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ABSTRACT

In this paper a recursive least squares technique is used
for carrier phase based GPS positioning. It is based
on single differenced carrier phase measurement equa-
tions. We take full account of the structure of the
problem to make our algorithm efficient, and use or-
thogonal transformation techniques to ensure that the
computation is numerically reliable. Our algorithm
usually converges slightly faster than the van Graas
and Lee algorithm [12], which uses the so-called com-
plementary Kalman filter technique. A significant dif-
ference between the two algorithms is that ours is more
amenable to analysis, and requires less computation in
each epoch. We also think it is simpler to understand
and implement.

We argue that such numerically stable implementa-
tions of the recursive least squares approach applied
to single differenced carrier phase measurements pro-
vide the most effective tools for this class of problems.

1 INTRODUCTION

Many people have studied using only carrier phase
measurements for dynamic position estimation, see for
example [1], [3], [4], [6], [7], [12] et al.. In practical
usage, superior results can probably be obtained by
combining both code and carrier phase measurements,
but it is important to find the best way of handling
each separately, and here we will consider carrier phase
measurements only. In [12] van Graas and Lee present
the “complementary Kalman filter” approach for ob-
taining estimates from carrier phase measurements. In
their approach, double differenced carrier phase mea-
surements are used to construct measurement equa-
tions, and triple differenced measurements are used to
propagate the user position, which, according to [12] is
the key to achieving sub-meter accuracies with an ini-
tialization time of less than 1 minute. Essentially the
triple differences implicitly provide the state equations
which are needed in Kalman filtering. However the
state equations do not provide any new information,
since they are constructed from the double differenced
measurement equations. In our view the Kalman fil-
tering technique is not necessary in this case, unless
perhaps additional information on the velocity of the
user is available. Artificially constructing a Kalman
filter may delay the convergence, and the additional
computation in each epoch is unnecessarily expensive.
In this paper, which is based on single difference car-
rier phase measurement equations, we use least squares
(LS) rather than Kalman filtering to estimate the po-
sition. In designing the algorithm we make full use of
the structure to make the algorithm efficient. Orthog-
onal transformation techniques are used to ensure that



the algorithm is numerically reliable. Our simulations
suggest our approach usually converges slightly faster
than the van Graas and Lee approach. Also in each
epoch the computational cost of the former is about
half that of the latter.

This paper is organized as follows. In Section 2, for
completeness we derive the mathematic model for po-
sition estimation. In Section 3 we present an efficient
and numerically reliable algorithm for computing the
position estimate. In Section 4 some simulation test
results are given, together with comments on prelim-
inary real data computations. Finally some remarks
and conclusions are given in Section 5.

Notation used. We work with reals only, and use
i,7,k,1,m,n to denote indices and dimensions (super-
script 4 will refer to the i-th satellite, subscript k to the
k-th epoch) while lower case Greek letters will denote
scalars. Other lower case Roman letters will denote
vectors, while upper case Roman will denote matri-
ces. One exception is that for the integer ambiguities
we use N to follow the tradition in the GPS litera-
ture. Superscript T will denote transpose, and Af is
the Moore-Penrose generalized inverse of A. The unit
matrix will be denoted by I and its i-th column by

ei, while e = (1,1,...,1)T (we use = to mean ‘is de-
fined to be’). I, will denote the n x n unit matrix.
Throughout we use the norm ||z|| = ||z]2 = VaTz

for vectors. We will use £{-} to denote the expected
value, and cov{-} to denote the covariance, that is
cov{z} = E{(z — E{z})(z — E{z})T}. v ~ N(v,V)
will mean v is a a normally distributed random vector
with mean ¥ and covariance V.

2 THE MATHEMATICAL MODEL

Suppose the baseline (the distance between the sta-
tionary receiver and the roving receiver) is short. Then
single differencing (between the two receivers) will
make the atmospheric refraction, the satellite clock er-
rors, and the satellite ephemeris errors negligible. At
epoch k, the single difference carrier phase measure-
ment with respect to satellite ¢ satisfies

¢t =X He) oy + N + By, + vi. (1)
where

¢} is the single difference carrier phase measurement
in wavelength;

A is the wave length of the carrier L1 in meters;

x, is the baseline vector in meters pointing from the
stationary receiver to the roving receiver.

el is the unit vector pointing from the middle of the
baseline vector to the i-th satellite;

N is the unknown single difference integer ambigu-
ity;

Bk is the difference between the two receivers’ clock
biases in wavelength;

v} is the single difference noise.

In the usual model, the v} for different satellites and
different epochs are assumed to be independently nor-
mally distributed. Suppose there are m visible satel-
lites at epoch k, then writing

- T
o (ex)
Yk = |, Ex=x! ;
m mA\T
| Pk (ex")
Nt ué
N = ; Vp = 5
| N vy
we have
yr = Erxr + N + efi + v, (2)

vg ~ N(0,0° I,).

This is the desired single differences of measurements
equation for the carrier phase problem given the phys-
ical situation of m satellites with a known fixed re-
ceiver and a roving receiver whose position is to be
estimated. The almost identical equation appears in
van Graas and Lee [12, eq.(1)].

We can rewrite (2) as

Br
ye=[e Ep Im || o |+, (3)
N

and combine these for k =1,2,... to get

B
I
Y1 e E I, : 1
. = . . + . ,
Yk e Ey L | Bk Uk
T
_N_
(4)
where
U1
NN(O,O'QIkm).
Vg

This is the mathematical model for which our position-
ing algorithm will be developed. Here for simplicity we
have assumed that the number of visible satellites does



not change from one epoch to the next. Notice that in
E}, the unit vector e from the midpoint of the base-
line z;, to satellite ¢ depends on the baseline z. So we
may write

Ek = E(.’Ek)

This Ej, is known once zp is known. Given an ap-
proximation to z (our estimate of xx_; say), we can
compute our approximation to Ejy. Then given the
measurements yy, we can estimate xy, etc..

3 A RECURSIVE LEAST SQUARES
METHOD

In this section we use orthogonal transformation tech-
niques to provide an efficient and numerically reliable
method to recursively estimate the receiver positions
and approximate the covariance matrices based on the
model (4). We also discuss the requirement for the
number of satellites in order to get meaningful posi-
tion estimates.

3.1 Background for the LS solution

Suppose we have a linear model

y =Gz +w, v~ N(0,0°1), (5)

where the matrix G is of full column rank. Then the
best linear unbiased estimate (BLUE) of z is the solu-
tion of the LS problem

min |Gz — y||*.
z

A numerically stable approach to finding the LS solu-
tion is to compute the QR factorization of G

vo-[§]e-[3]

where Q = [UY, W7] is orthogonal and usually is the
product of Householder transformations or Givens ro-
tation matrices, R is nonsingular upper triangular, and
U has the same number of rows as R (see, for example
[5, Ch.5]). Since the 2-norm is unaffected by orthogo-
nal transformations, the LS solution 2 satisfies

argmin || = | 3 |

= argmin(||Rz = Uy|l” + [[Wyl*),

N>
I

from which it follows

R:=Uy.

This upper triangular system can be solved by back
substitution. Thus

3=Gly =R Wy =R W(Gz+v) =2+ R Uy,
E{2—2}=0, cov{t—2z}=0*(RTR)"'. (6)

We will also make use of the following:

E{IIZ — 2} = E{trace](2 - 2)(2 - )]}
= trace[£{(2 — 2)(2 — 2)T'}] = trace(cov{z — z}). (7)

3.2 The orthogonal transformation ap-
proach

For the time being we assume that the E; (j =
1,...,k) in (4) are known. In Remark 1 and Sec-
tion 3.3 we will discuss how to compute them. The
condition for (4) to have a unique LS solution is that
the coefficient matrix has full column rank. Unfortu-
nately it does not — the dependency comes from the
first column and last m columns of the matrix in (3)
being linearly dependent. One of the approaches to
getting around the difficulty is to use the double dif-
ferencing technique (see for example [8]), but this has
some drawbacks. For example, it makes the measure-
ments correlated. Here we use the most numerically
reliable approach — orthogonal transformations of sin-
gle differences.

Let P be an orthogonal transformation such that
PTe = e;y/m. We could use some product of ro-
tations to form P, but to be precise here we will
use a Householder transformation (see for example [5,
p-209]), which here has the form

2uuT

P=1-
uly’

u=e —e/y/m.

Writing
[P1,p2,- -, Pm] = [p1, 2] = P, (8)

and applying PT to (2), we obtain the initial orthog-
onal transformation to (2)

T T T T
Piyk| _ | pi Ek N D1 Vk
[Pfyk] = [ngk] et [PJN] Fevmbit [vak] '

9

Define
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This eliminates one variable in (9) to give

[plTyk] _ [1 i By

T T Zl; + pka , (11)
P2 Yk P2 Ek Im—l

d PQT’Uk

[plT”’“] ~ N(0,0%I,).

T
P2 Vg

Combining these for £k = 1,2,. .. and reordering gives

71
T 1 TE ) Ty
pl.yl - ) i g Je| 4 pl. '
m 7
R 1 plEx ]| Pk
T
(12)
Pfy] [PIE Ln1]|™| [P
. — . . . + .
P2Tyk P2TEk Im—l 7 PQT’Uk
(13)

Notice that the transformed noise vectors in (12) and
(13) follow the normal distributions A (0,021I;) and
N(0,0%Ii(m—1)), respectively. From the structures of
the coefficient matrices in (12) and (13) we observe
that in order to find the LS solution, the key is to find
the LS solution of the reduced problem (13). Once
the estimates of x1, ...,z are available from (13), we
can easily get the estimates of 7y,...,7, the com-
binations of the single differenced integer ambiguities
and the single differenced receiver clock errors. But in
practice, one may not be interested in these quantities.

Now look at the reduced problem (13) closely. Let
By, be the coefficient matrix in (13). Notice By is
k(m — 1) x (3k + m — 1). We obtain a unique LS
solution if By has full column rank, which certainly
requires k(m —1) > 3k +m — 1, i.e,

3
> —_—.
m_4+k_1 (14)

This relationship between the number of epochs and
the required minimum number of satellites is displayed
in the following table.

Table 1. Satellite requirements

# of epochs (k) 2 3 4
minimum # of satellites | 7 6 5

> 6
5

)
)

We see that for position estimation, at least 5 satel-
lites are required. Thus from now on we assume
m > 5. It is easy to show when the column spaces
of PI'E,,..., P E) do not intersect, then By, has full
column rank, see [2]. This is more likely as k increases.

In the following we assume this is true as long as the
number of epochs £ and number of satellites m satisfy
(14).

Let the QR factorization of PJ E; be
U; R;
jere=| |- P | )
3x(m-1) U;, (m—-4)x(m-1) W;
where Q; = [Uf, W[ is an (m — 1) x (m — 1) or-

thogonal matrix, and R; is a 3 x 3 nonsingular upper
triangular matrix. Let

U; u;
HE R R I D
(1)
U. v
Qf (P vy) = [ W], ]Pvaj = l e ] :
i

Transforming (13) by diag(Q7,...,Q7) and reorder-
ing gives

_’LL1 Rl U1 1'-1 1)?)

= . e T (17)
K Ry, | U vl v,(cl)
—’11)1 W1 'ng)

=| - |d+]| - (18)
| Wk Wi v,(cz)

Notice the second terms of the right hand sides of (17)
and (18) follow the normal distributions A(0, I35) and
N(0,0%I(yp—4)k), respectively. We observe that d can
be estimated by the LS solution of (18). When the LS
estimate dj, for d is available, the =14, Tak, - ., Tg)k,
which are the estimates of z1,%s,...,2; at epoch k,
can be computed from (17) by solving the upper tri-
angular systems

Rz, = uj — Ujdy, i=1,... k. (19)

Notice that the x|, 34, . . . , Tg)x, can be computed in
any order once dj, is available. So if dy is updated, we
could for example update xy; without updating any
of the earlier position estimates. Since the coefficient
matrix in (18) is k(m —4) x (m — 1), in order to get a
unique LS solution for d we certainly require

km—4)>m—1,

which is equivalent to (14).

Now our problem is to obtain the estimate of d from
(18). We use a recursive approach. Suppose at epoch
k — 1, the corresponding coefficient matrix in (18) has
full column rank (in the initial stage the coefficient ma-
trix does not have full column rank and we will discuss



this case later in Section 3.3). We also assume we have
obtained the following orthogonal transformations:

W .
7T o Sk T U{1 _ Wkt
k-1 - 0 ’ k—1 - /U_)k—l )
W1 Wg—1

where T} is orthogonal, Si_; is nonsingular upper
triangular and has the same number of rows as wy_1.
Then at epoch k after obtaining Ej and the QR factor-
ization of PJ Ej,, we perform the following orthogonal
transformations:

el -3
w] =[], as] @

where T}, is orthogonal, Sy is nonsingular upper tri-
angular, S; and w; have the same number of rows.
The orthogonal transformations can be implemented
by a sequence of Householder transformations, which
make use of the upper triangular structure of Sy_;.
But the matrices Ty and Tj_; are neither formed nor
stored. Therefore we get the transformed form of the
LS problem (18):

3elz] e
where for simplicity we have omitted the transformed
noise vector, which still follows the normal distribution

N(0,06%I(,—1yx) and is not used in our computation.
Thus by solving the upper triangular system

Skd = Wi, (23)

we obtain dj, the estimate of d at epoch k. After this,
we can solve (19) to obtain the x|, the estimate of
x; at epoch k.

Remark 1. Since Ep = E(zg) (k = 1,2,...,), our
problem of estimating the positions is actually non-
linear. We have to use approximations to Ej during
the processing. Suppose we have obtained an estimate
Tp_1k—1 Of zx_1. Then we use E(xj_;,_1) as an
approximation of Ei. This approximation is usually
acceptable, since usually zx_; and xy are not far away
from each other, and Ej_; and Ej, are very close. Also
if necessary, after obtaining the estimate ) of zy, we
can use E(zy;) to approximate Ej, and we could even
do some further iterations to get an improved estimate
of xx. But our preliminary tests suggest the iterations
do not bring any significant improvement.

Remark 2. From (22) we observe ||@g|| is the least
squares residual of (2). This information is useful for
fault detection, see [11, Chap. 7].

3.3 Computing the initial points

This section deals with the initial stage, which is from
epoch k£ = 1 until some epoch such that at the end of
this stage the coefficient matrix in (18) reaches full col-
umn rank. The estimate from the least squares model
is not unique until this point, and in ordinary linear
least squares problems is usually not needed or com-
puted. However in this slightly nonlinear case Ej, de-
pends on zg, and so we need to provide estimates of
these initial .

At the beginning (k = 1), we do not know z; (since
this is what we want). But in many GPS applications
we may know an approximate location of the roving re-
ceiver (in fact we can often use code measurements to
estimate the initial position). Then we can use this to
construct an approximation to F;. If we do not have
any information about the position of the roving re-
ceiver and do not bother to use code measurements, we
may take each e! in E; to be the direction cosine from
the stationary receiver to satellite i, for i = 1,...,m,
see (1), in other words, we may take x1; = 0.

Suppose we have already obtained z;;, the estimate of
x; at epoch j. We would like to get an estimate of ;1
when the measurements at epoch j + 1 are available.
We use the idea of [12]. From (13) we obtain

PEj 1211 =Pl Ejz;+ Py (yj41—y;) — P (vjp1 —v;j).

Notice Py (vj41 —v;) ~ N(0,20I). Solving the LS
problem

T ~ pT T
Py Ejp1%j41)j41 = Py Ejzj; + Py (Y41 — ;)
for x;q|j41, our estimate for z;1, gives

i1 = (P Ejpd) [P Ejwjj; + Py (yj41 — y5))-
(24)
Notice Ej41 is actually unknown, but we can take
Ej;1 = Ej, and with the QR factorization of P] E;
in (15), we get the preliminary estimate

Ty = %55 + Ry U P (g1 — y5)-

Then we can use this z;;;41 to construct Ej; and
compute its QR factorization. From (24), we have the
new estimate

141 = Ry Ui [P Ejzj; + Py (Y41 — uj)]-

Of course we do not compute Rj_1 and Rj_jl in the
above computations. Instead we solve upper triangu-
lar systems.

Now we could use this new estimate to update Ej;4;
again and compute its QR factorization, which would



be used in the next epoch. But our preliminary tests
show that there is no significant difference if we do not
update E;;1 and re-compute the QR factorization.

We continue the above process until the coefficient ma-
trix in (18) is of full column rank, i.e., (18) has a unique
LS estimate for d. When epoch k and the number of
satellites m satisfy the inequality (14), the coefficient
matrix usually has full column rank. For example, if
there are 6 satellites available, then after 3 epochs the
coeflicient matrix usually becomes full column rank.

Suppose after k epochs, the coefficient matrix is of full
column rank. Then do the following orthogonal trans-
formations (QR factorization)

W w N
TkT .1 - [i]’ TkT .1 — [U_Jk ],
Wi 0 W

where W, and w; (1 < j < k) were obtained in the
j-th step (see (15) and (16)), T} is orthogonal, Sy, is
nonsingular upper triangular and has the same num-
ber of rows as @;. The orthogonal transformations can
be implemented by a sequence of Householder trans-
formations. But T}, is neither formed nor stored. With
Sk and Wy, we go to the regular stage, see Section 3.2.

3.4 Approximating covariance matri-
ces

In order to have some idea of the errors in the estimates
of baselines and the estimates of transformed integer
ambiguities (d = Pf'N, see (10)), we would like to
know the corresponding covariance matrices. The or-
thogonal transformations (including permutations cor-
responding to reordering) transformed the coefficient
matrix in (12) and (13) to the following upper trian-
gular matrix (see (17), (18), and (22)),

[1 I Ey ]
1 plE,
1 pi E
R = R1 U1
R2 U2
Ry Uk
Sk

Tts 2k+1 block columns correspond to the unknowns
V1yV2y« -« Vs 1, T2, - - -, Tk, d, TESpECtively (each block
column corresponding to a -y; actually has only one col-
umn, each block column corresponding to an z; has 3
columns, and the last block column corresponding to
d has m—1 columns).

If (4) was an exact linear model, then we could obtain
the exact covariance matrices, see Section 3.1. But
since Ej depends on zj, the above matrix R depends
on the unknowns, so here we will only approximate
the true covariance matrices. To do so we assume R
does not depend on the unknowns, since this appears
to give acceptable results, see Section 4. Then accord-
ing to (6), cov{d — d} is o2 times the bottom right
hand corner block of (RTR)~!, which is just S, 'S, %,
ie.,

cov{dy —d} = o?S; 'S, T = o*(SFSK)™E. (25)

Thus S, /o is the Cholesky factor of [cov{dy — d}] .
This is very nice, since the inverse of a covariance ma-
trix is more useful than the covariance matrix itself in
many cases, and for numerical reliability it is better
to work with the Cholesky factor of a positive definite
matrix rather than the matrix itself.

Now for j = 1,...,k we would like to get the covari-
ance matrix cov{z;; —z;}, which, according to (6), is
the (k+j5)-th 3x3 block on the diagonal of 02(RT R) 1.
In order to obtain that, we apply an orthogonal matrix
Z; to R from the left to zero the U; in R by using only
the (k + j)-th block row in which R; and Uj lie and
the last block block row in which Sy lies. Essentially
we compute an orthogonal matrix Z; such that

gr[ B Ui]_[B O
J 0 Sk Rj Sk ’

where R; is upper triangular. The computation can be
done by Givens rotations to make full use of the upper
triangular structure of R; and Sk, for more details, see
[9, 2]. Since the (k + j)-th block row in Z R now has
the form

[0,---,0,R;,0,---,0], (26)

it is easy to verify the (k+ j)-th block row in (Z; R)™!
has the form

[0’...’0,R]?1,0’...,0]‘

Therefore the (k + j)-th 3 x 3 block on the diagonal of
(ZFR)""(Z]R)~" is just R;'R; . But since

(RTR)™ = [(Z;R)" 27 R = (Z'R) " (Z'R) ",
it follows that
cov{z;x — z;} = >Ry 'R; T = 0”(R] R;)™".
Thus R; /o is the Cholesky factor of [cov{z;, —z;}] 7"

Similarly, but more simply, we can compute var{~y;  —
v} for j = 1,..., k. But one may not be interested in
these.



4 EXPERIMENTAL RESULTS

In order to demonstrate the performance of our algo-
rithm, we first give some computer simulation results.
All our computations were performed in MATLAB 5.2
on a Pentium IIT running Windows 2000. A 24 GPS
satellite constellation was used in the simulations. The
roving receiver is assumed to be on board an aircraft
circling above a reference station at the constant speed
of 100m/s. The baseline is about 1 km. Each single
differenced carrier phase measurement is corrupted by
a random normally distributed noise with zero mean
and standard deviation 0 = 0.002m. The receiver
clock offset relative to GPS time is modeled by white
noise input to a second order Markov process based on
[10, p.417]. The time interval between two consecutive
epochs is 1 second.

The typical results for 7 satellites with initial errors of
5 meters, 100 meters, 1 kilometer and 10 kilometers
are shown in Figures 1-4, respectively. The typical
results for 6 and 5 satellites with an initial error of
100 meters are shown in Figures 5 and 6. From these
figures we see the new algorithm performs better than
the van Graas and Lee algorithm in terms of position
accuracy at the beginning. But later the two algo-
rithms may not have any significant differences, par-
ticularly when 7 satellites are used. However the new
algorithm is more efficient than the van Graas and Lee
algorithm. Our MATLAB simulations show for each
epoch, the number of floating point operations of the
former is about half that of the latter. Figure 5 shows
that using 6 satellites takes more time to get subme-

ter accuracy than using 7 satellites. Figure 6 shows
that with 5 satellites it takes much longer still to get
submeter accuracy.

In order to test our covariance approximations from
Section 3.4, we use the fact that for a linear system
E{||2—2||?} = trace(cov{2—=z}) (see (7)). Thus we can
test the trace of our approximate covariance matrix by
plotting the position (or baseline) errors ||z, — o4l|
and (trace(cov{zy; — zx})'/? for our approximation.
This is done in Figure 7, where 7 satellites are used for
positioning with 1 km initial error. From this figure,
we see our approximate variances (we are only consid-
ering the diagonal of the covariance matrix) appear to
give reasonable indicators of the position errors. Note
this is a different run with different noise to that in
Figure 3.

We also did some preliminary real data tests. The
data set was provided by VIASAT Geo-Technologies
Inc. in Montreal, and was recorded on April 1, 2000.
The user was walking in an open sky environment with
7 satellites visible. The initial baseline was about 130
m. Because we did not know the true positions, we
followed standard practice and regarded the true po-
sitions to be the the position estimates obtained by a
software package of VIASAT Technologies Inc. which
used all available information from their single fre-
quency receiver to correctly fix the ambiguities. Our
initial computations again suggest that our algorithm
performs better than the van Grass and Lee algorithm.
However we have not had time to validate these com-
putations, and hope to publish the fully verified results
later, see [2].

Position errors for 7 satellites with different initial errors (Figure 1-Figure 4)
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Position errors for 6 and 5 satellites with 100 m initial error (Figure 5-Figure 6)
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5 Remarks and Conclusions

Notice that in our algorithms we did not fix the integer
ambiguities. There are two reasons. One is that for
some applications, the accuracy of position estimates
obtained with non-integer ambiguities may be enough.
The other is that if one wants, ambiguities can be fixed
as integers by using the covariance matrix of dy, in (25).

In our algorithm, we assume we always have the same
visible satellites. But this may not be true in practice
when the time span for navigation is long. It is not
difficult to modify our algorithm to handle this situ-
ation. We hope to deal with the above two topics in

2]
When we apply our algorithm to real data, we need to

incorporate an algorithm for cycle slip detection and
correction. This can be done without much difficulty.

Our algorithm works in theory when only 5 satellites
are visible. But like the van Graas and Lee algorithm,
the initial time to get submeter accuracy is long.

From the preliminary experimental results we see that
the recursive LS approach is effective, and that it is not
necessary to use the Kalman filter for position estima-
tion, unless perhaps we have information about the ve-
locity of the receiver. Since we always use numerically
stable orthogonal transformations, from a numerical
point of view our implementation is numerically reli-
able. Our algorithm is also efficient, since it takes full
advantage of the structure of the problem.
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