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Abstract. One of the typical approaches to linear,
inequality-constrained adjustment (LICA) is to solve a
least-squares (LS) problem subject to the linear inequal-
ity constraints. The main disadvantage of this approach
is that the statistical properties of the estimate are not
easily determined and thus no general conclusions about
the superiority of the estimate can be made. A new
approach to solving the LICA problem is proposed. The
linear inequality constraints are converted into prior
information on the parameters with a uniform distribu-
tion, and consequently the LICA problem is reformu-
lated into a Bayesian estimation problem. It is shown
that the LS estimate of the LICA problem is identical to
the Bayesian estimate based on the mode of the posterior
distribution. Finally, the Bayesian method is applied to
GPS positioning. Results for four field tests show that,
when height information is used, the GPS phase ambi-
guity resolution can be improved significantly and the
new approach is feasible.
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1 Introduction

In survey data processing, after observations are
obtained, we usually establish observation equations
and then use a least-squares (LS) method to find the
estimate of the unknown parameter vector (see e.g.
Mikhail 1976). However, sometimes there is prior
information about the parameters that can be used.
The prior information may come from: (1) the nature

of the problem itself, (2) the requirements that have to
be met, or (3) partial knowledge of the parameters
(see e.g. Lu et al. 1993). The usual method of using
this prior information is to establish some constraints
on unknowns. For example, on seas or rivers, some
prior information on height may be known, so we can
establish a constraint for height and use this con-
straint to improve GPS positioning (Remondi 1992;
Ueno et al. 2000; Zhu and Santerre 2002). If the
established constraints are in the form of inequalities
(in this paper, we consider only linear inequalities), we
have the problem of inequality-constrained adjust-
ment.

A lot of research has been undertaken on the
problem of linear, inequality-constrained adjustment
(LICA). One of the typical approaches is the LS ap-
proach, which solves an LS problem subject to the
linear inequality constraints. The main disadvantage of
this approach is that the statistical properties of the
estimate are not easily determined and no general
conclusions about the superiority of the estimate can be
made. In this paper, we will propose a new approach to
the LICA problem. The idea is to convert the linear
inequality constraints into prior information on the
parameter vector with a uniform distribution, and then
use a Bayesian method to find the solution. The new
approach not only allows us to find the mean square
error (MSE) matrix of the estimate of the parameter
vector, but also gives some insight into the LS ap-
proach.

The rest of this paper is organized as follows. In
Sect. 2, we introduce the LICA problem and the typical
approaches to solving this problem. In particular, we
give a detailed analysis of the LS approach. In Sect. 3,
we apply the Bayesian estimation theory to the LICA
problem. Solutions of the LICA problem based on
Bayes’s approach are suggested. In Sect. 4, we apply the
suggested methods to GPS positioning and show that,
when height information is used, the carrier-phase
ambiguity resolution can be improved significantly.
Finally, some conclusions are drawn in Sect. 5.Correspondence to: R. Santerre
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2 The LICA problem and typical approaches

Suppose that the mathematical model underlying the
LICA is

l ¼ Axþ e ð1aÞ

Gx � w ð1bÞ

where l is the vector of observations, e is the vector of
observational noise with zero mean and covariance
matrix DðeÞ ¼ r2

0Qe, x is the deterministic vector of
unknowns to be estimated, A is the coefficient matrix
with full column rank, G is the coefficient matrix of the
constraints with full row rank, and w is a constant
vector. A typical approach to estimating x from Eq. (1)
is to solve the following LS problem with inequality
constraints (LSI):

minUðxÞ � ðAx� lÞT P ðAx� lÞ ð2aÞ

subject to Gx � w ð2bÞ

where � is used to mean ‘is defined to be’ and the
weight matrix P ¼ Q�1e . This LSI problem can be
solved by the active set algorithms (see e.g. Björck
1996, Sect. 5.2). Alternatively, it can be transformed to
an equivalent linear complementarity problem (LCP),
and then a method based on LCP can be applied to
obtain the solution (Schaffrin 1981; Björck 1996, Sect.
7.7.1). Notice that this LS approach does not require
the assumption of a full distribution for the noise
vector e.

In order to understand the LSI problem [Eq. (2)], in
the following we transform it to an equivalent problem.
Write

x̂ ¼ ðAT PAÞ�1AT P l; Qx̂ ¼ ðAT PAÞ�1 ð3Þ

x̂ is the solution of the LS problem [Eq. (2a)] without the
constraints [Eq. (2b)] and Qx̂ is its cofactor matrix. Then
for the objective function UðxÞ in Eq. (2a), we have

UðxÞ ¼ ðAx� lÞT P ðAx� lÞ

¼ ðAx� Ax̂þ Ax̂� lÞT P ðAx� Ax̂þ Ax̂� lÞ

¼ ðAx̂� lÞT P ðAx̂� lÞ þ ðAx� Ax̂ÞT P ðAx� Ax̂Þ

¼ ðAx̂� lÞT P ðAx̂� lÞ þ ðx� x̂ÞT Q�1x̂ ðx� x̂Þ ð4Þ

Notice that the first term in Eq. (4) is a constant, so the
LSI problem [Eq.(2)] is equivalent to

minUx̂ðxÞ � ðx� x̂ÞT Q�1x̂ ðx� x̂Þ ð5aÞ
subject to Gx � w ð5bÞ

This is called the least-distance problem, and Lu et al.
(1993) took its solution as an estimate of x in Eq. (1).
Now we use a simple two-dimensional (2-D) case as an
example to illustrate the solution. Assume x ¼ (x, y)T,
where x and y satisfy the following constraints:

wx2 � x � wx1 ð6aÞ
wy2 � y � wy1 ð6bÞ

Let ~x be the solution of the LSI problem [Eq.(2) or
(5)]. The following two situations can occur: First, the
LS estimate x̂ [see Eq. (3)] satisfies all constraints, i.e.
geometrically it lies in the region defined by the
inequality constraints (Fig. 1a). In this situation,
~x ¼ x̂. Second, the LS estimate x̂ does not satisfy all
constraints. Geometrically it lies outside the region
defined by the constraints (Fig. 1b and c). In Fig. 1b, x̂
satisfies the constraint in Eq. (6b) and wx2 � x, but does
not satisfy x � wx1. Note that the contours of the
function Ux̂ðxÞ are ellipses with x̂ as their center and
their shape defined by Qx̂. Therefore, in this situation,
the LSI solution ~x should be the tangent point of the
ellipse for which x ¼ wx1 is its tangent line (Fig. 2). In
Fig. 1c, x̂ satisfies wx2 � x;wy1 � y, but does not satisfy
x � wx1 and y � wy2: Since x̂ is the center of those
ellipses, it is easy to observe that the LSI solution ~x is
(wx1, wy2 ), the intersection point of lines x ¼ wx1 and y
¼ wy2 (Fig. 3).
Although for this 2-D case it is easy to understand

and find the solution of the LSI problem, numerically it
is usually quite involved to find a solution for a general
case. Since it is difficult to find an explicit expression for
the solution for a general case, the statistical properties
of the estimate are not easily determined and no general
conclusions about the superiority of the estimate can be
made (Rao and Toutenburg 1999, p. 72).

There is another approach to estimating x in the
LICA model [Eq. (1)]. When the general linear inequality
constraints in Eq. (1a) become interval constraints for
the components of x, they can be transformed into an
ellipsoidal constraint (the ellipsoid encloses the cuboid),
and then an estimate of x can be found by solving a

Fig. 1. (a) x̂ satisfies both Eqs. (6a) and (6b); (b) x̂ satisfies only Eq. (6b); (c) x̂ satisfies neither Eq. (6a) nor Eq. (6b)

529



minimax problem subject to this ellipsoidal constraint
(Rao and Toutenburg 1999, Sect. 3.13). The advantage
of this approach is that an explicit expression for the
solution can be obtained and some statistical properties
of the estimate can be determined. However, the estimate
is usually biased and may not satisfy the linear inequality
constraints. Also, it appears difficult to transform general
linear inequality constraints into an ellipsoidal con-
straint, and we are not aware of any effective algorithms
for such transformations.

There are other important research works concerning
Eq. (1). Riesmeier (1984) and Koch and Riesmeier (1985)
studied the posterior distribution of the LS estimate x̂
[Eq. (3)] for inequality hypothesis tests for Eq. (1). Their
work is relevant to (but different from) ours to be given in
Sect. 3, in which we will give the posterior distribution of
x, and use it to find the estimates of x.

3 The Bayesian solutions of LICA

Bayesian statistics is widely used in geodesy (see e.g.
Koch 1990; Betti et al. 1993; Xu and Rummel 1994b;
Zhu 1995, 1997; Zhu and Wang 2000; Zhu et al. 2001).
The advantage of the Bayes estimation is that it can
make use of not only the information contained in the
observations, but also information from historical data
or other sources. The most crucial requirement for
applying the Bayesian estimation techniques is that the
prior information should be properly described (see e.g.
Xu 1991; Zhu and Wang 2000). Nevertheless, the
Bayesian approach may not be suitable in some cases,
for example in designing higher-order non-linear filters
(see e.g. Xu 1999, 2003). If prior information is not
objective, different interpretations and practical conse-
quences are expected (Xu 1992; Xu and Rummel
1994a, b).

The inequality constraints in Eq. (1) confine the value
of the parameter vector x, so this is a very special kind of
prior information. According to maximum entropy, this
prior information can be described by the uniform dis-
tribution (see e.g. Koch 1990, p. 17)

f ðxÞ ¼
1
s if Gx � w

0 else

�
ð7Þ

where x is now assumed to be a stochastic vector (note
that the parameter vector x in Sec. 1 is assumed to be
deterministic) and s is the volume of the region defined
by Gx � w (for simplicity, we assume that s is finite here,
although our results to be given later are still valid even
if s is infinite). We then reformulate Eq. (1) into the
following model:

l ¼ Axþ e; e � Nð0; r2
0QeÞ

x � f ðxÞ; f ðxÞ is defined by Eq. (7) ð8Þ

Note that the inequality constraints in Eq. (1) have been
converted into a prior distribution in Eq. (8) and the
assumption of a normal distribution for e has been
added, which is not required for the LS approach [Eq.
(5)]. Based on Eq. (8), we will present the Bayesian
approach to estimating x.

From Bayesian statistics, the posterior distribution
of x satisfies (see e.g. Koch 1990, pp. 4–5) f ðxjlÞ /
f ðljxÞf ðxÞ.

It then follows from f ðljxÞ ¼ f ðeÞ and Eqs. (7) and
(8) that

f ðxjlÞ/ exp � 1
2r2

0

ðl�AxÞT Q�1e ðl�AxÞ
n o

1
s ifGx�w

0 else

(

/
expf� 1

2r2
0

ðl�AxÞT Q�1e ðl�AxÞg ifGx�w

0 else (9)

(

However, from Eq. (4) we have

expf�ðl� AxÞT Q�1e ðl� AxÞ=2r2
0g

/ expf�ðx̂� xÞT Q�1x̂ ðx̂� xÞ=2r2
0g

Fig. 2. Relationship between contours of the function Ux̂ (x) and
inequality constraints x > wx1

Fig. 3. Relationship between contours of the function Ux̂ðxÞ and
inequality constraints x > wx1 and y wy2
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thus Eq. (9) can be rewritten as

f ðxjlÞ / expf�ðx̂� xÞT Q�1
x̂
ðx̂� xÞ=2r2

0g if Gx � w

0 else

(

ð10Þ

Note that for the model without constraints (here we
assume x is deterministic)

l ¼ Axþ e; e � Nð0; r2
0QeÞ

the LS estimate is x̂ ¼ ðAT PAÞ�1AT P l [see Eq. (3)]. For
the normally distributed observations l, its linear
function x̂ should be normally distributed too, and

f ðx̂Þ / expf�ðx̂� xÞT Q�1x ðx̂� xÞ=2r2
0g ð11Þ

Therefore, the difference between the posterior distribu-
tions of x from the model with inequality constraints
and those from the model without constraints is the
domain of the parameter vector x.

The Bayesian theory allows at least four different
estimates of x to be determined based on the posterior
distribution, i.e. the mean, the median, the mode, and
the point that minimizes the loss function (see e.g. Carlin
and Louis 1996). For symmetric posterior density
functions, the mean and the median are identical. For a
symmetric, unimodal posterior distribution, the mean,
the median, and the mode all coincide. For convenience,
we will study only two estimates: the one based on the
mean and the one based on the mode.

The Bayesian estimate based on the mode is actually
the point at which the maximal value of the density is
reached. In Fig. 4 (a 1-D case), the solid lines corre-
spond to the density function f ðxjlÞ [Eq. (10)], and the
complete lines (including the dashed part and the solid
part) correspond to f ðx̂Þ [Eq. (11)]. In Fig. 4a, the
maximum value of f ðxjlÞ is reached at point x̂, so x̂ will
be taken as the Bayesian estimate of x. In Fig. 4b, the
maximum value of f ðxjlÞ is reached at point x ¼ w1, so
w1 is the Bayesian estimate, and for the same reason in
Fig. 4c, w2 is the Bayesian estimate. Thus, for a general
case, the Bayesian estimate based on the mode is the
optimal solution of

max f ðxjlÞ � expf�ðx̂� xÞT Q�1x̂ ðx̂� xÞ=2r2
0g

subject to Gx � w ð12Þ

Let ~x denote the solution of Eq. (12). The MSE matrix
of the Bayesian estimate can be expressed as

MSEð~xÞ ¼
Z
ðx� ~xÞðx� ~xÞT � f ðxjlÞdx ð13Þ

Comparing Eqs. (12) and (5), we observe that the
Bayesian estimate based on the mode is identical to the
solution of the LSI problem. The case shown in Fig. 4a
actually belongs to the situation shown in Fig. 1a, and
the cases shown in Fig. 4b and c belong to the situations
shown in Fig. 1b and c, respectively. The difference
between this Bayesian approach, based on the mode,
and the LS approach, is that the MSE matrix of the
Bayesian estimate can be obtained by using Eq. (13),
although it may not be easy to compute it for high-
dimensional cases.

The other method is to take the posterior mean as a
Bayesian estimate. The mean can be expressed as

�x ¼
Z

x � f ðxjlÞdx ð14Þ

Its MSE matrix is

MSEð�xÞ ¼ Dð~xÞ ¼
Z
ðx� �xÞðx� �xÞT f ðxjlÞdx ð15Þ

The integration in Eq. (14) can be found analytically for
a low-dimensional x or numerically for a high-dimen-
sional x, but the integration in Eq. (15) has to be found
by a numerical method.

4 Application of the Bayesian solutions of LICA to GPS
positioning

The Laurentian Region of the Canadian Hydrographic
Service (CHS) and the Canadian Coast Guard (CCG)
conduct bathymetric surveys on the St. Lawrence River
every year to check if its 300-km channel maintains the
required nominal depth for navigation. Usually, this
requires about 60–70 personnel to work together, and is
costly and limited (Marceau et al. 1996). In order to
improve the bathymetric surveys, the CHS implemented
digital tide gauges and developed a network of 15 tide-
gauge stations along the St. Lawrence River in 1991, and
the CCG started to establish a GPS reference station
network in 1996. The network of tide gauges is called the
Coastal and Oceanic Water Level Information System
(COWLIS) and can provide regular tidal readings in real
time (CHS 1997). The CCG–GPS network can provide
GPS carrier-phase observations to a bathymetric survey
ship in St. Lawrence River in real time. These two
systems can make the bathymetric surveying much more
efficient by eliminating costly deployment (support and
maintenance) of personnel, and in particular the GPS
technique can automatically and accurately determine
the water level where the bathymetric survey ship is
working. In this application, the GPS carrier-phase

Fig. 4. The posterior distribution of x
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ambiguities have to be resolved. For these St. Lawrence
River bathymetric surveys, the distances between the
closest GPS reference stations can reach 50 km. Due to
the (reasonably) long baselines, finding a reliable integer
ambiguity solution is a challenging problem for these
bathymetric surveys.

Because COWLIS can provide the tide-gauge
readings in real time, we can also use the information
from the tide gauges to interpolate the height of the
ship in real time. The height information [once re-
duced from the Chart Datum to geodetic (ellipsoidal)
height] can then be used for GPS positioning. For any
GPS epoch, if we use h0 to denote the height from
COWLIS, the inequality constraint can be expressed
as

h� h0j j � w ð16Þ

where h is the element in the vector x corresponding to
the height. With this inequality constraint, the GPS
positioning model becomes a LICA problem underlain
by the model

l ¼ Axþ xN þ e

h� h0 � �w

h� h0 � w

ð17Þ

where xN is the integer ambiguity vector, x denotes the
vector of position parameters, and w is a threshold
depending on specific applications. For the determina-
tion of w, see Ueno et al. (2000).

In our project, the LS ambiguity search technique
developed by Hatch (1990) is used. In this ‘on-the-fly’
technique, we must compute the position vector �x and
residual vector �e for every possible solution in the
search space. We can easily obtain �x by Eq. (14) and
then �e, and perform the tests for searching the ambi-
guity solution. If this solution is correct, it means that
any ambiguity has been resolved successfully. In our
tests, we first perform the ambiguity resolution by
using all the test data (more than 7000 epochs). The
results of the resolution are then used as correct
ambiguities. In order to study the suggested method,
we use only five epochs to fix the ambiguity vector (i.e.
the initialization period is five epochs), so every five
epochs we can obtain a solution for the ambiguity
vector. Comparing these solutions with the correct one
(determined from all of the test data), we can obtain
the success rate, which is used to evaluate this method
of ambiguity resolution.

Four field tests (1015, 1017, D11, and D14) are
studied in this research. Tests 1015 and 1017 were
conducted on 15 and 17 October, 1999, in the region of
Quebec City. The distance from the hydrographic
survey vessel to the COWLIS station in the port of
Quebec is about 5 km; the distance to the GPS refer-
ence station at Lauzon is about 7 km. Tests D11 and
D14 were conducted in October 1998 at Lake St.
Pierre. The distance from the hydrographic survey
vessel in test D11 to the GPS reference station at Trois-
Rivières is about 45 km; the distance to the COWLIS
gauge station in the lake is about 8 km. In test D14,
the distance from the hydrographic survey vessel to the
GPS reference station at Trois-Rivières is about 35 km;
the distance to the COWLIS gauge station in the lake
is about 5 km. All data sets contain dual-frequency
phase and P(Y) code observations, and the observation
interval is 1 sec.

For comparison, four methods have been used in our
research. The first method fixes ambiguities without
using any prior information (the last column in Table 1);
the second fixes ambiguities with the mode-based
Bayesian method (LSI method); the third fixes
ambiguities by viewing height information as quasi-
observations (Zhu and Santerre 2002); and the fourth is
the mean-based Bayesian method presented in Sect. 3.
The success rates of the GPS L1 ambiguity resolution
are shown in Table 1.

Before making comments on Table 1, we remark on
the third method, which views the height information as
quasi-observations. This method can actually be con-
sidered as another variant of the Bayesian method. If the
quasi-observation is assumed to be normally distributed,
according to the Bayesian theory the posterior distri-
bution will also be normally distributed (see e.g. Koch
1990, pp. 6–7). The solution based on the mode is
actually the one with posterior maximum likelihood.
For a normal distribution, the solutions based on the
mode and on the mean are the same (note that we do not
have inequality constraints there). This means that if the
prior distribution is a normal distribution, the solution
based on the mean is actually the one with posterior
maximum likelihood. From mathematical statistics, we
know that for a linear model with a normally distributed
noise vector, the LS estimate and the maximum likeli-
hood estimate are the same. Therefore, the estimate by
the method that views the height information as a quasi-
observation is actually the same as that obtained by the
mean-based Bayesian method with a prior normal
distribution.

Table 1. Success rates of GPS L1 ambiguity resolution for a 5-sec. initialization period. Values in %

Cases w=10 cm 20 cm 30 cm 40 cm 50 cm 60 cm Quasi-
observation
(rh = 20 cm)

LS solution
of LICA
(w = 20 cm)

No prior
height

1015 67 93 93 91 90 90 95 90 69
1017 95 95 95 95 95 95 96 92 61
D14 86 91 90 90 90 90 92 86 63
D11 65 84 80 71 64 62 77 71 50

532



In Table 1, the results given in the columns ‘w ¼
10 cm’, . . . , ‘60 cm’ were obtained by the mean-based
Bayesian method, and ‘10 cm’, . . . , ‘60 cm’ are the
values of w in Eq. (17). The results given in the column
‘Quasi-observation’ correspond to the method when
viewing the prior height information as a quasi-obser-
vation. Zhu and Santerre (2002) suggested that (20
cm)2 may be taken as the variance of quasi-observa-
tions for the bathymetric survey in the St. Lawrence
River, so Table 1 shows only the results with this
variance. Note that the variance of quasi-observations
can be determined by a robust estimation method
(Yang 1991). Results in the column ‘LS solution of
LICA’ were obtained by the LS mode-based methods
(Lu et al. 1993). For height constraints in the bathy-
metric survey in the St. Lawrence River, Ueno et al.
(2000) suggested that w ¼ 20 cm should be used as a
threshold of height validation, so only the results for
this threshold are given in Table 1 for the mode-based
LICA solution. From Table 1, we can make the fol-
lowing comments.

1. When the mean-based Bayesian method is used, the
best threshold value for the height is 20–30 cm. If 40
cm is used as a threshold, good results can still be
obtained, but if 10 cm is used, the result becomes
worse. This means that the threshold value of 10 cm
is too small, and in many situations the region
determined by this threshold value does not contain
the real value of the ellipsoidal height in the bathy-
metric survey in the St. Lawrence River.

2. Comparing the column ‘20 cm’ and column ‘Quasi-
observation’ in Table 1, we observe that the results
obtained by the Bayesian method are close to those
obtained by the method viewing the height informa-
tion as quasi-observation. This means that, for the
bathymetric survey in the St. Lawrence River, either
method can be used.

3. When the prior height information is used, results
can be improved significantly regarding ambiguity
fixing.

5 Conclusions

1. TheLICAproblem canbe solvedbasedon theBayesian
principle. The LS solution of the LICA is proved to
be identical to the Bayesian solution based on the
mode.

2. The Bayesian solution of LICA allows us to evaluate
the statistical properties of the solutions, i.e. to find
the MSE matrix of the estimate of the parameter
vector.

3. The Bayesian solution of LICA can be applied to GPS
positioning. When there is prior height information
available to be used, the GPS ambiguity resolution
can be improved significantly.
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