is positive definite and the Cholesky
factorization of Aν(x)T Aν(x) can be used to solve Eq. (11). Specifically, if Aν(x)T Aν(x) has the Cholesky
factorization (e.g., Björck 1996, Sec 2.2.2)

Aν(x)T Aν(x) = RT R, (14)

where R is upper-triangular, then h can easily be obtained by solving two triangular systems

RT h̃ = AT [W (x)r(x) + γs(x)], Rh = h̃. (15)

The Cholesky factor R of Aν(x)T Aν(x) can also be obtained from the QR factorization of Aν(x). In fact,
if Aν(x) has the QR factorization (e.g., Björck 1996, Sec 1.3)

Aν(x) = [Q, Q̄]

[

R

0

]

= QR, [Q, Q̄] orthogonal, R upper triangular, (16)

then we have
Aν(x)T Aν(x) = RT QT QR = RT R. (17)

Since forming Aν(x)T Aν(x) may lose information (e.g., Björck 1996, p.44), for numerical reliability, we
prefer to find R by the QR factorization in Eq. (16).

The main computational cost in each iteration is then that of computing the QR factorization. Since the
active matrices for two consecutive iterates usually differ by just a few rows, updating/downdating techniques
for the QR factorization (e.g., Björck, 1996, Sec 3.2) can be used to compute the QR factorization of Aν(x)
during the iterations for efficiency.

If during the iterative process there are more than m−n large residuals beyond the tuning constant γ, then
the number of rows of Aν(x) is smaller than the number of its columns, so Aν(x)T Aν(x) is singular. There
are several strategies to handle this problem. For example, in Antoch and Ekblom (1995), if Aν(x)T Aν(x) is
found to be singular, then it is replaced by Aν(x)T Aν(x) + ǫI. The shortcoming with this approach is that
updating/downdating of the matrix factorization is computationally expensive when the matrix becomes a
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singular matrix from a nonsingular matrix, or vice versa, since it is computationally expensive to go from
the factorization of Aν(x)T Aν(x) to Aν(x)T Aν(x) + ǫI, or vice versa. In O’Leary (1990), the strategy is
to use a very large tuning constant at the beginning, then gradually decrease its value to the desired value
over the first four steps of the iteration. However, no implementation details for this strategy were given in
O’Leary (1990), nor was a guarantee given that this strategy would always work.

In this paper, we use the following strategy (Chang 2005) to handle the singularity problem. If the active
matrix Aν(x) is not of full column rank, we choose a row vector from those aT

i with i ∈ ν̄(x) according to
some criterion and add this row vector to Aν(x). We continue this process until the updated Aν(x) has
full column rank. For simplicity, the updated Aν(x) is still called an active matrix. For a general matrix A

such as that in GPS code-based relative positioning (see Section 4), a sensible criterion is that the chosen
row vector corresponds to the smallest residual in magnitude. In practice, we may know when the updated
Aν(x) has full column rank. For GPS code-based relative positioning, when the updated Aν(x) becomes
square, we can reasonably assume that it is nonsingular. For GPS code- and carrier-phase-based relative
positioning, the matrix A has some special structures (see Section 5.1), and we will show how to choose row
vectors to make the updated Aν(x) have full column rank. After a full column rank Aν(x) is found, we
solve Eq. (11) for the search direction h. Note that although now Aν(x) may not be the true active matrix
at x any more, we still have Eq. (13). Thus h is still a descent direction and the optimization problem Eq.
(2) remains solved. Since the singularity problem does not occur often (unless the tuning constant γ in Eq.
(3) is too small or there are many outliers), this strategy is unlikely to slow down the convergence.

The optimal step length α̂ in the line search can be found exactly. Write

φ(α) ≡ F (x + αh) =

m
∑

i=1

ρ(yi − aT
i (x + αh)). (18)

Since φ(α) is the sum of nonnegative, convex, piecewise defined functions of α, with each piece being either
quadratic or linear (see Eqs. 2–4), it too is a nonnegative, convex, piecewise defined function with each
piece being quadratic (possibly linear). Therefore, φ′(α) must be piecewise, with each piece linear (possibly
constant), and we can find exactly a minimizer α̂ of φ(α), i.e.,

α̂ = arg min
α

φ(α). (19)

This α̂ is a zero of φ′(α). An efficient method for computing α̂ can be found in Madsen and Nielsen (1990).
Its computational cost is usually negligible compared with that of solving the linear system in Eq. (11).

The commonly used method for solving the robust M-estimation problem in geodesy is the IRLS method
(e.g., Koch 1999). Note that Eq. (11) can also be written

AT W (x)Ah = AT [W (x)r(x) + γs(x)]. (20)

If we replace W (x) on the left-hand side of Eq. (20) by D(x) = diag(d1, . . . , dm) with di = 1 if |ri(x)| ≤ γ
or di = γ/|ri(x)| if |ri(x)| > γ, then we can easily verify that Eq. (20) can be written

AT D(x)Axnew = AT D(x)y, (21)

where xnew = x + h. The iterative method in which the iteration sequence defined by Eq. (21) (i.e., xnew
is a new iterate) is just the IRLS method for Huber’s M-estimation. Choosing different D(x) in Eq. (21)
will lead to other robust M-estimation methods, such as the Danish method.

Since it is easy to understand and implement the IRLS method, this is probably why it is often used
in geodesy. Unlike Newton’s method, however, we cannot use the updating/downdating techniques for
the QR factorization to compute the factorization in Eq. (14) during the iterations, though we can use
the updating/downdating techniques for the Cholesky factorization to do it (Wolke 1992), which may lose
accuracy. Furthermore, usually the IRLS method has a linear convergence rate, while Newton’s method has
quadratic convergence rate (Osborne 1985, Sec 5.4 & Sec 5.6; Antoch and Ekblom 1995). Since the cost of
the line search is usually negligible compared with that of solving the linear systems during the iterations,
Newton’s method is usually more computationally efficient than the IRLS method.
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3 Mathematical models

We consider relative positioning based on L1 single-frequency code and carrier-phase measurements.
Ideally when the distance between the stationary receiver and roving receivers is short (say, shorter than
10km), the signals received by the two receivers from the same satellite have almost the same ionospheric
refraction and tropospheric refraction. The single difference code and carrier-phase measurement equations
for satellite i at epoch k can be written (cf. Chang and Paige 2003)

ρi
k = (ei

k)T xk + cδtk + µi
k, (22)

φi
k = (ei

k)T xk + cδtk + λN i + νi
k, (23)

where all terms are in units of meters, ρi
k is the single-differenced code measurement, φi

k is the single-
differenced carrier-phase measurement, xk is the baseline vector pointing from the stationary receiver to
the roving receiver, ei

k is the unit vector pointing from the midpoint of the baseline to satellite i, c is the
speed of light, δtk is the single-differenced receiver clock error, λ is the wavelength of L1 carrier (λ ≈ 19 cm),
N i is the single-differenced ambiguity including the single-differenced initial phase of the receiver-generated
signals and so is not an integer, µi

k is single-differenced noise including multipath for the code measurement,
and νi

k is single-differenced noise including multipath for the carrier-phase measurement.
Suppose there are m visible satellites. Define

y
ρ
k =







ρ1
k
...

ρm
k






, y

φ
k =







φ1
k
...

φm
k






, Ek =







(e1
k)T

...
(em

k )T






, βk = cδtk, (24)

a = λ







N1

...
Nm






, v

ρ
k =







µ1
k
...

µm
k






, v

φ
k =







ν1
k
...

νm
k






. (25)

Then from Eqs. (22) and (23) we have

y
ρ
k = Ekxk + βke + v

ρ
k, (26)

y
φ
k = Ekxk + βke + a + v

φ
k , (27)

where, as in some GPS literature (e.g., Tiberius 1998, Sec 3.4), we assume that in the ideal situation,

v
ρ
k ∼ N (0, σ2

ρIm), v
φ
k ∼ N (0, σ2

φIm), (28)

and v
ρ
k, vρ

l , v
φ
k , and v

φ
l are uncorrelated to each other for any epochs k and l (k 6= l). Here we give a remark

about these assumptions. In practice, the noise variances depend on the elevation angles of the satellites (e.g.,
Tiberius and Kenselaar 2003), but for either the code measurement equations in Eq. (26) or the carrier-phase
measurement equations in Eq. (27), we could simply scale them so that they have the same variance. In
practice, the measurements may be correlated between channels, between measurement types and between
epochs. However, an accurate characterization of the correlation is very difficult, although there have been
some attempts in the literature (e.g., Tiberius and Kenselaar 2003).

Notice that in Ek, ei
k depends on the baseline vector xk. Once xk is known, Ek will be known. In

other words, Eqs. (26) and (27) are nonlinear. However, Ek is not sensitive to changes in xk, since the
distance from a satellite to any of the two receivers is far larger than the baseline. Therefore, we can use an
approximation to xk, say, our estimate of xk−1 at epoch k−1, to compute the approximation to Ek. Usually
this approximation is good enough, but after obtaining an estimate of xk at epoch k, we can recompute Ek,
and do more iterations if necessary. For the first epoch, we set the initial estimate of x1 to be a zero vector
and then compute the corresponding E1 (i.e., we take ei

1 to be the unit vector pointing from the stationary
receiver to satellite i). Since E1 computed by this initial x1 is not very accurate, it is recomputed one more
time when the new estimate of x1 is obtained from our computational method. Therefore, from now on, we
just assume all Ek are known.
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4 Computation for code based relative positioning

In this Section, we apply Newton’s method directly to code-based relative positioning. The purpose is to
use simulation results to show that for computing Huber’s M-estimates Newton’s method converges faster
than the IRLS method, which is often used in geodesy, and demonstrate that Huber’s estimation gives better
position estimates than the LS estimation when there are outliers in the measurements.

All our computations were performed in MATLAB 6.5 on a Celeron PC running Windows XP. The
GPS satellite almanac data in YUMA format for the week of June 30th to July 6th 1998 was used in the
simulations. The roving receiver was assumed to be on board an aircraft circling horizontally with center
directly above the reference station at a constant speed of 100m/s. The baseline was 1 km. For each epoch,
a set of code measurement data from eight visible satellites were used. The data sampling rate was 1 Hz.
At each epoch, the single-differenced code measurements were simply constructed by

y
ρ
k = ȳk + cδtke + v

ρ
k + bρ, (29)

where the ith component of ȳk is the difference of the true range between satellite i and the stationary
receiver and the true range between satellite i and the roving receiver, δtk is the difference between the clock
offsets of the stationary receiver and the roving receiver, both of which were modeled by white noise input
to a second-order Markov process based on Axelrad and Brown (1996, pp417–418), v

ρ
k ∼ N (0, σ2

ρI) with
σρ = 1m (for typical values of the standard deviation of carrier-phase noise, see Misra and Enge 2001, p153),
and bρ is the outlier vector.

We used the IRLS method and Newton’s method to compute Huber’s M-estimates of the positions. For
consistency, both methods used the same stopping criterion: the iteration process stops when the difference
between the position estimates at two consecutive iteration steps is less than 0.1m. Thus the position
estimates computed by the two methods have the same numerical accuracy. The tuning constant γ was set
to be 1.5 (Koch 1999, Sec 3.8.3). We took the outlier vector bρ = [0, 12, 0, 0, 8, 0, 0, 0]T (in meters) for each
epoch. In order to reduce the random effect on the results, we performed 100 simulation runs for the same
satellite geometries (i.e., the geometries for different runs at the same epoch are the same), and each run
had 200 epochs.

Figure 1 displays the average number of iterations for Newton’s method and the IRLS method at each
epoch. From Fig. 1, we see that Newton’s method converges faster than the IRLS method, as the literature
showed. On average, the former takes only about three or four iterations, while the latter takes about 10
iterations. Since in each iteration the computational costs of the two methods are more or less the same if
both use updating/downdating techniques, these simulation results indicate that Newton’s method is more
computationally efficient than the IRLS method.

Figure 2 shows the average position error in Huber’s M-estimate at each epoch, which were computed
by Newton’s method, and the average position errors in the LS estimates which were computed using the
QR factorization method. For comparison, Fig. 2 also gives the average position errors in the LS estimates
when the measurements do not have outliers. We observe that Huber’s M-estimation can reduce the effect
of outliers—giving better position estimates than the LS estimation, although the estimates are not as good
as the LS estimates without outliers, indicating that Huber’s M-estimatation cannot completely eliminate
the effect of outliers.

5 Computation for code- and carrier-phase-based positioning

In this Section, we first present a recursive modified Newton method for computing Huber’s M-estimates
based on single-differenced code and carrier-phase measurements, then give some simulation results to show
that our method is effective.

5.1 Numerical method

In order to apply Huber’s M-estimation, we have to scale the code or carrier-phase measurement equations
so that they have the same variances. Multiplying Eq. (26) by the ratio σr ≡ σφ/σρ, and then combining it
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Figure 2: Average errors in the position estimates using simulated code data

with Eq. (27), we obtain

[

y
φ
k

σry
ρ
k

]

=

[

e Ek

σre σrEk

] [

βk

xk

]

+

[

I
0

]

a +

[

v
φ
k

σrv
ρ
k

]

,

[

v
φ
k

σrv
ρ
k

]

∼ N (0, σ2
φI2m). (30)

Define

yk ≡
[

y
φ
k

σry
ρ
k

]

∈ R2m, Bk ≡
[

e Ek

σre σrEk

]

∈ R2m×4, (31)

zk ≡
[

βk

xk

]

∈ Rm+4, C ≡
[

I

0

]

∈ R2m×m, vk ≡
[

v
φ
k

σrv
ρ
k

]

∈ R2m. (32)

Then Eq. (30) can be rewritten as

yk = Bkzk + Ca + vk, vk ∼ N (0, σ2
φI2m). (33)
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Combining the above equations for k = 1, 2, . . . gives











y1
...

yk−1

yk











=











B1 C

. . .
...

Bk−1 C

Bk C

























z1

...
zk−1

zk

a















+











v1

...
vk−1

vk











, k = 1, 2, . . . , (34)

or equivalently (with obvious notation)

y[k] = [B[k], C[k]]

[

z[k]

a

]

+ v[k] ≡ A[k]x[k] + v[k], k = 1, 2, . . . . (35)

Note that each matrix A[k] has a block angular structure. Suppose there are at least four visible satellites
at any epoch. It is reasonable to assume that a matrix formed by any four rows of [e, Ej ] for any j is
nonsingular (this assumption will be used later). Of course [e, Ej ] will have full column rank. Then it is
straightforward to show that A[k] has full column rank.

We will apply Huber’s M-estimation to Eq. (34) or Eq. (35) at epoch k. In other words, all measurement
equations from epoch 1 to epoch k will be used for estimation at epoch k. We will obtain not only the
estimate for the position at epoch k, which is called the filtered estimate, but also the estimates for positions
at all previous epochs, which are called smoothed estimates. For the same position, its smoothed estimates
obtained at later epochs are usually more accurate than its filtered estimate, since the former use more
information than the latter.

At an estimate of x[k], we can find the corresponding active matrix of A[k]. For convenience, we also call
[Bν

j , Cν ] which is formed by the rows of [Bj , C] corresponding to the active equations the active matrix of
[Bj , C] at the estimate, and call Bν

j the active matrix of Bj at the estimate. For each epoch k, we could
directly apply Newton’s method to Eq. (34) or Eq. (35) to compute Huber’s M-estimate of x[k], but this
is not computationally efficient. At epoch k, when we compute Huber’s M-estimate of x[k], we should use
the results available at epoch k − 1. Also the structures of A[k] should be exploited to make the algorithm
efficient. In Chang (2005), a recursive modified Newton method is proposed to compute Huber’s M-estimates
for a model more general than Eq. (34), which may arise from other applications such as photogrammetry,
geodetic survey and meteorology. We would like to apply the techniques presented in Chang (2005) to the
model in Eq. (34), where Bj and C have some special structures—the bottom m × 4 submatrix of Bj is a
multiple of its top m × 4 submatrix; and the top and bottom block of C are an identity matrix and a zero
matrix, respectively.

From the general framework for Newton’s method, we see that at epoch k the main cost of computing Hu-
ber’s M-estimate is the cost of finding the R-factor of the QR factorization of the active matrix Aν

[k] (see Eq.
16) in each iteration step. As we mentioned in Section 2, for computational efficiency, updating/downdating
techniques of the QR factorization of the active matrix Aν

[k] have to be used. During the iterations at
epoch k, a measurement equation at any previous epoch may become an active equation from an inactive
equation or vice versa. This makes updating/downdating of the QR factorization of the active matrices very
complicated. Furthermore the Q-factors of all [Bj , C] have to be stored for updating/downdating use at
later epochs. When k is large, this may cause a computer memory problem. Thus we would like to modify
Newton’s method in the following way.

When we compute Huber’s M-estimate of x[k] at epoch k, we do not update the active matrix of [Bj , C]
at Huber’s M-estimate of x[j] obtained at epoch j for j = 1, . . . , k − 1, and only update the active matrix of
[Bk, C] at each iterate. In other words, in each iteration step at epoch k we will use a modified active matrix
(whose first k − 1 row blocks will not be changed during the iterations) to replace the true active matrix
Aν

[k] at the iterate. Then updating/downdating of the QR factorization of the modified active matrix will be
much simpler than that of the actual active matrix and may involve much fewer floating point operations.
The details of the computation will be given in this section. With the above modification, we can easily show
that we will still obtain a descent direction at each iterate (unless the convergence has been reached), since
we actually use a new symmetric positive definite matrix to replace the left-hand side of Eq. (11) without
changing the definition of the right-hand side of Eq. (11). Since the descent direction is sub-optimal at each
iterate, it may take more iterations than the standard Newton’s method. However, the numerical tests given
in Section 5.2 indicate that this is not a concern.
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For later use, here we describe the computation of the QR factorization of [Bk, C]. Notice that [Bk, C]
has a special structure, which should be used in the computation for efficiency. Define the orthogonal matrix

G ≡
[

cI −sI
sI cI

]

, α ≡
√

1 + σ2
r , c ≡ 1/α, s ≡ σr/α. (36)

Then multiplying [Bk, C] by GT from the left gives

GT
[

Bk C
]

=

[

cI sI
−sI cI

] [

e Ek I

σre σrEk 0

]

=

[

αe αEk cI
0 0 −sI

]

. (37)

Use the Householder transformations (e.g., Björck 1996, Sec 2.3) to compute the QR factorization:

HT
k

[

αe αEk cI
0 0 −sI

]

=

[

Rk R̂k

0 R̄k

]

, (38)

where Hk ∈ R2m×2m is the product of m +4 Householder transformations, Rk is a 4× 4 nonsingular upper
triangular matrix, and R̄k is a (2m−4)×m upper triangular matrix. Here the Householder transformations
can be implemented to take advantage of the the structure of the matrix. Combining Eqs. (37) and (38)
gives the QR factorization of [Bk, C]:

[

QT
k

Q̄
T

k

]

[

Bk C
]

=

[

Rk R̂k

0 R̄k

]

, [Qk, Q̄k] ≡ GHk, (39)

where [Qk, Q̄k] is orthogonal, and QT
k and [Rk, R̂k] have the same number of rows. Here the Q-factor

[Qk, Q̄k] needs to be formed and stored. It is used during the iteration process at epoch k. After epoch k,
it will not be used any more and can be discarded.

In the following, we will discuss the computation at epoch k. First, we consider the initial case k = 1.
Note that the model is

[

y
φ
1

σry
ρ
1

]

=

[

e E1 I

σre σrE1 0

]





β1

x1

a



 +

[

v
φ
1

σrv
ρ
1

]

, (40)

or

y1 = [B1, C]

[

z1

a

]

+ v[1] = A[1]x[1] + v[1]. (41)

We can directly apply Newton’s method given in Section 2 to the model in Eq. (41) to compute Huber’s
M-estimate, with the initial estimate taken to be the LS estimate, which can be computed by the QR
factorization of [B1, C] (cf. Eq. 39). From the structure of the matrix C, we observe that Huber’s M-
estimation cannot reduce the influence of outliers in carrier-phase measurements, since outliers will be
absorbed into the unknown ambiguities, i.e., we cannot distinguish outliers and ambiguities (This is also
true for k > 1 if all carrier-phase measurement equations at different epochs have the same outlier vector).
Therefore, the residuals for the carrier-phase measurement equations at an iteration are likely to be small,
and all the carrier-phase measurement equations are likely to be active.

Also, in theory, there is Huber’s estimate at which the active matrix of A[1] has full column rank (see
the statement after Eq. 13), so all carrier-phase measurement equations must be active at the estimate,
otherwise from the structure of C we observe that the active matrix will have at least one zero column. In
our implementation, we force the active matrix at any iteration to include all the m row vectors corresponding
to the m carrier-phase measurement equations. If the number of rows of an active matrix is less than m + 4
(the number of its columns), then the active matrix does not have full column rank and we use the strategy
proposed in Section 2 to handle this singularity problem. Specifically, we add to the active matrix the
row vectors corresponding to the code measurement equations which are not active and have the smallest
residuals such that the modified active matrix becomes square, then it is easy to show it is nonsingular under
our earlier assumption that any four rows of [e, Ej ] is nonsingular.

Now we consider the general case k > 1. Let Huber’s M-estimate of x[j] at any epoch j be denoted by
x[j|j] = [zT

1|j , . . . , z
T
j|j , a

T
j ]T and let the active matrix of [Bj, C] at x[j|j] by [Bj|j , Cj ]. At the end of epoch

10



k − 1, we obtain

A[k−1|k−1] ≡ [B[k−1|k−1], C [k−1|k−1]] ≡







B1|1 C1

. . .
...

Bk−1|k−1 Ck−1






, (42)

where we assume that Bj|j (for j = 1, . . . , k − 1) has full column rank (we will discuss how to ensure this
later), so A[k−1|k−1] has full column rank. For computational efficiency, we will use A[k−1|k−1] in lieu of true
active matrices of A[k−1] at later iterates for computing descent directions, and will not update A[k−1|k−1]

any more.
Suppose at the end of epoch k − 1, we have obtained the QR factorization of A[k−1|k−1]:

[

QT
[k−1|k−1]

Q̄
T

[k−1|k−1]

]

A[k−1|k−1] =

















R1|1 R̂1|1

. . .
...

Rk−1|k−1 R̂k−1|k−1

R̃[k−1]

0

















, (43)

where [Q[k−1|k−1], Q̄[k−1|k−1]] is orthogonal, and Rj|j for j = 1, . . . , k − 1 and R̃[k−1] are nonsingular upper

triangular. Here the Q-factor [Q[k−1|k−1], Q̄[k−1|k−1]] is not used in computation and so is not formed and
stored.

At epoch k, let the initial estimate for x[k] be denoted by

x
(0)
[k|k] ≡ [(z

(0)
1|k)T , . . . , (z

(0)
k−1|k)T , (z

(0)
k|k)T , (a

(0)
k )T ]T . (44)

Naturally we take

z
(0)
j|k = zj|k−1, j = 1, . . . , k − 1, a

(0)
k = ak−1. (45)

For the initial estimate of zk, noting that the measurement equations at epoch k are yk = Bkzk +Ca+vk,
we take

z
(0)
k|k = arg min

zk

‖(yk − Cak−1) − Bkzk‖. (46)

Using the QR factorization in Eq. (39), we can easily find z
(0)
k|k in Eq. (46) by solving the upper triangular

system

Rkz
(0)
k|k = QT

k (yk − Cak−1). (47)

After finding z
(0)
k|k, we can obtain the modified active matrix of A[k] at x

(0)
[k|k]:

A
(0)
[k|k] ≡











B1|1 C1

. . .
...

Bk−1|k−1 Ck−1

B
(0)
k|k C

(0)
k











, (48)

where [B
(0)
k|k, C

(0)
k ] is the active matrix of [Bk, Ck] at x

(0)
[k|k]. If [B

(0)
k|k, C

(0)
k ] corresponds to measurements

from less than four different satellites, then from the structure of Bk (see Eq. 31) we can conclude that B
(0)
k|k

does not have full column rank, so A
(0)
[k|k] does not have full column rank. In order to handle this problem,

we use the strategy proposed in Section 2.

Specifically, we add to the active matrix [B
(0)
k|k, C

(0)
k ] the row vectors from the rest of [Bk, C] correspond-

ing to other satellites and smallest residuals so that the row vectors of the updated [B
(0)
k|k, C

(0)
k ] corresponds

to four different satellites. Then we can easily show that the updated B
(0)
k|k has full column rank under the

earlier assumption that any four rows of [e, Ej ] for any j is nonsingular. In our later iterations at epoch k,
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we always use this strategy to ensure that the active matrices of Bk have full column rank. We then use

A
(0)
[k|k] in lieu of the true active matrix of A[k] at x

(0)
[k|k] for computing the search direction h

(0)
[k] at x

(0)
[k|k], i.e.,

we would like to solve the following linear system for h
(0)
[k] (cf. Eq. 11):

(

A
(0)
[k|k]

)T
A

(0)
[k|k]h

(0)
[k] =

(

A
(0)
[k|k]

)T [

W (x
(0)
[k|k]) · r

(

x
(0)
[k|k]

)

+ αs
(

x
(0)
[k|k]

)]

. (49)

In order to solve Eq. (49), we seek the QR factorization of A
(0)
[k|k]. Applying the QR downdating technique

to Eq. (39), we can obtain the QR factorization of [B
(0)
k|k, C

(0)
k ]:

[

(Q
(0)
k|k)T

Q̄
(0)
k|k)T

]

[

B
(0)
k|k C

(0)
k

]

=





R
(0)
k|k R̂

(0)

k|k

0 R̄
(0)
k|k



 . (50)

Then using the QR factorizations (43) and (50), we obtain from Eq. (48) that













QT
[k−1|k−1]

(Q
(0)
k|k)T

Q̄
T

[k−1|k−1]

(Q̄
(0)
k|k)T













A
(0)
[k|k] =



























R1|1 R̂1|1

. . .
...

Rk−1|k−1 R̂k−1|k−1

R
(0)
k|k R̂

(0)

k|k

R̃[k−1]

0

R̄
(0)
k|k



























. (51)

The next step is to compute the following QR factorization by Householder transformations:

(Q̃
(0)

[k] )
T

[

R̃[k−1]

R̄
(0)
k|k

]

=

[

R̃
(0)

[k]

0

]

. (52)

In this implementation, the special structures of R̃[k−1] and R̄
(0)
k|k are used for computational efficiency. Here

again the Q-factor Q̃[k] does not need to be formed and stored. From Eqs. (51) and (52), we see that there

exists an orthogonal matrix [Q
(0)
[k|k], Q̄

(0)
[k|k]] such that

[

(Q
(0)
[k|k])

T

(Q̄
(0)
[k|k])

T

]

A
(0)
[k|k] =























R1|1 R̂1|1

. . .
...

Rk−1|k−1 R̂k−1|k−1

R
(0)
k|k R̂

(0)

k|k

R̃
(0)

[k]

0























. (53)

This is the QR factorization of A
(0)
[k|k]. Here we do not form or store the Q-factor. Solving Eq. (49) by

using the QR factorization in Eq. (53), we obtain the search direction h
(0)
[k] . Then applying the line search

technique, we get the next iterate x
(1)
[k|k].

Now we can continue the iteration process. After obtaining x
(1)
[k|k], we can determine the active matrix

[B
(1)
k|k, C

(1)
k ] of [Bk, C] at x

(1)
[k|k]. The modified active matrix A

(1)
[k|k] of A[k|k] at x

(1)
[k|k] is then obtained by

replacing [B
(1)
k|k, C

(1)
k ] at the bottom of A

(0)
[k|k] in Eq. (48) with [B

(1)
k|k, C

(1)
k ]. Then we just repeat the process

in the previous paragraph to get a new iterate x
(2)
[k|k]. When the iteration converges, we finally obtain the

Huber’s M-estimate at epoch k: x[k|k] = [zT
1|k, . . . , zT

k|k, aT
k ]T . Then we start the computation for epoch

k + 1.
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Remark. In Eq. (34), all measurement equations from epoch 1 to epoch k are used for estimation at epoch
k. The computation cost at each epoch increases when k increases, so does the computer storage requirement.
This may cause problems, especially for real-time GPS applications, when k becomes too large. In practice,
after certain epochs, we may use only a fixed number of latest measurements for positioning. Our method
with slight modification can still be applied. At each new epoch, we add the new measurement equations to
the model and discard the oldest ones. When we compute the search direction in the first iteration at the
new epoch, we just simply discard the part related to the oldest measurement equations in each matrix and
vector in Eq. (49). This does not cause any difficulty in computations.

5.2 Simulation results

To demonstrate the performance of our method, we give some simulation results here. The simulation
scenario is the same as that described in Section 4. The code measurements were constructed as Eq. (29)
and carrier-phase measurements were constructed as follows:

y
φ
k = ȳk + eβk + a + v

φ
k + bφ, (54)

where ȳk and βk are the same as given in Eq. (29), the i-th element of a is λN i with N i being the difference
of the number of integer cycles between satellite i and the roving receiver and that between satellite i and
the stationary receiver at epoch 1, v

φ
k ∼ N (0, σ2

φI) with σφ = 0.01m, and b
φ is the outlier vector.

We used the modified Newton method to compute Huber’s M-estimates of the positions. In each epoch,
the iteration process stops when the difference between the position estimates at two consecutive iteration
steps is less than 0.001m. The tuning constant γ was set to be 1.5σφ. For comparison, we also computed
the LS estimates of the positions by a recursive LS method proposed in Chang and Paige (2003).

We used eight visible satellites and took the outlier vectors bρ = [0, 10, 0, 0, 0, 0, 0, 0]T and bφ =
[0, 0.1, 0, 0, 0, 0, 0, 0]T (in meters) for each epoch. One exception was that bφ was not added to the single-
differenced carrier-phase measurements in the first epoch, since otherwise the Huber’s M-estimation could
not reduce the influence of the outliers in the carrier-phase measurements for the reason we mentioned in
Section 5.1. In order to reduce random effect on the results, we performed 100 simulation runs for the same
satellite geometries, and each run had 500 epochs.

Figure 3 displays the average number of iterations for the modified Newton method. For the initial
epochs, the number of iterations is relatively large, but it drops dramatically later. For most epochs, it takes
only two to three iterations, indicating that modifying the Newton search directions for efficiency and for
handling possible singularity problems had no negative effect on the convergence for those epochs.

Figure 4 displays the average filtered position errors in Huber’s M-estimate xk|k and in the LS estimate
for k = 1, . . . , 500. As for the code-based relative positioning, we observe that Huber’s M-estimation can
reduce the effect of outliers and give better position estimates than the LS estimation. Both errors tend to
decrease with increasing epoch. Figure 4 also gives the average errors in the smoothed position estimates
xk|500 for k = 1, . . . , 499. As expected, the smoothed position estimates are better than the corresponding
filtered position estimates, since more information was used by the former. We see that the smoothed
position estimates at different epochs have almost the same accuracy. This is because the same estimate of
the ambiguity vector was involved in the estimation of these positions.

6 Summary

The IRLS method is often used in geodesy for robust M-estimation. For Huber’s M-estimation, we proposed
to use Newton’s method instead, since it usually more computationally efficient than the IRLS method. We
showed by simulations that for code-based differential positioning, Newton’s method converges faster than the
IRLS method. For code- and carrier-phase-based relative positioning, we showed how to use the structures
of the model to design an efficient modified Newton method for recursively computing Huber’s M-estimates.
When we designed the numerical method, we also took numerical reliability and storage requirement into
account. Simulation results indicate that the proposed numerical methods are effective.

We only considered the computation of position estimates in this paper. In order to know how accurate
the position estimates are, we need to compute the variance-covariance matrices of the estimates. This will be
studied in the future. In real applications, the observations are correlated to some extent. We have to study
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Figure 4: Average errors in the position estimates using simulated code and carrier-phase data

how to deal with this problem in our method. Comparisons of Huber’s M-estimation method with other
robust estimation methods and the fault detection and identification methods also need to be systematically
investigated.
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