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A B S T R A C T  

This paper presents two carrier phase based ap- 
proaches for receiver autonomous fault detection and 
exclusion integrity monitoring (FDE). Some models 
based on carrier phase measurements are established. 
Any typical snapshot FDE algorithm based on a linear 
model can be applied directly to the models. 

The first approach uses only measurements of con- 
secutive epochs. For a single difference measurement 
model, if 4 epochs are used, at least 6 satellites are re- 
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quired to detect a fault and 7 are required to identify 
the faulty satellite. 

The second approach combines the measurements of 
the current epoch and estimates of integer ambiguities 
and error covariances obtained from the positioning 
algorithm of Van Graas and Lee. This approach is 
more suitable for computing the horizontal protection 
levels. If single difference measurements are used, at 
least 5 satellites are required for fault detection and 6 
are required for identification. 

1 I N T R O D U C T I O N  

Receiver autonomous fault detection and exclusion in- 
tegrity monitoring (FDE) is crucial for some GPS ap- 
plications. FDE consists of two distinct parts: satel- 
lite fault detection/exclusion and bad geometry detec- 
tion/exclusion, see Kelly [4]. The term "exclusion" 
includes "identification" or "isolation" (see [5]). We 
will use "identification" in the context of this paper, 
even though we use the more general term "exclusion" 
in the title. Most existing fault detection and identi- 
fication methods are for code based linear models and 
are roughly equivalent. In essence, for fault detection 
and identification, they just remove an equation from 
the model and check the reduction of the residual, see 
for example Kelly [4]. 

It is important to distinguish between models and 
methods in this area. For any model there may be 
several methods we can apply in order to carry out a 
given integrity test. Two subclasses of methods will be 
of particular interest:- equation removal methods, and 
satellite removal methods. The former just removes an 
equation from the model for fault detection and iden- 
tification, while the latter removes M1 equations cor- 
responding to a given satellite. The usual code based 
model for integrity tests is quite simple. It is just a set 
of linearized measurement equations at one time step. 



Since there is exactly one equation per satellite in the 
observation model, removing an equation is equivalent 
to removing a satellite. Therefore the two subclasses 
of methods are identical. But we will see later that  for 
some linear models the two subclasses are distinct. 

In some GPS applications, such as aircraft precision 
approach and landing, high precision is required. This 
can be accomplished by using carrier phase based dif- 
ferential GPS. But precision is not the only crucial 
factor for an application like aircraft landing. Safety 
imposes strict requirements for the integrity of posi- 
tioning solutions. Since carrier phase data  have higher 
resolution than code phase data, carrier phase can pro- 
vide better  integrity monitoring, see for example Per- 
van et al [6]. 

The goal of this paper is to present two carrier phase 
based approaches for FDE. Specifically, we will give 
two carrier phase based linear models. Then it will be 
shown how some typical code based FDE methods can 
be applied to the linear models. 

In Sections 6-7 we will give a first approach to ob- 
taining models for testing based solely on consecutive 
epochs. It ignores the usual position estimates and 
their error covariance matrices, apart  from using such 
position estimates to compute matrix elements. In 
theory this approach is satisfactory for fault detection 
and identification, especially when there are slowly in- 
creasing (ramp) faults, but although it can be used 
to compute the horizontal protection level (HPL), it 
probably is not useful for this. 

A second approach is given in Section 8. It is poten- 
tially more reliable, and is also suitable for the calcu- 
lation of HPL. This improvement is obtained by com- 
bining the estimates and error covariances of [8] with 
the single difference equations. 

Notation used. We work with reals only, and use 
i, j, k, l, m, n to denote indices and dimensions (super- 
script i will refer to the i-th satellite, subscript k to 
the k-th time step), while lower case Greek letters will 
denote scalars. Other lower case Roman letters will 
denote vectors, while upper case Roman will denote 
matrices. We will use (a)i to denote the i-th element 
of a given vector a. Superscript T will denote trans- 
pose, and A * is the Moore-Penrose generalized inverse 
of A. The unit matr ix  will be denoted by I and its 
i-th column by ei, while e - (1, 1 , . . . ,  1) T (we use -- 
to mean 'is defined to be'). I,~ will denote the n x n 
unit matrix. Throughout  we use [[x[[ = I]x[[~. - ~/xTx  
for vectors. We will use g{-} to denote the expected 
value, and cov{.} to denote the covariance, that  is 
cov{x} = g { ( x  - g { x } ) ( x  - $ { x } ) r } .  u ,.., g ( f i ,  U) 
will mean u is a a normally distributed random vector 
with mean fi and covariance U. 
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2 C A R R I E R  P H A S E  P O S I T I O N  ES- 
T I M A T I O N  

We first introduce the single, double and triple differ- 
enced carrier phase measurement equations, then we 
give the van Graas and Lee position algorithms. Our 
two carrier phase based approaches for FDE will be 
based on the material presented here. 

2.1 Single,  double ,  and triple differ- 
ences  

The first differences are between (values at) the sta- 
t ionary receiver and the roving receiver, creating sin- 
gle differences (.)so. Let A denote the carrier wave- 
length. At a given time step k, let there be ms 
single differences r/~ of integrated Doppler measure- 
ments (in wavelengths, one value for each of ms satel- 
lites) and corresponding integer ambiguities a ~, with 
yZO = ( ~ , . .  mo r aSp .,r/k ) and - ( o t l , . . . , o ~ r n ' )  T.  At 
time step k the single difference equations for the base- 
line vector xk from the stat ionary receiver to the roving 
receiver are 

+ 

L e 

where e}~ is the unit vector from midobaseline to the 
i-th satellite and Aflk is the difference between the 
two receivers' clock biases in units of carrier wave- 
lengths. In the usual model, the v~ are assumed to 
be unbiased independently distributed random noises 
with the same normal distribution, so at t ime step k 
we can write the above equations as 

y~D ~, - - l  n S D _  aSD = A  ~k ~ +  +eAC~k+vZ ~, (1) 
v~" ~ N(0, ~2I...), 

where the integer ambiguities are fixed, but the clock 
biases can vary with time. The almost identical equa- 
tion appears in van Graas and Lee [8, (1)], see also 
Hofmann-Wellenhof et al [3, p.189, (8.34)]. 

The second differences are between (values at) differ- 
ent satellites, creating double differences (.)~D. With 
this double differencing, one satellite is chosen to be 
special. In theory it can be any satellite, but to sim- 
plify the presentation we will assume it is the first. 
Define the (ms - 1) × ms matr ix J and the (ms - 1)- 
vector y~,D of double differences via 

I r121 77k -- ~Tk 
J -  "1 - 1 .  , Y ~ -  J°vkS° = 1 " m, " 

-i - J 
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Then defining 

j E  sD aVD v~ v Jv~ v,  E ~  v - k , - JaSV,  = 

we have (by multiplying (1) by J and noticing that  
J e  = 0) the double difference equation at t ime step k, 
where for later use we will assume that  E~ D has full 
column rank: 

y~V = A-1EDV x +aDD v v  k k + vk , (2) 
V ~  D t'~ N ( O ,  a 2 J J T ) .  

For later use, we define Gk =-- [A-1E~ v, If, then (2) 
can be written 

y ~ V = G k  aDD + (3) 

The main purpose of double differencing is to elimi- 
nate the unknown A~k in (1), which means that  the 
receiver's clock biases will not affect the position esti- 
mates. 

The third differences are between two time steps (cre- 
ating triple differences). Based on double difference 
equations (2), the vector of triple differences of mea- 
surements is defined by 

tk = y ~ V - y ~ _ V l  )~- l rEVVx  E DD x l - v  ° D  v D~ 
: [ k k - -  k - 1  k - - l  J - I -  k - -  k - 1  

(4) 
which eliminates the unknown integer ambiguities 
from the expression. Therefore 

DD = E DD x ~ ( v ~  ~ v ~ 2 ~ ) .  (5) E k xk k-1 k-1 +'~tk  + -- 

R e m a r k  2.1 A s s u m i n g  the model (1) is correct, this 
is all rigorous so far. However  this is a nonlinear 
model, since E ~  ~ - E D V ( x k )  is a func t ion  of x~. 
Here we will assume the es t imate  ~?~ (below) of Xk 
is accurate enough so the approximation E V D ( ~ k  ) for  
E ~  D causes no meaningful  inaccuracy. We have to 
take such approximations since we will not  know the 

DD ^-- D D  ^- true x~. Thus we know $ { E ~  ~ }  = Ek g { x ~ }  
is true, since E ~  v - EDV(x~)  is f ixed even though 
we will not  know it accurately, but i f  Xk is the least 
squares solution of E kDDx k"- ..~ Ck, for  some given 

( E D D  ~ T /  I~DD ~ - ek, we will assume ~ k : x~k Xk - - c k )  = 0 for  
DD the correct E~ , even though to compute  our ~c-~ we 

mus t  use the approximation E V O ( ~ [ )  for  Do E~ , and so 
can only have exactly (af ter  i terating to convergence) 
(E'D(~:-~))T(EDD(~C~)2-[ -- C~) = O. We  will usually 
sk im over such approximations wi thout  fur ther  com- 
ment .  

Suppose we have an estimate 9?k-1 such that  ~?k-1 --= 
x k - 1  -- Xk-1 satisfies E{xk-1} = 0. We can solve the 
nonlinear least squares problem (NLLSP), see (5), 

D D  ^ E ~ D ~  ~ E k _ l x k - a  + Atk 
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for Xk, our preliminary estimate for Xk, giving with 
D D  T D D  - - 1  (E~D) t = [(Ek ) ( ~ ) ]  (ESD) r,  

~- :EDD xk = (E~'D)t~ k-1 k-1 + "~tk). (6) 

Replacing tk in the above equation by the right hand 
side of (4), we have 

~- ~D t vD - A(E~,D)t(v~D vD X k = X k  + ( E  k ) E k _ l X k - 1  + - -Vk_ l ) .  

Thus with 2~- - xk -- Xk, 

8 { ~ ; }  = 0, (7) 

i.e., :Ok is an unbiased estimate of xk. 

The above completes the background theory we give to 
motivate the van Graas and Lee positioning algorithm 
presented in [8]. 

2 . 2  T h e  v a n  G r a a s  a n d  L e e  p o s i t i o n i n g  

a l g o r i t h m  

The positioning algorithm presented in [8] can be im- 
plemented as follows. 

• Assume we have unbiased estimates Xk--1 of 
Xk-1, and &~'_D 1 of a DD, obtained at time k - 1, 
with error covariance matr ix  

- o o w C  = 
La~%.l ' H~ 

( 2 1 )  T "  ( H k _ l )  

(s) 

• Compute the nonlinear least squares solution, 
see (6), 

Xk (E~D) ,  v v  ^ ^ -  = ( E k _ l X k - 1  + Atk). (9) 

This can be implemented as follows: 

^* DD - Compute x k = xk -1  + (Ek_l) t )~tk .  

-- Compute EVV(2~). 

- Compute ~?k = (E~V(x*k))t(E~-D, Xk-l+Atk)" 

• Construct Gk in (3) using E~ v = EDV(2k) and 
compute the gain matr ix  

T " T H m n ) - I  K k  =- H k - l G k  ( G k H k - l G k  + (10) 

where the measurement noise covariance matrix 
g m~ - cov{v~ D} = a 2 J J  T, see (2). (in [8], 
H mn is chosen to be a diagonM matrx  and a is 
taken to be 0.001m.) 

• Compute the innovation: 

rk = y ~ D - - G k  [ Xk . (11) 
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• Update the state vector: 
^ D D  ~ ^ D D  
a k a k _  1 

+ K ~ r k .  (12) 

• Update the error covariance matrix: 

~Ik = ( I  - K k G k ) ~ I ~ _ l  + H ~n, (13) 

where H pn is the process noise covariance ma- 
trix. [8, p.609] chooses H vn to be a diagonal 
matrix, and uses 10 -4 to 10 -3 m 2 for position 
coordinate variances and 10 - m m  2 for integer 
ambiguity variances. 

Let Xk =-- Xk -- Xk and ~ -  -- Xk -- Xk as before, and 
^ D D  

ak_l-DD - -  ak_l̂ DD __ a D D .  Assume X k - 1  and a k _  1 a r e  unbi- 
ased estimates of xk-1 and a " ° ,  respectively. We now 
show &k and 5 [  D are unbiased estimates of xk and 
a DD, respectively. From (11) and the measurement 
equation (3), we have 

rk y~D _ A--1EDD ^-- ^Dr 
= k X k  - -  a k - 1  

- -  ) ~ - - I E D D  x a DD k k + + v f  ~ - A - ~ E ~ O ~  - - a ~ 2 1  - -  k k 

= - a - ~ E f ~ ( ~ ;  - ~ k )  - (aZf~ - a ~ )  + v f  ~ 
= - A - 1 E ~ ° : ~  k a DD V ~  D .  - k - 1  + ( 1 4 )  

Since g{:~-} = 0 from (7), and g{5~_D1} = g { v f "  } = 
0, we have 

g{rk} = 0. (15) 

It follows from (12) that  

E { ~ k }  = 0, E { a ~ ' }  = 0. (16) 

Thus with xk  -- ~k -- Xk and a~-VD _:  ak^~D _ aVD 

a~'-':'-N o, sT,,< [H(, l)H, j ) ,  (17) 

w h e r e / ~  is the version of (8) to be used for the next 
step. 

3 S O M E  C O D E  B A S E D  F D E  

M E T H O D S  

In this section we give a brief presentation of typical 
existing fault detection and identification methods for 
a usual code based linear model. The ideas of these 
methods can be applied to the two carrier phase based 
linear models we will establish in Sections 6-8. 

Suppose we have a linear model: 

y = G z  + v + b, v .~ N ( O ,  1 2 I ) ,  (18) 

where G is m x n of rank n with m = rn. here ,  the i-th 
element of y is obtained from measurements involving 
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satell i te-/only, and b = ei~ for some/7 7t 0 if there is 
a fault in satellite-i, 1 < i < m , ,  otherwise b = 0. 

Let the QR factorization of G be G = Q 1 R  where 
Q = [Q1, Q2] is an orthogonal matr ix  and R is upper 
triangular, the pari ty vector is: 

p -  Q T y  = QT2 ( v + b), (19) 

£{p} = Q T b ,  coy{p} = a 2 I m _ n .  

Note that  pari ty vectors are not unique, but their 2- 
norms are, and that  is what concerns us. The least 
squares (LS) estimate ~ = G t z  = R - 1 Q T y  (it is also 
the Best, or Minimum Variance, Linear Unbiased Es- 
t imate when b = 0), with residual r: 

r - y - V ~  = Q 2 Q T y  = Q2p  = Q 2 Q T ( v  + b), (20) 

g{f}  = Q 2 Q T b ,  cov{~} = a 2 Q 2 Q  T. 

The typical fault detection and identification al- 
gorithms based on the model (18) are the standard 
parity space algorithm, the Parkinson single deletion 
algorithm, the Brenner pari ty space algorithm, and the 
maximum residual method. These four algorithms are 
roughly equivalent, see for example [4]. Essentially the 
statistics used by these algorithms are as follows: 

• F a u l t  d e t e c t i o n .  

5 2 = II~IIN = IIpNN, 

o r  

~i~ = IIpll 2 - I l p i l l  N, i =  1 , . . .  , m .  

w h e r e  pi is the pari ty vector for the original lin- 
ear model with i-th equation (observation) re- 
moved. 

• F a u l t  i d e n t i f i c a t i o n .  

5i 2 =  HpH2 2-Hp,N2 2, i = l , . . . , m .  

o r  

5,~ = IIp, ll~ - l l p u l l ~ ,  i , j  = 1 , . .  , m ,  i # j.  

where Pij  is the pari ty vector for the original lin- 
ear model with both  i-th and j - th  equations re- 
moved. 

For more details about  fault detection and identifica- 
tion using the above statistics, see [4] and references 
therein. 

No mat ter  whether we use (f 2 or (f~ (i = 1 , . . . ,  m) 
for detection, the minimum satellite requirements are 
the same. It is also true that  no mat ter  we use (~i2/ 
(i = 1 , . . . , m )  or 5i2j ( i , i  = 1 , . . . , m ,  i # j )  for iden- 
tification, the minimum satellite requirements are the 
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same. In the next section we will discuss the determi- 
nat ion of minimum satellite requirements.  

In addition to fault detection and identification, an 
FDE algorithm has another  impor tan t  part:  the calcu- 
lation of the horizontal protect ion level (HPL). HPL is 
used to determine if a detection function is available. 
There  are several approaches to computing HPL based 
on a linear model (18), see [4], [5] and the references 
therein. 

R e m a r k  3.1 The typical approach to fault detection 
and identification for the code based problem only re- 
quires that we have a model of the form (18). The 
carrier phase based models we will establish later have 
the same form as (18), but where there can only be 
a fault in any one of the first ms <_ m observations, 
and not in the last m - m .  equations. In (18) each 
of the m,  (= m in the code based case here) equations 
that we might consider deleting corresponds to a single 
satellite, and the noise covarianee matrix correspond- 
ing to these particular equations is diagonal, and these 
noises are independent of the noises for the remaining 
m -  m,  (= 0 in the code based case here) equations. 
This means the effect of a given satellite (with its pos- 
sible fault) at a given time can be removed simply by 
deleting an equation, and this ensures the 5, 5ii and 
5ij have their required meanings. 

These conditions are sufficient for these results to 
be applicable to the carrier phase based problem here, 
as well as for our generalization of a typical approach 
to HPL for the code based problem to be applicable for 
computing HPL for the carrier phase based problem. 

4 D E T E R M I N I N G  SATELLITE RE- 
Q U I R E M E N T S  

We outline how to obtain the minimal satellite require- 
ments for position estimation, fault detection, and 
fault identification for the linear model 

y = Gz + v + b, v ~.. N(O, a2I),  

where G is m x n of any rank. Remember  an equation 
removal method will remove only one equation at a 
time, but  a satellite removal method may remove more 
than  one equation at a time. The linear least squares 
est imate of z is 2 = Gty,  with residual r = y - G& 
The norm of the residual I]rl]2 cannot be increased by 
eliminating equations. 

For a unique position est imate we require tha t  G have 
full column rank n, and so we require tha t  

r e > n =  rank(G).  

For fault detection to be meaningful we only require 
the possibility of a nonzero residual for the original 
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model, so tha t  the norm of the residual can decrease if 
any equations are removed. T h a t  is, we simply require 
tha t  

m > rank(G).  

Note tha t  these first two conditions depend solely on 
the original model, and so will give the same satellite 
requirements for whatever  equation removal or satel- 
lite removal method  is used. 

To analyze the case of fault identification, let us call 
the model with one or more equations removed for 
fault detection, the fault detection model. The equa- 
tion and satellite removal methods may lead to differ- 
ent fault detection models. We will see tha t  satellite 
removal methods may  lead to zero columns, and so 
if these are removed as well as rows for the fault de- 
tection step, the fault detection model will have the 
form 

: G2 + ~ + b, ~ ,.~ N(O, a2I),  

where G is rh × fi, say. To have meaningful fault iden- 
tification statistics we only require the possibility of a 
nonzero residual for the fault detection model, so that  
the norm of the residual can decrease if any further 
equations are removed. T h a t  is, for fault identifica- 
tion we simply require tha t  

rh > rank(G).  

5 SOME I N T E G R I T Y  TEST DIFFI- 
CULTIES 

There are a few difficulties in developing models for in- 
tegrity tests for the carrier phase based GPS solution: 

. 

. 

D o u b l e  d i f f e r e n c i n g .  Many carrier phase 
based position algorithms, including the van 
Graas  and Lee algori thm [8], use double differ- 
enced measurements .  Each equation in the dou- 
ble differenced measurement  equations involves 
inputs from two satellites (see (2)) , making it 
difficult to detect which satellite, if any, is faulty, 
just  by dropping individual equations. 

Sate l l i te  r e q u i r e m e n t s .  Usually more satel- 
lites are needed for carrier phase based position- 
ing algori thms than  for code based positioning 
algorithms, because the carrier phase case in- 
volves unknown integer ambiguities. We want to 
keep the satellite requirements reasonable, while 
still obtaining reliable results. 
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. N o n l i n e a r i t y .  Remark 2.1 emphasized the non- 
linearity inherent in the problem. This is partic- 
ularly difficult for integrity testing, for if there is 
a faulty measurement,  then this will usually lead 
to a poor estimate of the position, and so to an 
inaccurate matr ix  in the model. 

. R a m p  faul ts .  Step faults should be reasonably 
easy to detect immediately after they happen. 
But ramp faults tha t  are slowly increasing may 
lie below the detection threshold for several t ime 
steps. During that  time they could be altering 
the position estimates, and then the nonlinear- 
ity just mentioned could lead to the resulting 
inaccurate model somewhat disguising the pres- 
ence of the faults. It is important  to detect such 
faults, see [7]. 

The above difficulties (except nonlinearity, which can 
not be eliminated) can be ameliorated to some extent 
once we realize we can do our tests as a separate, but 
parallel computation to the position estimation. That  
is, we are not restrained by the form of the position 
estimation model, and so can develop and work with a 
very different model for testing, which might however 
use the results from the position estimation computa- 
tion. 

6 T H E  2 - S T E P  M O D E L  F O R  

C A R R I E R  P H A S E  I N T E G R I T Y  

T E S T S  

It was shown in [1] that  careful use of single differences 
is in general preferable to using double differences. 
Here we will show how the difficulty caused by each 
double difference measurement involving two satellites 
can be resolved by unwinding the double difference 
measurement equation back to a single difference mea- 
surement equation of the form (1). This reintroduces 
the unknown A~k, but  we will show how to handle 
that  in the development. Note how any computation 
using triple differences, see (4), is using information 
from two time steps. We will show how it is possible 
to combine the same two time steps in a very different 
way to at tain our integrity test models. 

The 2-step model for carrier phase based GPS integrity 
tests is obtained by stacking (1) on top of (1) for the 
previous time step, 

y~D = A-1ESDx aS,  s ,  k k + + e A i 3 k  -I- V k , 

y~D_ 1 = A - 1 E  s" a s" v sD . (21) k- lXk-1  + + e A ~ k - 1  + ~-1 

Here we assume there is no relationship between 
A~k_l and A~k, so this approach can even handle the 
case of a step error in the clock in either the roving 

19
or the stat ionary receiver. By this we mean that  any 
change from A/~k-1 to A/~k will appear as an unknown 
in the model here, and will not lead to a significant 
residual signalling a fault. This is exactly what double 
differencing wants, so this approach will maintain all 
the advantages of double differencing. 

To emphasize this, we note tha t  (2) and (4) follow from 
(21), so everything we can learn from (2) and (4) is al- 
ready contained in (21). Double differencing is just 
one way of eliminating A/3k_l and A/~k, but any re- 
sults we can compute from (2) and (4) can necessarily 
be found (apart  from rounding errors) from (21). 

The equations (21) then give with Sk =-- a s" + eA/3k 
and A2,k ~ A~k-1 - -  A~k, 

[xk] 
r,-, so -',,,.1 rv ol / , r .s l  o 0 

s,-,-,.J + : ' : '  " 
= [ " o  k 

LYk-IJ "" J ' k  1 LVk-1]  

LSkJ 
(22) 

SD and sD are in- s ,  ~ N(O,a~ im. ) ,  while v k vk_ x Now v k 
dependent, and with obvious notation this becomes 
(where we drop the t ime step indices k for simplicity) 

y = Gz  + v, v ~ N(O, a2Iem,). (23) 

R e m a r k  6.1 We see from the covariance matrix that 
the noise elements are independent of each other, and 
any one of the equations can be dropped without affect- 
ing the others. Clearly each of the first m ,  equations 
corresponds to a distinct satellite, and this indepen- 
dence avoids the first diJficulty mentioned in Section 5, 
so that the typical code based approaches to fault de- 
tection, identification, and HPL are immediately ap- 
plicable to (23), ~ee Remark  3.1. 

The 2-step model (22)-(23) gives us a basis to work 
from. There are 2m. equations in m o +  7 unknowns, 
so 

G full column rank =~ m. > 7. 

We discuss this rank again later. If the matrix G has 
full column rank, we have the following analysis of 
satellite requirements using this model alone. If there 
are m. = 7 satellites we have 14 equations in 14 un- 
knowns, and so we could estimate the position (and 
sk and A2,k), but the residual and parity vectors will 
be zero, so there can be no fault detection. If there 
are mo= 8 satellites we have 16 equations in 15 un- 
knowns, so we can also do fault detection, but not 
identification. If there are m~ -- 9 satellites we have 
18 equations in 16 unknowns, and we can do both fault 
detection and identification. Summarizing for this 2- 
step equation removal method: 
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Purpose Minimum # of satellites 
Position est imation 7 
Fault detection 8 
Fault identification 9 

Because the model (22)-(23) is essentially independent 
of the position est imates in [8], it does not give very 
useful HPL for those estimates,  see Remark  6.4 later. 
However it does deal directly with the measurements  
from the satellites, and so can be used, at least in 
theory, to detect and identify faults in these measure- 
ments. A possible algori thm would be (when sufficient 
satellites are available): 

Use the position est imates from [8] to ap- 
proximate  the submatr ices  in G, A-1EkSD .-'- 
A-1E(&k)SD,  ,,~-' ~sDj.~k_l := )~ - l  E ( x k - 1 )  sD" 

Apply a typical approach to code based fault de- 
tection to (22), to detect a possible fault in one 
of the first m~ equations. 

If a fault is detected, apply a typical approach 
to code based fault identification to (22). 

Note tha t  this is a nonlinear model, and a faulty mea- 
surement could give a faulty xk, which could give 
an inaccurate G. We have seen tha t  the typical ap- 
proaches to fault detection and identification corre- 
spond to eliminating certain measurement  equations, 
leading to C say in (23). When we do this, we could 
use the remaining equations to re-est imate 2k-1 and 
2k and update  G, perhaps  iteratively. 

A subtle difficulty tha t  this model can handle is the fol- 
lowing. The above algori thm is fine if there is no fault 
at  t ime k -  1, but  a clear fault appears  at t ime k. How- 
ever if there is a very slowly increasing (or ramp)  fault 
in the i- th satellite say, it may  not be detected when 
it first starts,  so tha t  in later steps it will be present in 
both  the i- th and (m, + i)- th equations in (22). Thus 
a satellite removal method of fault detection and iden- 
tification could look at deleting both  equations i and 
i + m, ,  in a series of tests for i = 1 , . . . , m , .  Remem- 
ber we refer to this as the satellite removal method,  to 
distinguish it from the equation removal method which 
deletes single equations, ra ther  than  all equations cor- 
responding to a given satellite. 

The handling of the satellite removal method is also 
subtle - -  when equations i and i + ms are both  deleted 
from (22) we see that  the i- th element of sk no longer 
appears  in the remaining equations, and so it can be 
dropped too. This leaves 2m,  - 2 equations in m o +  6 
unknowns. Thus when m ,  = 8, deleting the two equa- 
tions takes (22) from a 16 x 15 system to a 14 x 14 
system, and again fault detection can be carried out 
with only 8 satellites. Similarly if m,  = 9, deleting 
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equations i and i + m,  takes it from an 18 x 16 sys- 
t em to a 16 × 15 system, then deleting equations j and 
j + m,  takes it f rom a 16 x 15 system to a 14 x 14 
system. It  follows tha t  any of the typical code based 
approaches for fault identification could be used, lead- 
ing to the same  satellite requirements for this satel l i te  
removal  2-step method:  

Purpose Minimum # of satellites 
Position est imation 7 
Fault detection 8 
Fault identification 9 

For this simple 2-step model, if there is a step fault, 
then both  methods should find it, but  if there is a slow 
ramp fault, the satellite removal method could well 
pick it up sooner than  the equation removal method.  
If only one is to be used, then we recommend using 
the satellite removal method.  

Let us now examine the rank of G in (22)-(23). We 
assumed for (2) tha t  E~  n had full column rank. If it 
did not have, then the least squares est imate for xk 
in (5), see (6), would not be uniquely defined, and we 
could not have integrity. Since from (1)-(2) 

1 1 E~ D = • , E ~  D = J E a n  = • , 
1 m~ T L(e -e  )J 

(24) 
it is clear tha t  E~ D must  have full column rank too. 
Suppose G does not  have full column rank. Consider 
nonzero w such tha t  

Wl 

G w  = ~ - l p s ~  Im,]  w 
"' ~ k - - 1  e 

W3 

SO --)~W3 SD E sD w 
= E k W l  = k--1 2 + e~d)~. 

If  wa = 0 then wl = 0, and 

=0, 

E DD w J E  sD k--1 2 = k--lW2 = - J e w A  = O, 

so w2 = 0, showing tha t  w = 0 and so w -- 0, a con- 
tradiction. Thus w3 # 0 and 

_ _ ~W 3  SD SD = E k W l  -[- 5 0 .  = E k _ l W 2  e w A  

I t  follows tha t  Wl # 0, and so w2 # O, since 

E DD w 0 # DD k--1 2. Sk W l  ~- 

R e m a r k  6.2 This shows i f  the column spaces of  E ~  D 
DD and E k _  1 do not in tersect ,  G has ful l  column rank. 

Since E ~  D has fu l l  column rank and is (m ,  - 1) x 3 
we mus t  have rn~ >_ 4 f o r  G in (22 ) - (23 )  to have ful l  
column rank, so f r o m  now on assume m ,  >_ 4. Our  
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computations suggest full column rank will be the usual 

case for xk-1 7 £ xk, but since X k - 1  and xk are fairly 
close, G in (22) can be poorly conditioned, where we 
have often found condition numbers as bad as 106 for 
the 2-step matrix• 

R e m a r k  6.3 This leads to a possible disadvantage of 
this 2-step model. We showed in Section 3 that the 
statistics used depend on Q2, where G = Q1R is the 
QR ]actorization of G, and [Q1,Q2] is an orthogonal 
matrix. Q2 always has condition number unity, and all 
the ill-condition of G is contained in R,  however the 
sensitivity of Q2 depends on the elements of R,  see for 
example [2]. Our initial theoretical analysis shows it 
is possible that small errors in the model could lead to 
significant errors in the computed statistics. 

R e m a r k  6.4 Estimating xk from (22)-(23) will usu- 
ally be quite inferior to the approach in [8], since (22)- 
(23) would only use these two steps, while [8] use in- 
formation from all previous steps as well. When the 
[8] estimate has converged, our computations clearly 
confirm this. Thus the resulting error covariance ma- 
trix from (22)-(23) is also likely to be too large in 
norm, and although we could obtain HPL for the esti- 
mates from (2P)-(23), they would almost certainly be 
too large to be useful. A poorly conditioned G (see Re- 
mark 6.2) corresponds to an error eovariance matrix 
of large norm, which confirms this suspicion. In fact 
computations showed the 2-norms of the position er- 
ror covariance matrices from this approach can be 3 
orders of magnitude larger than those from the posi- 
tioning algorithm in [8]. 

7 T H E  j - S T E P  M O D E L  F O R  

C A R R I E R  P H A S E  I N T E G R I T Y  

T E S T S  

An ineradicable difficulty of the 2-step model for car- 
rier phase based GPS integrity tests is that  it requires 
at least 8 satellites for fault detection. One possible 
way of overcoming this difficulty is to expand the 2- 
step model (21)-(23) to a j -s tep model, for not too 
large j = 2 ,3 , . . . ,  and we now examine this• With 
Sk =-- a sD +eAflk as before, and Ai,k = Aflk - i+ l - -AJk  
the last j steps of (1) can be writ ten 

yZD ~,--I  ~':~SD_ -i_ V SD : A 1:5 k Xk "4- 8k v k , 

sD = A-1E*D sD Y k - i + l  k _ i w l X k - i + l  q- Sk + e A i , k  + v k _ i + l ,  

i = 2 , 3 , . . . , j ,  (25) 

which for j = 2 is equivalent to (21)-(23). In matrix 
form 

" X k  
[y;°1 yL%. / 
Ly fj+l/ 

0 

0 
0 

0 0 0 
A-iE~21 e 0 

0 0 e 
0 0 0 

SD SD  N(O, 0"2Im.) ,  while V k _ j + l , . . .  ,V k are in- 

0 0 Im A~,k v~21 

0 0 Im A J - l ' k  "~ " :] 3,--1 ~5-~SD X I - - j + I  Lv _j+l] 
"" ~ ' k - j + t  e I m  A j , k  

8k 

(26) 

identification, and HPL are immediately applicable to 
9

sD ,.,Now v k 
dependent, and with obvious notation this becomes 
(where we drop the t ime step indices k for simplicity) 

y = Gz + v, v ~ N(O, a2Ijmo). (27) 

Using a similar argument to that  which led to Re- 
mark 6.2, it is straightforward to show that  for this 
j -s tep G to have less than full column rank, the 

DD DD column spaces of E ~ _ j + I , . . . , E  k must all have a 
common nonzero subspace. Again we will assume 

DD DD E k _ j + l , . . . ,  E k all have full column rank, and m: _> 
4. Since the above criterion becomes more restrictive 
as j increases, this suggests the condition of j -s tep G 
will not get worse (the condition number will not in- 
crease) as j increases. 

It is clear that  Remark 6.1 also applies here, so that  
the typical code based approaches to fault detection, 

1

(27)• 

The j-s tep equation removal method will eliminate 
just one equation to test for a possible fault, and two 
to identify a faulty satellite• A key property of this 
j -s tep model (of which the 2-step model is a special 
case) is the existence of the satellite removal method, 
which for fault detection will eliminate the i-th satel- 
lite entirely from the model, along with one unknown, 
the i-th element of sk. As we mentioned earlier for the 
2-step model, this may be useful for handling slowly 
increasing (ramp) faults. 

We now analyze the satellite requirements. The j-s tep 
model has m , j  equations in m, + 4j  - 1 unknowns. 
Thus to solve the system we need m,  >_ 4 + 31(j - 1) 
satellites. For the equation removal method we elim- 
inate just one equation at a time, so (assuming our 
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matrices still have full column rank) our requirements 
are: for fault detection mo >__ 4 + 4 / ( j  - 1), and for 
fault identification m,  > 4 + 5 / ( j  - 1). 

Minimum # of satellites 
Using j-steps: 2 3 4 5 _> 6 
Position estimation 7 6 5 5 5 
Fault detection 8 6 6 5 5 
Fault identification 9 7 6 6 5 

This at first seems attractive with j -- 4, as we can ob- 
tain statistics for fault identification with only 6 satel- 
lites, and with j = 5 we can obtain statistics for fault 
detection with only 5 satellites. However this may not 
be good at detecting and identifying slowly increasing 
faults. 

If we use the satellite removal j -s tep method which 
eliminates all appearances of the i-th satellite to ob- 
tain fault detection statistics (in the hope of superior 
ramp fault detection), we have the same satellite re- 
quirements for position estimation and fault detection, 
see Section 4. But now the original m o j  equations 
in m~ -P 4j - 1 unknowns becomes (too - 1)j equa- 
tions in rn, + 4j - 2 unknowns for the fault detec- 
tion model. Assuming this has full column rank, we 
need ms > 5 + 3 / ( j  - 1) satellites for this to possibly 
have a nonzero residual, and so to have fault identifica- 
tion. Our requirements for the satellite removal j -s tep 
method are then: 

Minimum # of satellites 
Using j-steps: 2 3 4 >__ 5 
Position estimation 7 6 5 5 
Fault detection 8 6 6 5 
Fault identification 9 7 7 6 

Suppose there is a very slowly increasing fault, and it 
is not detected even after several steps. Now suppose 
we have 6 satellites and have decided to use the 5-step 
model. If we eliminate just one equation at a time, 
then since eliminating either 1 or 2 equations will still 
leave faulty equations in the set, this will probably 
leave significant IlPill2 and IlPi,lll2 for all i and l, and 
this approach will not be ideal. On the other hand 
eliminating all appearances of the faulty satellite will 

(at least in theory) give us useful statistics. Thus, i f  
we use this approach, we recommend using the satel- 

lite removal 5-step method to obtain statistics for fault 
detection and identification if at least 6 satellites are 
available (or for just fault detection if only 5 satellites 
are available). 

The use of this j-step method with j > 2 will probably 
give smaller error covariance matrices and more useful 
HPL than for j = 2, but  because of the ill-condition 
of G, these radius will still probably be too large until 
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we use an impractically large j .  However if we restrict 
ourselves to using the van Graas and Lee [8] approach 
for estimation, the satellite removal method applied 
to these j -s tep models is the only approach we have 
found so far tha t  (at least in theory) provides a way 
of detecting and identifying slowly increasing faults as 
quickly as possible. Thus some such approach may 
be needed to meet the requirements of [7]. If this is 
so, then for fault detection and identification we could 
consider using the satellite removal 5-step model, but 
in conjunction with a different method for computing 
HPL. So we need to provide such a method. 

Unfortunately for small j (so the computational load is 
acceptable) the ill-condition mentioned in Remark 6.2 
will be present. This could also limit the reliability 
of the fault detection and identification tests, see Re- 
mark 6.3. For this reason alone it again seems neces- 
sary to consider another  model based on single differ- 
ence measurements. 

8 T H E  P R I O R  I N F O R M A T I O N  

M O D E L  F O R  C A R R I E R  P H A S E  

I N T E G R I T Y  T E S T S  

Here we produce a more efficient model by including 
the results of the van Graas and Lee [8] algorithm in 
our integrity testing. First we look at what seems pos- 
sible. 

Since a sD is constant,  the equation (1) corresponds to 
rn~ new single difference measurements (one for each 
satellite) and only 4 new  unknowns (A~k and the 3 
elements of xk )  at each time step. This supports the 
comment in [8] that  once a good estimate has been 
attained, only 4 satellites are needed to maintain ac- 
curate position estimates. One way of thinking of this 
is that  once we have an accurate estimate of a sD, then 
m~ = 4 equations are sufficient to accurately estimate 
the 4 new unknowns each step. 

The total  number of equations and unknowns shows 
we would not expect to obtain convergence with only 
4 satellites for the general problem, but in some cases 
such as very slowly varying A~k, this may be pos- 
sible. However we could hope to eventually obtain 
convergence of our estimates with signals from only 
m~ = 5 satellites, from the following argument. If 
the system was linear we could argue that  at the k-th 
time step there is a total  of m , k  equations and m~ +4k  
unknowns, so with m o =  5 there would be the same 
number of equations as unknowns at k = 5 steps, and 
more equations than unknowns when k > 5. Five is 
not a large number, and the GPS carrier phase system 
is not highly nonlinear, so without further analysis it at 
least seems plausible to obtain convergence with only 
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5 satellites. And if convergence is obtained, we could 

theoretically test  for faults using just  5 satellites, since 
at each t ime step we would have m,  = 5 equations in 
only 4 new unknowns. 

We now show that  this last hypothetical  conclusion is 
in fact true. 

Assume we have unbiased estimates xk of Xk, fCk-1 of 
Xk-1 ,  and ak_ l^vD of a DD, obtained from the algorithm 
of van Graas  and Lee [8], see (17), such tha t  

r. k-l- k-ll 
a ; t , ]  - [ a~'5. - aDD ] 

( H k - 1 )  
,'-, N 0, Hk-1 =-- /r_r(21) r_t(22 ) 

L " k - 1  " ' k - 1  

. (28) 

Writing sk =- eA f l k  + a sD as before, so tha t  

J s k  = a Do 

for the J given in (2.1), and computing E~ D := 
E(~Ck) sD, we see we effectively have with (1) 

] [._x so ][] 
,., L, k I m  X k 

^ D D  = " "{- V k ,  ak_ 1 0 J sk 

( 0 1) vk - LS~,_vx] ,-, N 0, . ( 2 2 )  , 
~ ' k - - l J  

(29) 

-DD rr(22) since v ksv is independent of ak_ 1. "*k-1 is positive 
definite, so this model can be t ransformed to one with 
noise covariance I .  

We have assumed E~  D has full column rank, and we 
now show this implies the measurement  matr ix  in (29) 
has full column rank. Remember  E ~  v - J E ~  D is 
(m, - 1) x 3, requiring m,  >_ 4 for full column rank, 
and J e  = 0 (see (2.1) et seq.), so 

[lSO ][] A E k Ira, Zl -m- 0 
0 J z2 

Jz2 O, ~--l r:~SD = A 1~ k Zl  + Z2 ~- 0 

A-IE~°zl = 0, 

leading to zl = 0 and z2 = 0, thus the measurement  
mat r ix  has full column rank. 

Thus (29) describes 2m, - 1 equations in m,  + 3 un- 

knowns. With  H(22~ positive definite, (29) can be con- 
verted to a s tandard  linear model, which will then have 
a unique least squares solution when m,  > 4. Any 
of the first rn, equations can be deleted without af- 
fecting the others, and the typical code based meth-  
ods for fault detection, identification, and computa t ion  
of HPL can be applied here. This gives the follow- 
ing satellite requirements (we assume deleting the row 
leaves the matr ix  with full column rank): 

1

Purpose Minimum # of satellites 
(Position est imation 4) 
Fault detection 5 
Fault identification 6 

The parentheses are used because this approach al- 
ready uses the van Graas  and Lee [8] est imate of xk to 

E sD and the est imate ak_  1 compute k , ^Dr in the left hand 
side of (29). We do not need to est imate xk again. 
However it would be interesting to do so and com- 
pare the two. Our computat ions  showed the two had 
almost  the same accuracy in a run star t ing with an 
initial position error of 1 metre.  

The minimum number  of 4 satellites required for posi- 
tioning here (when we have convergence) at  least sup- 
ports  the comment  by van Graas  and Lee [8]. 

Since %-1̂ Dr has been est imated from all previous mea- 
surements,  this approach does not have the ability to 
throw out the i - th satellite measurement  at any but  
the present t ime step - -  unlike the model in Section 6. 
It  is possible to add the information ak_ 2^DD tO (1) at 
times k - 1 and k, and use the vector of 'knowns'  

y~_° 1 

a~g2 

in the model, and then we could throw out the i- th 
satellite measurement  from time steps k - 1 and k, 
and so on. I t  can be shown tha t  such extended mod- 
els will have the same satellite requirements as (29), 
but  this probably  also increases the ill-condition of the 
matr ix  in the model. 

9 S U M M A R Y  A N D  C O N C L U S I O N S  

Carrier phase based integrity monitoring is crucial to 
some GPS applications like aircraft landing. We have 
provided essentially two classes of models that  could 
be used for checking the integrity of position estimates 
for this carrier phase problem, and we called these: 

The j - s t e p  model. The 2-step model is a special 
case of this. This  is based solely on single dif- 
ference measurement  equations, and can be used 
for fault detection and identification. It could 
also be used for comput ing HPL, but unless j 
is so large as to make efficient computat ions im- 
practical,  the H P L  will almost certainly be too 
large to be useful. 

If  only two epochs are used, this approach re- 
quires at least 7 satellites to est imate position, 
8 to detect a fault, and 9 to identify the faulty 
satellite. However if more epochs are used, fewer 
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satellites are needed. With 4 epochs the satel- 
lite removal method designed to be sensitive to 
ramp faults requires 5, 6 and 7 satellites re- 
spectively. With 6 epochs an equation removal 
method (which might be less effective for ramp 
faults) requires only 5, 5, and 5 satellites respec- 
tively. This matches the requirements suggested 
by the comment in [8, p.610]. 

• The prior information model. This is based on 
single difference measurements and the unbiased 
estimates 5~_D1 (obtained from the van Graas and 
Lee algorithm [8]) of a DD , the vector of double 
differences of the integer ambiguities. This ap- 
pears practical for fault detection and identifica- 
tion, and for computing HPL. 

For fault detection and identification, at least 5 
and 6 satellites are required, respectively. 

Our initial simulations suggest both approaches per- 
form very well for detection and identification, while 
the second approach gives better HPL. 
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